首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
With the development of communication technology the applications and services of health telemetics are growing. In view of the increasingly important role played by digital medical imaging in modern health care, it is necessary for large amount of image data to be economically stored and/or transmitted. There is a need for the development of image compression systems that combine high compression ratio with preservation of critical information. During the past decade wavelets have been a significant development in the field of image compression. In this paper, a hybrid scheme using both discrete wavelet transform (DWT) and discrete cosine transform (DCT) for medical image compression is presented. DCT is applied to the DWT details, which generally have zero mean and small variance, thereby achieving better compression than obtained from either technique alone. The results of the hybrid scheme are compared with JPEG and set partitioning in hierarchical trees (SPIHT) coder and it is found that the performance of the proposed scheme is better.  相似文献   

2.
With the development of communication technology the applications and services of health telemetics are growing. In view of the increasingly important role played by digital medical imaging in modern health care, it is necessary for large amount of image data to be economically stored and/or transmitted. There is a need for the development of image compression systems that combine high compression ratio with preservation of critical information. During the past decade wavelets have been a significant development in the field of image compression. In this paper, a hybrid scheme using both discrete wavelet transform (DWT) and discrete cosine transform (DCT) for medical image compression is presented. DCT is applied to the DWT details, which generally have zero mean and small variance, thereby achieving better compression than obtained from either technique alone. The results of the hybrid scheme are compared with JPEG and set partitioning in hierarchical trees (SPIHT) coder and it is found that the performance of the proposed scheme is better.  相似文献   

3.
A new wavelet-based method for the compression of electrocardiogram (ECG) data is presented. A discrete wavelet transform (DWT) is applied to the digitized ECG signal. The DWT coefficients are first quantized with a uniform scalar dead-zone quantizer, and then the quantized coefficients are decomposed into four symbol streams, representing a binary significance stream, the signs, the positions of the most significant bits, and the residual bits. An adaptive arithmetic coder with several different context models is employed for the entropy coding of these symbol streams. Simulation results on several records from the MIT-BIH arrhythmia database show that the proposed coding algorithm outperforms some recently developed ECG compression algorithms.  相似文献   

4.
'Visualization' in imaging is the process of extracting useful information from raw data in such a way that meaningful physical contrasts are developed. 'Classification' is the subsequent process of defining parameter ranges which allow us to identify elements of images such as different tissues or different objects. In this paper, we explore techniques for visualization and classification in terahertz pulsed imaging (TPI) for biomedical applications. For archived (formalin-fixed, alcohol-dehydrated and paraffin-mounted) test samples, we investigate both time- and frequency-domain methods based on bright- and dark-field TPI. Successful tissue classification is demonstrated.  相似文献   

5.
We compare terahertz-pulsed imaging (TPI) with transverse microradiography (TMR) and microindentation to measure remineralization of artificial caries lesions. Lesions are formed in bovine enamel using a solution of 0.1 M lactic acid/0.2% Carbopol C907 and 50% saturated with hydroxyapatite adjusted to pH 5.0. The 20-day experimental protocol consists of four 1 min treatment periods with dentifrices containing 10, 675, 1385, and 2700 ppm fluoride, a 4-h/day acid challenge, and, for the remaining time, specimens are stored in a 50:50 pooled human/artificial saliva mixture. Each specimen is imaged at the focal point of the terahertz beam (data-point spacing = 50 μm). The time-domain data are used to calculate the refractive index volume percent profile throughout the lesion, and the differences in the integrated areas between the baseline and post-treatment profiles are used to calculate ΔΔZ((THz)). In addition, the change from baseline in both the lesion depth and the intensity of the reflected pulse from the air/enamel interface is determined. Statistically significant Pearson correlation coefficients are observed between TPI and TMR/microindentation (P < 0.05). We demonstrate that TPI has potential as a research tool for hard tissue imaging.  相似文献   

6.
根据医学图像信息相对集中的特点,提出了一种基于最佳截断嵌入码块编码和离散小波变换的医学图像任意形状感兴趣区域复合压缩方法,通过对图像感兴趣区域和背景区采用不同的编码方式,提高了医学图像压缩比,并确保了医学图像感兴趣区域的高质量重建。实验表明:该方法在重建图像质量和压缩比方面均达到了较好的性能。  相似文献   

7.
Compression of electrocardiography (ECG) is necessary for efficient storage and transmission of the digitized ECG signals. Discrete wavelet transform (DWT) has recently emerged as a powerful technique for ECG signal compression due to its multi-resolution signal decomposition and locality properties. This paper presents an ECG compressor based on the selection of optimum threshold levels of DWT coefficients in different subbands that achieve maximum data volume reduction while preserving the significant signal morphology features upon reconstruction. First, the ECG is wavelet transformed into m subbands and the wavelet coefficients of each subband are thresholded using an optimal threshold level. Thresholding removes excessively small features and replaces them with zeroes. The threshold levels are defined for each signal so that the bit rate is minimized for a target distortion or, alternatively, the distortion is minimized for a target compression ratio. After thresholding, the resulting significant wavelet coefficients are coded using multi embedded zero tree (MEZW) coding technique. In order to assess the performance of the proposed compressor, records from the MIT-BIH Arrhythmia Database were compressed at different distortion levels, measured by the percentage rms difference (PRD), and compression ratios (CR). The method achieves good CR values with excellent reconstruction quality that compares favourably with various classical and state-of-the-art ECG compressors. Finally, it should be noted that the proposed method is flexible in controlling the quality of the reconstructed signals and the volume of the compressed signals by establishing a target PRD and a target CR a priori, respectively.  相似文献   

8.
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.  相似文献   

9.
We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo.  相似文献   

10.
ECG data compression using optimal non-orthogonal wavelet transform   总被引:5,自引:0,他引:5  
This paper introduces an effective technique for the compression of electrocardiogram (ECG) signals. The technique is based on a new class of non-orthogonal discrete wavelet transform (DWT). The performance of ECG compression algorithm is measured by its ability to minimize distortion while retaining all clinically significant features of the signal. The percent root-mean square difference (PRD) is used as an accepted standard for measuring the signal distortion. However, there is no standard for measuring the clinically significant features retained after signal reconstruction. The coefficients of the DWT are calculated such that the square of the difference between the original signal and the reconstructed one is minimum in least mean square sense. The resulting transforms deal with signals of arbitrary lengths; that means the signal length is not restricted to be a multiple of power of 2. Numerical results comparing the performance of the constructed non-orthogonal transform with that of W-transform and Daubechies D(4) orthogonal transform are given. These results show that, independent of signal length, the decomposition of the signal up to the fourth level is sufficient for getting minimum PRD. In addition, the proposed technique yields the lowest PRD compared to the other two algorithms and for a compression ratio less than 10 the optimal transform can be obtained for only one ECG period. However, for a higher compression ratio the PRD is smaller for long signals.  相似文献   

11.
N C Phelan  J T Ennis 《Medical physics》1999,26(8):1607-1611
Image compression is fundamental to the efficient and cost-effective use of digital medical imaging technology and applications. Wavelet transform techniques currently provide the most promising approach to high-quality image compression which is essential for diagnostic medical applications. A novel approach to image compression based on the wavelet decomposition has been developed which utilizes the shape or morphology of wavelet transform coefficients in the wavelet domain to isolate and retain significant coefficients corresponding to image structure and features. The remaining coefficients are further compressed using a combination of run-length and Huffman coding. The technique has been implemented and applied to full 16 bit medical image data for a range of compression ratios. Objective peak signal-to-noise ratio performance of the compression technique was analyzed. Results indicate that good reconstructed image quality can be achieved at compression ratios of up to 15:1 for the image types studied. This technique represents an effective approach to the compression of diagnostic medical images and is worthy of further, more thorough, evaluation of diagnostic quality and accuracy in a clinical setting.  相似文献   

12.
随着医学成像方式的不断增加,目前迫切需要解决庞大的图像数据的存储和传输的问题,压缩成为解决该问题不可或缺的重要方法之一.对目前医学图像压缩领域的技术进行了总结和分析,详细介绍了基于感兴趣区域的压缩、无损压缩、小波变换和基于神经网络的压缩方法,并对压缩算法的评估给出了几点标准,最后对医学图像压缩领域的发展前景提出了一些看法.  相似文献   

13.
Increasing use of computerized ECG processing systems requires effective electrocardiogram (ECG) data compression techniques which aim to enlarge storage capacity and improve data transmission over phone and internet lines. This paper presents a compression technique for ECG signals using the singular value decomposition (SVD) combined with discrete wavelet transform (DWT). The central idea is to transform the ECG signal to a rectangular matrix, compute the SVD, and then discard small singular values of the matrix. The resulting compressed matrix is wavelet transformed, thresholded and coded to increase the compression ratio. The number of singular values and the threshold level adopted are based on the percentage root mean square difference (PRD) and the compression ratio required. The technique has been tested on ECG signals obtained from MIT-BIH arrhythmia database. The results showed that data reduction with high signal fidelity can thus be achieved with average data compression ratio of 25.2:1 and average PRD of 3.14. Comparison between the obtained results and recently published results show that the proposed technique gives better performance.  相似文献   

14.
Increasing use of computerized ECG processing systems requires effective electrocardiogram (ECG) data compression techniques which aim to enlarge storage capacity and improve data transmission over phone and internet lines. This paper presents a compression technique for ECG signals using the singular value decomposition (SVD) combined with discrete wavelet transform (DWT). The central idea is to transform the ECG signal to a rectangular matrix, compute the SVD, and then discard small singular values of the matrix. The resulting compressed matrix is wavelet transformed, thresholded and coded to increase the compression ratio. The number of singular values and the threshold level adopted are based on the percentage root mean square difference (PRD) and the compression ratio required. The technique has been tested on ECG signals obtained from MIT-BIH arrhythmia database. The results showed that data reduction with high signal fidelity can thus be achieved with average data compression ratio of 25.2:1 and average PRD of 3.14. Comparison between the obtained results and recently published results show that the proposed technique gives better performance.  相似文献   

15.
基于JPEG技术的CT图像压缩方法的研究   总被引:1,自引:0,他引:1  
CT图像在医学影像诊断中占有重要地位,CT图像压缩技术是PACS系统的重要组成部分。JPEG静止图像压缩标准目前已成为一种广泛应用的图像压缩技术。JPEG充分利用人眼的视觉特性,对DCT系数的低频系数进行细量化,而对高频系数进行粗量化,但未对图像的边缘特征进行特殊的处理。而图像的部分边缘特征又正是隐含于DCT高频系数中。文中从图像边缘信息的谱分析入手,通过理论推导及实例分析得到平直单边缘图像子块其DCT系数能量的分布规律,并以此为理论基础设计出JPEG中DCT系数量化表(Q表),实验结果表明该Q表对非平直边缘图象子块没有影响,而对含有平直边缘图像子块的边缘信息进行了有效的保持。  相似文献   

16.
17.
This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.  相似文献   

18.
Recent years have seen great development in the field of medical imaging and telemedicine. Despite the developments in storage and communication technologies, compression of medical data remains challenging. This paper proposes an efficient medical image compression method for telemedicine. The proposed method takes advantage of Radon transform whose basis functions are effective in representing the directional information. The periodic re-ordering of the elements of Radon projections requires minimal interpolation and preserves all of the original image pixel intensities. The dimension-reducing property allows the conversion of 2D processing task to a set of simple 1D task independently on each of the projections. The resultant Radon coefficients are then encoded using set partitioning in hierarchical trees (SPIHT) encoder. Experimental results obtained on a set of medical images demonstrate that the proposed method provides competing performance compared with conventional and state-of-the art compression methods in terms of compression ratio, peak signal-to-noise ratio (PSNR), and computational time.  相似文献   

19.
ObjectiveWe provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities.MethodsBoth time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed.ValidationExamples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed.ResultsIdentifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis.ConclusionThe proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community.  相似文献   

20.
We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号