首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In the primary visual cortex of cats, ferrets and macaque monkeys, the thalamocortical afferents conveying signals from the two eyes terminate in alternating regions of layer IV known as ocular dominance columns. Previous experiments have indicated that the periodicity of these columns can be influenced by visual experience: compared to normally raised animals both strabismic cats and cats raised with alternating monocular exposure displayed an increased spacing of adjacent ocular dominance columns in the primary visual cortex (area 17). However, recently it was shown that the formation of ocular dominance columns begins much earlier than previously supposed, indicating that early visual experience might only have a limited influence on the development of the spatial pattern of ocular dominance columns. We therefore visualized the complete pattern of ocular dominance columns in area 17 of normally raised and strabismic kittens during early postnatal development (age 3-6 weeks), particularly focussing on littermates. In addition, we used a previously developed spatial analysis (period statistics) to quantify columnar spacing two-dimensionally. We observed a pronounced interindividual variability in both normally raised and strabismic animals, with column spacings ranging from 783 to 1362 microm. In contrast to previous reports, there were no significant differences in columnar periodicity between normally raised and strabismic cats. These data indicate that rearing has less influence on column spacing while the interindividual variability is much greater than previously supposed, suggesting that genetic differences have an influence on column spacing.  相似文献   

2.
In the visual cortex, pinwheel centers, which appear as point singularities in orientation maps, are likely to be found at the centers of ocular dominance columns in normal cats and monkeys. To elucidate the mechanism underlying the geometrical relationship, we performed computer simulation based on our correlation-based self-organization model. The simulation showed that pinwheel centers tended to be located at the ocular dominance centers at higher correlations of activities between the left- and right-eye specific pathways, whereas they tended to appear along the borders of ocular dominance columns at lower correlations. This tendency was mathematically analyzed with a formula describing the condition determining the geometrical relationship between pinwheel centers and ocular dominance columns. Moreover, to examine the effect of activity correlations in the eye-specific pathways on the column formation, we conducted intrinsic signal optical imaging using normally reared cats and dark-reared cats. The between-eye activity correlation in dark-reared cats is expected to be lower than that in normal cats due to the lack of common visual input in the two eyes. The statistical analysis of experimental data showed that while more pinwheel centers tended to be located in the center subregion of ocular dominance columns than in the border subregion in the normal cats, a weak tendency in the opposite direction was found in the dark-reared cats. Based on the consistent results from the model and experiment, it is suggested that the activity correlation between the left- and right-eye specific pathways has influence on the establishment of geometrical relationship in the cortical representation between orientation preference and ocular dominance.  相似文献   

3.
Processing deficits in primary visual cortex of amblyopic cats   总被引:3,自引:0,他引:3  
Early esotropic squint frequently results in permanent visual deficits in one eye, referred to as strabismic amblyopia. The neurophysiological substrate corresponding to these deficits is still a matter of investigation. Electrophysiological evidence is available for disturbed neuronal interactions in both V1 and higher cortical areas. In this study, we investigated the modulation of responses in cat V1 to gratings at different orientations and spatial frequencies (SFs; 0.1-2.0 cycles/degrees) with optical imaging of intrinsic signals. Maps evoked by both eyes were well modulated at most spatial frequencies. The layout of the maps resembled that of normal cats, and iso-orientation domains tended to cross adjacent ocular dominance borders preferentially at right angles. Visually evoked potentials (VEPs) were recorded at SFs ranging from 0.1 to 3.5 cycles/degrees and revealed a consistently weaker eye for the majority of squinting cats. At each SF, interocular differences in VEP amplitudes corresponded well with differences in orientation response and selectivity in the maps. At 0.7-1.3 cycles/ degrees, population orientation selectivity was significantly lower for the weaker eye in cats with VEP differences compared with those with no VEP amplitude differences. In addition, the cutoff SF, above which gratings no longer induced orientation maps, was lower for the weaker eye (> or =1.0 cycles/degrees). These data reveal a close correlation between the loss of visual acuity in amblyopia as assessed by VEPs and the modulation of neuronal activation as seen by optical imaging of intrinsic signals. Furthermore, the results indicate that amblyopia is associated with altered intracortical processing already in V1.  相似文献   

4.
Schmidt KF  Löwel S 《Neuroscience》2008,152(1):128-137
The development of long-range horizontal connections depends on visual experience. Previous experiments have shown that in area 17 of strabismic but not in normal cats, horizontal fibers preferentially connect cell groups driven by the same eye indicating that fibers between coactive neurons are selectively stabilized. To test whether this is a general organizing principle of intracortical long-range circuitry we extended our analyses to both intrinsic horizontal connections within area 18 and to inter-areal connections between areas 17 and 18. To this end, we visualized the functional architecture of area 18 by intrinsic signal imaging. Horizontal circuitry was labeled by injecting fluorescent latex microspheres into functionally identified domains. Additionally, domains sharing the same ocular dominance as the neurons at the injection sites were visualized by 2-deoxyglucose autoradiography to allow comprehensive labeling of functional domains in regions far from the injection sites. Quantitative analyses revealed that in strabismic cats, 72% of the retrogradely labeled neurons in area 18 and 68% of the neurons in area 17 were located in the same ocular dominance domains as the injection sites. In contrast, these numbers were 52% and 54% in normal animals. These data show that experience modifies both intrinsic connections within area 18 and inter-areal projections from area 17 to area 18 as has been previously described for intrinsic and callosal connections in area 17. This provides further evidence for the hypothesis that the correlation of activity is a major selection criterion for the stabilization of neuronal circuits during postnatal development.  相似文献   

5.
Functional organization of the cortical 17/18 border region in the cat   总被引:1,自引:0,他引:1  
The representation of the visual field in the 17/18 border region of the cat's visual cortex, and the layout of orientation and ocular dominance columns, were studied by making many closely spaced electrode penetrations into the superficial layers of the flattened dorsal region of the marginal gyrus and recording response properties at each location. The 17/18 border region was defined by measuring the change in the horizontal component of receptive field position within the gyrus: as the position of the recording electrode moved from medial to lateral, the receptive fields moved towards the vertical midline, indicating that the electrode was in area 17; as penetrations were made in increasingly lateral positions, the trend reversed, and receptive field positions moved away from the midline, indicating that the electrode was in area 18. The receptive fields of cells close to the border straddled, or lay within 2 degrees-3 degrees on either side of the vertical midline. In addition, patches of cortex were sometimes encountered in which cells had receptive field centers located up to 7 degrees in the ipsilateral visual field. Experiments in which maps were made in the left and right hemispheres of a single animal showed that these patches had a complementary distribution in the two hemispheres. Cells within the patches behaved as though driven by Y-cell inputs: they usually had large receptive fields and responded to rapidly-moving stimuli. They were broadly tuned for orientation and strongly dominated by the contralateral eye. Fourier spectral analysis of orientation selectivity maps showed that iso-orientation bands had an average spacing of 1.14 +/- 0.1 mm and tended to be elongated in a direction orthogonal to the 17/18 border. Individual bands crossed the border without obvious interruption, although singularities (points of discontinuity in the layout of orientations) were more frequently observed in the border region than in adjacent areas. Two dominant periodicities could be measured in the maps of ocular dominance, one at around 0.8 +/- 0.2 mm and a second at 2.0 +/- 0.3 mm. No constant direction of elongation was noted. These are close to the periods present within areas 17 and 18 respectively.  相似文献   

6.
Summary The representation of the visual field in the 17/18 border region of the cat's visual cortex, and the layout of orientation and ocular dominance columns, were studied by making many closely spaced electrode penetrations into the superficial layers of the flattened dorsal region of the marginal gyrus and recording response properties at each location. The 17/18 border region was defined by measuring the change in the horizontal component of receptive field position within the gyrus: as the position of the recording electrode moved from medial to lateral, the receptive fields moved towards the vertical midline, indicating that the electrode was in area 17; as penetrations were made in increasingly lateral positions, the trend reversed, and receptive field positions moved away from the midline, indicating that the electrode was in area 18. The receptive fields of cells close to the border straddled, or lay within 2°–3° on either side of the vertical midline. In addition, patches of cortex were sometimes encountered in which cells had receptive field centers located up to 7° in the ipsilateral visual field. Experiments in which maps were made in the left and right hemispheres of a single animal showed that these patches had a complementary distribution in the two hemispheres. Cells within the patches behaved as though driven by Y-cell inputs: they usually had large receptive fields and responded to rapidly-moving stimuli. They were broadly tuned for orientation and strongly dominated by the contralateral eye. Fourier spectral analysis of orientation selectivity maps showed that iso-orientation bands had an average spacing of 1.14 ± 0.1 mm and tended to be elongated in a direction orthogonal to the 17/18 border. Individual bands crossed the border without obvious interruption, although singularities (points of discontinuity in the layout of orientations) were more frequently observed in the border region than in adjacent areas. Two dominant periodicities could be measured in the maps of ocular dominance, one at around 0.8 ± 0.2 mm and a second at 2.0 ± 0.3 mm. No constant direction of elongation was noted. These are close to the periods present within areas 17 and 18 respectively.  相似文献   

7.
It has recently been reported that exogenous supply of nerve growth factor prevents the effects of monocular deprivation both in rats and in cats. Here we have extended these experiments to the case of strabismus. Repeated intraventricular injections of nerve growth factor were performed in rats made surgically strabismic early in the critical period. At the end of the critical period the ocular dominance distribution of visual cortical neurons was assessed in strabismic untreated, strabismic nerve growth factor-treated and strabismic Cytochrome C-treated (control) rats by means of extracellular recordings. We found that in rats surgical strabismus causes a consistent loss of binocular neurons. By contrast the treatment with nerve growth factor maintains the normal ocular dominance distribution of neurons in the primary visual cortex. We conclude that nerve growth factor exogenously supplied prevents the effects induced by surgical strabismus in rats and suggest that nerve growth factor has a role in visual cortical plasticity.  相似文献   

8.
The expression of telencephalin in visual cortex of cat and monkey was studied immunohistochemically. In adult cats and monkeys, immunoreactivity to a polyclonal antibody raised against telencephalin was especially low in layer IV, which receives massive afferent input from the thalamus. In kitten visual cortex, the antibody bound both layer IV and other cortical layers during the most sensitive period for ocular dominance plasticity. Outside the sensitive period, the staining of layer IV was selectively reduced. These findings suggest that the expression of telencephalin is developmentally regulated during the early period and may play a role in regulating plasticity during the sensitive period.  相似文献   

9.
Spatial distribution of horizontal intrinsic neuronal connections in area 17 of cat cerebral cortex was studied following HRP microion tophoretic injections into the single cortical columns. Cluster analysis of labelled cell distribution in superficial layers was performed in the tangential cortical plane. Area 17 was found to contain 7 +/- 1 clusters each consisting of 1-5 cells. Clusters were arranged in two rows, separated by a distance of 1.2 +/- 0.3 mm. The distance between the centers of the clusters that form the rows was equal to 0.8 +/- 0.3 mm. The spatial characteristics of cell clusters sending axons to cortical column, found in this study, were compared with the known data on the optical imaging of the activity of neurons of orientation and ocular dominance columns of visual cortex. It is suggested that area 17 cortical column receives inputs from cells of 6-8 hypercolumns that have similar ocular dominance and orientation preference.  相似文献   

10.
We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3',5'-monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.  相似文献   

11.
Summary Responses to binocular visual stimulation were compared in cortical area 18 of normal cats and in cats in which one eye was exodeviated by surgery early in postnatal life. In contrast to normal cats where most units (58%) were binocularly activated, relatively few units (10%) in strabismic cats were activated well by stimulation of either eye. Rather individual units were driven mainly via one eye or the other but not both. In addition, there was a tendency for more units to be driven well via the unoperated eye than via the exodeviated eye. Fewer cells preferring vertically oriented than horizontally oriented stimuli were found in area 18 of strabismic cats. This trend was observed for cells driven by either the normal or deviated eye and was especially marked among the small number of binocularly activated cells.Generally binocular responses and binocular interactions were found with stimulation at corresponding retinal points. In a few striking instances, however, the receptive fields of binocular neurons were located on noncorresponding retinal points at loci which would enable the cat to correlate the two images of an external object despite the large divergent strabismus.Quantitative responses to binocular stimuli presented at varied disparities and to stimuli with varied directions of motion in depth were compared in normal and strabismic cats. Despite the large strabismus, a reduced fraction of cortical neurons displayed substantial binocular interactions. In fact, binocular facilitation was as marked in the population of cells studied in strabismic cats as it was in normal animals. The major effect of strabismus was a reduction in the strength of binocular inhibition when units were tested with sideways motion.Disparity-specific responses to motion toward or away from the organism were little affected by strabismus. The degree of binocular facilitation and binocular inhibition among the cell population was similar in normal and strabismic cats. A subpopulation of units encountered in strabismic cats showed strong disparity-specific interactions for motion toward or away from the animal without equivalent modulation for sideways moving stimuli. Units with these properties were not found in normal animals and may, therefore, represent a special adaptation of the strabismic animals.Supported by grants MT-5201 and A9939 from MRC and NSERC of CanadaPresent address: Dept. of Physiology, University of Washington, Seattle, WA 98195, USA  相似文献   

12.
1. Twenty-three kittens were monocularly deprived of vision until the age of 4, 5, 6 or 7 weeks. Their deprived eyes were then opened, and their experienced eyes shut for a further 3-63 days. After this time physiological recordings were made in the visual cortex, area 17. Three control kittens, monocularly deprived for various periods, showed that at the time of reverse-suturing, few neurones could be influenced at all from the deprived eye. 2. Following reverse-suturing, the initially deprived eye regained control of cortical neurones. This switch of cortical ocular dominance was most rapid following reverse-suturing at the age of 4 weeks. Delaying the age of reverse-suturing reduced the rate and then the extent of the cortical ocular dominance changes. 3. The cortex of reverse-sutured kittens is divided into regions of cells dominated by one eye or the other. The relative sizes of these ocular dominance columns changed during reversed deprivation. The columns devoted to the initially deprived eye were very small in animals reverse-sutured for brief periods, but in animals that underwent longer periods of reversed deprivation, the columns driven by that eye were larger, while those devoted to the initially open eye were smaller. 4. Clear progressions of orientation columns across the cortex were apparent in many of the kittens, but, in contrast to the situation in normal or strabismic kittens, these sequences were disrupted at the borders of eye dominance columns: the cortical representations of orientation and ocular dominance were not independent. 5. Binocular units in these kittens were rather rare, but those that could be found often had dissimilar receptive field properties in the two eyes. Commonly, a cell would have a normal orientation selective receptive field in one eye, and an immature, unselective receptive field in the other. Cells that had orientation selective receptive fields in both eyes often had greatly differing orientation preferences in the two eyes, occasionally by nearly 90 degrees. 6. During the reversal of deprivation effects, the proportion of receptive fields exhibiting mature properties declined in the initially experienced eye, while the proportion increased in the initially deprived eye. Similarly, the average band width of orientation tuning of receptive fields in the initially deprived eye decreased, while that of receptive fields in the initially experienced eye increased. 7. One kitten was reverse-sutured twice, to demonstrate that cortical ocular dominance may be reversed a second time, even after one reversal of ocular dominance. 8. It is suggested that the sensitive period for cortical binocular development consists of two phases. In the first phase, all cortical neurones may be modified by experience, but the rate at which they may be modified decreases with age. In the second phase, an increasing number of cortical neurones becomes fixed in their properties, while those that remain modifiable are as modifiable as they were at the end of the first phase. 9...  相似文献   

13.
The orientation map is a hallmark of primary visual cortex in higher mammals. It is not yet known how orientation maps develop, what function they have in visual processing and why some species lack them. Here we advance the notion that quasi-periodic orientation maps are established by moiré interference of regularly spaced ON- and OFF-center retinal ganglion cell mosaics. A key prediction of the theory is that the centers of iso-orientation domains must be arranged in a hexagonal lattice on the cortical surface. Here we show that such a pattern is observed in individuals of four different species: monkeys, cats, tree shrews and ferrets. The proposed mechanism explains how orientation maps can develop without requiring precise patterns of spontaneous activity or molecular guidance. Further, it offers a possible account for the emergence of orientation tuning in single neurons despite the absence of orderly orientation maps in rodents species.  相似文献   

14.
The primary visual cortex (area 17) of cats continues to grow substantially during early postnatal development. To assess the implications of this growth for the organization of visual cortical maps, we analysed both postnatal growth of area 17 and the spacing of ocular dominance columns in the same animals using 2-deoxyglucose autoradiography to label cortical activation patterns. Quantitative analyses of area size and column spacing were performed on flat-mount sections of the cortical hemispheres. Our analysis of the surface area revealed an average increase of the size of area 17 between the third and tenth postnatal weeks by about 51%. About 75% of this increase occurred during the third and sixth postnatal weeks (size increase of 37%). However, the distance between adjacent columns did not exhibit a similar increase but rather remained constant during the same postnatal period. Since cortical growth is not accompanied by an increased spacing of ocular dominance columns, new functional modules must somehow be added during the first postnatal weeks to occupy the enlarging cortical sheet. Possible mechanisms underlying the formation of new modules are discussed. Electronic Publication  相似文献   

15.
Summary The acuities of cells in the primary visual cortex of five tenotomized strabismic cats were measured. Previous behavioural studies have shown such animals to possess a severe amblyopia of approximately 1.5 octaves of spatial frequency, yet the acuities of both retinal ganglion and lateral geniculate X-cells are normal. The receptive fields of the cortical cells sampled were within 5° of the area centralis projection. On average, the acuities of cortical cells driven by the amblyopic eye were nearly 1 octave less than those for the non-deviating eye. However, the best cell acuities for each eye were nearly the same. The relationship between ocular dominance and cell acuity was found to be different for the two eyes despite a symmetrical ocular dominance distribution. The acuity deficit for cells driven through the amblyopic eye was present at all depths along the electrode tracks. We conclude that in this model amblyopia, the initial spatial processing deficit lies in the visual cortex, and most probably in the cells of layer IV. Further-more, the presence of a few cells driven by the amblyopic eye which can perform nearly as well as those from the fellow eye in processing high spatial frequencies gives new insight into the way in which strabismic and deprivation amblyopias differ.  相似文献   

16.
17.
Summary In the visual cortex of four adult cats ocular dominance and orientation columns were visualized with (3H)proline and (14C)deoxyglucose autoradiography. The two columnar systems were reconstructed from serial horizontal sections or from flat-mount preparations and graphically superimposed. They share a number of characteristic features: In both systems the columns have a tendency to form regularly spaced parallel bands whose main trajectory is perpendicular to the border between areas 17 and 18. These bands frequently bifurcate or terminate in blind endings. The resulting irregularities are much more pronounced in the ocular dominance than in the orientation system. The periodicity of the columnar patterns was assessed along trajectories perpendicular to the main orientation of the bands and differed in the two columnar systems. The spacing of the ocular dominance stripes was significantly narrower than the spacing of orientation bands. The mean periodicity of a particular columnar system was virtually identical in the two hemispheres of the same animal but it differed substantially in different animals. However, the spacing of orientation columns covaried with that of the ocular dominance columns, the ratios of the mean spacings of the two columnar systems being similar in the four cats. The superposition of the two columnar systems revealed no obvious topographic relation between any of the organizational details such as the location of bifurcations, blind endings and intersections. We suggest the following conclusions: 1. The developmental processes generating the two columnar systems seem to obey the same algorithms but they act independently of each other. 2. The space constants of the two systems are rigorously specified and appear to depend on a common variable. 3. The main orientation of the bands in both columnar systems is related to a) the representation of the vertical meridian, b) the anisotropy of the cortical magnification factor, and c) the tangential spread of intracortical connections.  相似文献   

18.
Using Western blot analyses and a quantitative ELISA, we identified the presence and developmental accumulation of the astroglial S-100 protein(s) in rat and cat visual cortex. There is a steep rise in the S-100 content, comprising mainly S-100β, during the time period of highest cortical malleability in both species. A possible role of the astroglial S-100 protein(s) in experience-dependent plasticity of the visual cortex of kittens was tested by infusing antiserum against this protein during the critical period for cortical malleability. Following 1 week of monocular deprivation, the ocular dominance of single cells in the visual cortex was investigated. The vast majority of cells in the hemispheres infused with anti-S-100 serum maintained binocular responses. This finding suggests that extracellular S-100 protein is essential for ocular-dominance plasticity. Infusion of S-100β during the critical period of cortical malleability had no effect on deprivation-induced ocular-dominance plasticity, but interfered with the experience-dependent refinement of orientation selectivity of visual cortical neurons. It is suggested that S-100β may play an important role in the refinement of cortical circuitries by selectively affecting active or activated neuronal compartments. As S-100β is synthesized in astroglial cells, the effects on neuronal plasticity imply that glia-neuronal information transfer occurs during activity-dependent plasticity. Possible underlying mechanisms are discussed on the basis of current knowledge on the S-100 protein family, especially S-100β (Marshak, 1990).  相似文献   

19.
Cats were reared in total darkness from birth until 4-5 mo of age (DR cats, n = 7) or with very brief visual experience (1 or 2 days) during an otherwise similar period of dark rearing [DR(1) cats, n = 3; DR(2) cats, n = 7]. Single-cell recordings were made in area 17 of visual cortex at the end of this rearing period and/or after a subsequent prolonged period of monocular deprivation. Control observations were made in normal cats (n = 3), cats reared with monocular deprivation from birth (n = 4), and cats monocularly deprived after being reared normally until 4 mo of age (n = 2). After rearing cats in total darkness, the majority of visual cortical cells were binocularly driven and the overall distribution of ocular dominance was not different from that of normal cats. Orientation-selective cells were very rare in dark-reared cats. Monocular deprivation imposed after dark rearing resulted in selective development of connections from the open eye. Most cells were responsive only to the open eye and the majority of these were orientation selective. These results were similar to, though less severe than, those found in cats reared with monocular deprivation from birth. Monocular deprivation imposed after 4 mo of normal rearing did not produce selective development of connections from the open eye in terms of either ocular dominance or orientation selectivity. In DR(1) cats visual cortical physiology was degraded in comparison to dark-reared cats after the rearing period. Most cells were binocularly driven but there was a higher frequency of unresponsive cells and a reduced frequency of orientation-selective cells. Subsequent monocular deprivation resulted in a further decrease in the number of binocularly driven cells and an increase in unresponsive cells. However, it did not produce a bias in favor of the open eye in terms of either ocular dominance or orientation selectivity. In DR(2) cats there was a high incidence of unresponsive cells and a marked loss of binocularly driven cells after the rearing period. Subsequent monocular deprivation failed to produce any significant changes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
1. The response properties of 182 units were studied in the primary visual cortices (155 in area 18 and 27 in area 17) in eight cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Multihistogram quantitative testing was carried out in 82 units (64 in area 18 and 18 in area 17). Two hundred three neurons recorded and quantitatively tested in areas 17 and 18 of the normal adult cat were used for comparison. 2. Spatial characteristics of receptive fields investigated using hand-held stimuli were found to be abnormal. The correlation between receptive-field width and eccentricity was lost in area 18 and consequently, receptive fields were significantly wider in area 18 subserving central vision. Cells could be classified according to the spatial characteristics of their receptive fields. There was a much smaller proportion of end-stopped cells in strobe-reared animals. Orientation tuning in the deprived animals was normal except for a small number of cells that showed no selectivity for stimulus orientation. 3. Compilation of velocity-response curves made it possible to classify areas 17 and 18 neurons into four categories: velocity low-pass, velocity broad-band, velocity tuned, and velocity high-pass cells. The proportion of velocity high-pass cells was reduced in area 18 subserving peripheral vision, as was the proportion of velocity-tuned cells in area 18 subserving central vision. 4. In the strobe-reared animal velocity sensitivity was somewhat different from that of the normal animal. Neurons in area 18 subserving the peripheral visual field failed to respond to fast velocities. Neurons in area 17 subserving the central visual field in strobe-reared animals responded to slightly higher velocities than in the normal animal. 5. In the deprived animals the number of neurons that were selective to the direction of motion was strongly reduced. The majority of neurons failed to show a selectivity for direction at all velocities. A number of neurons could be directional at some velocities but were unreliable, since they inverted their preferred direction with velocity changes. 6. Binocular convergence onto visual cortical cells was perturbed. In area 18 the majority of neurons were driven by the contralateral eye. In area 17 most neurons could be driven only by either the ipsilateral or contralateral eye. 7. Quantitative testing (of direction selectivity, sensitivity to high velocities, response latency, and strength) and qualitative testing (receptive-field width, end stopping, and ocular dominance) showed that the normal influence of eccentricity on functional properties was strongly reduced by strobe rearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号