首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mitogen-activated protein kinase (MAPK) signaling pathway, one of the most important signaling pathways in eukaryotic organism, is involved in multiple cellular events such as cell growth, differentiation, and apoptosis. MAPK is of great importance to the normal function of organisms, while its dysfunction results in various diseases. So far, inhibitors specifically against each subfamilies of MAP kinase have been developed, while more endeavors are needed to discover the compounds selectively targeting a particular subfamily member. Most of the kinase inhibitors exert their functions in an ATP-competitive way or a non-ATP-competitive way. Further studies on the effective mechanism of the MAPK inhibitors and their therapeutic roles in the treatment of diseases are helpful for the illumination of MAP kinase function, the development of novel inhibitors, and the therapy of diseases caused by the dysfunction of the MAPK pathway.  相似文献   

3.
Increasing evidence has accumulated to implicate overactivation of Rho protein as a common component for the pathogenesis of several cardiovascular disorders including hypertension, coronary and cerebral vasospasm, atherosclerosis, and diabetes. Recent advances in Rho protein signaling research indicate that the Rho exchange factors (Rho GEFs) which activate Rho proteins by catalyzing the exchange of GDP for GTP are major regulators of Rho protein activity. In addition, linkage analysis and association studies have recently identified Rho GEFs as susceptibility genes for cardiovascular diseases. All of these data are converging to suggest that as upstream activators of Rho proteins, Rho GEFs expressed in cardiovascular cells are good candidate targets for the treatment of cardiovascular disorders.  相似文献   

4.
Akt (protein kinase B) is a serine/threonine kinase which is a central regulator of widely divergent cellular processes including proliferation, differentiation, migration, survival and metabolism. Akt is activated by a variety of stimuli, through growth factor receptors, in phosphatidylinositol 3-kinase (PI3K)-dependent manner. Akt is also negatively regulated by the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). A disruption of normal Akt/PKB/PTEN signaling frequently occurs in many human cancers, which plays an important role in cancer development, progression and therapeutic resistance. Numerous studies have revealed the blockage of Akt signaling to result in apoptosis and growth inhibition of tumor cells. Therefore, this signaling pathway, including both upstream and downstream of Akt, has recently attracted considerable attention as a new target for effective cancer therapeutic strategies. In fact, many inhibitors of Akt pathway have been identified and clinical studies of some agents are ongoing. In this review, we describe Akt signaling pathway components and its cellular functions as well as the alterations in human cancers and the therapeutic approaches for targeting the Akt pathway in cancer.  相似文献   

5.
FKBP38 is in many ways an exceptional member of the FK506-binding proteins. The calmodulin-regulated activity of FKBP38 for instance is unique within this protein family. The activated FKBP38 participates in apoptosis signaling by inhibiting the anti-apoptotic Bcl-2. Beyond this role in programmed cell death, FKBP38 seems to be involved in very different cellular processes that do not necessarily depend on the FKBP domain. These functions involve regulation of the kinase mTOR, regulation of neural tube formation, regulation of cellular hypoxia response, but also Hepatitis C virus replication. Pharmacological targeting of FKBP38 might therefore prove a successful strategy for intervention in different FKBP38-dependent processes, including programmed cell death in cancer or neurodegenerative diseases.  相似文献   

6.
Axin, a negative regulator of the Wnt signaling pathway, contains a canonical regulator of G protein signaling (RGS) core domain. Herein, we demonstrate both in vitro and in cells that this domain interacts with the alpha subunit of the heterotrimeric G protein G12 but not with the closely related Galpha13 or with several other heterotrimeric G proteins. Axin preferentially binds the activated form of Galpha12, a behavior consistent with other RGS proteins. However, unlike other RGS proteins, that of axin (axinRGS) does not affect intrinsic GTP hydrolysis by Galpha12. Despite its inability to act as a GTPase-activating protein, we demonstrate that in cells, axinRGS can compete for Galpha12 binding with the RGS domain of p115RhoGEF, a known G12-interacting protein that links G12 signaling to activation of the small G protein Rho. Moreover, ectopic expression of axinRGS specifically inhibits Galpha12-directed activation of the Rho pathway in MDA-MB 231 breast cancer cells. These findings establish that the RGS domain of axin is able to directly interact with the alpha subunit of heterotrimeric G protein G12 and provide a unique tool to interdict Galpha12-mediated signaling processes.  相似文献   

7.
Wu P  Hu YZ 《Current medicinal chemistry》2010,17(35):4326-4341
The phosphoinositide 3-kinase (PI3K)/serine-theronine protein kinase Akt (also known as protein kinase B (PKB))/mammalian target of rapamycin (mTOR) pathway is a vital transduction cascade that is connected with many essential cellular activities, such as growth and survival. Along with extensive pharmacological studies validating the therapeutic potential of targeting the PI3K/Akt/mTOR pathway for the treatment of cancer, kinase inhibitors targeting significant knots of this pathway including PI3K, Akt, mTOR, and 3-phosphoinositide-dependent protein kinase-1 (PDK-1) keep arising and entering clinical studies. Herein, we review the most up-to-date landscape on developing small-molecule kinase inhibitors targeting the PI3K/Akt/mTOR pathway, with emphasis on small-molecule inhibitors which have been progressed into clinical studies.  相似文献   

8.
The Rho family small GTPases of the Ras superfamily play key roles in regulating diverse signaling pathways that control a myriad of fundamental cellular processes such as cytoskeletal dynamics, cell cycle progression, gene expression, cell polarity, migration and cell transformation. The Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound form, which is controlled by many regulators including GEFs, GAPs and GDIs. Recent studies have revealed a new layer of regulation for Rho GTPases, indicating that several members of the Rho family of small GTPases including RhoA, Rac1, and RhoBTB, as well as the Ras family member Rap1B, are also regulated by the ubiquitin-proteasome pathway, which plays important roles in controlling cell polarity, migration, cell transformation and actin dynamics. Importantly, regulators for Rho GTP-GDP cycling such as RhoGDI and Rho-GEF ECT2 were also found to be modulated by the ubiquitin pathway. In this review, we focus on how ubiquitin signaling guides the fate and function of Rho GTPases and their regulators, especially how the E3 ubiquitin ligase Smurf1 regulates cell polarity and motility through targeting RhoA for ubiquitination and degradation.  相似文献   

9.
Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.  相似文献   

10.
Originally discovered as an anti-fungal agent, the bacterial macrolide rapamycin is a potent immunosuppressant and a promising anti-cancer drug. In complex with its cellular receptor, the FK506-binding protein (FKBP12), rapamycin binds and inhibits the function of the mammalian target of rapamycin (mTOR). By mediating amino acid sufficiency, mTOR governs signaling to translational regulation and other cellular functions by converging with the phosphatidylinositol 3-kinase (PI3K) pathway on downstream effectors. Whether mTOR receives mitogenic signals in addition to nutrient-sensing has been an unresolved issue, and the mechanism of action of rapamycin remained unknown. Our recent findings have revealed a novel link between mitogenic signals and mTOR via the lipid second messenger phosphatidic acid (PA), and suggested a role for mTOR in the integration of nutrient and mitogen signals. A molecular mechanism for rapamycin inhibition of mTOR signaling is proposed, in which a putative interaction between PA and mTOR is abolished by rapamycin binding. Collective evidence further implicates the regulation of the rapamycin-sensitive signaling circuitry by phospholipase D, and potentially by other upstream regulators such as the conventional protein kinase C, the Rho and ARF families of small G proteins, and calcium ions. As the mTOR pathway has been demonstrated to be an important anti-cancer target, the identification of new components and novel regulatory modes in mTOR signaling will facilitate the future development of diagnostic and therapeutic strategies.  相似文献   

11.
A kinase anchoring proteins (AKAPs) bind multiple signaling proteins and have subcellular targeting domains that allow them to greatly impact cellular signaling. AKAPs localize, specify, amplify, and accelerate signal transduction within the cell by bringing signaling proteins together in space and time. AKAPs also organize higher-order network motifs such as feed forward and feedback loops that may create complex network responses, including adaptation, oscillation, and ultrasensitivity. Computational models have begun to provide an insight into how AKAPs regulate signaling dynamics and cardiovascular pathophysiology. Models of mitogen-activated protein kinase and epidermal growth factor receptor scaffolds have revealed additional design principles and new methods for representing signaling scaffolds mathematically. Coupling computational modeling with quantitative experimental approaches will be increasingly necessary for dissecting the diverse information processing functions performed by AKAP signaling complexes.  相似文献   

12.
Hypercontraction or abnormal contraction of vascular smooth muscle is a major cause of diseases such as hypertension and vasospasm of the coronary and cerebral arteries. A better understanding of the mechanism of regulation of smooth muscle contraction should lead to improved treatments for such diseases. Recent studies have revealed important roles for the small GTPase Rho and its effector, Rho-associated kinase (Rho kinase) in Ca2+ independent regulation of smooth muscle contraction. The Rho-Rho-kinase pathway modulates the level of phosphorylation of the myosin light chain of myosin II, mainly through inhibition of myosin phosphatase, and contributes to agonist-induced Ca2+ sensitization in smooth muscle contraction. Rho-Rho-kinase mechanisms also participate in a variety of the cellular functions of non-muscle cells, such as stress-fibre formation, cytokinesis and cell migration. This review summarizes the role of the Rho-Rho-kinase pathway in contractile processes of smooth muscle and in non-muscle cell functions, and the pathophysiological implications of this pathway.  相似文献   

13.
A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.  相似文献   

14.
15.
Epac: effectors and biological functions   总被引:3,自引:1,他引:2  
  相似文献   

16.
Rho kinase (ROCK) inhibitors   总被引:1,自引:0,他引:1  
The Rho kinase (ROCK) isoforms, ROCK1 and ROCK2, were initially discovered as downstream targets of the small GTP-binding protein Rho. Because ROCKs mediate various important cellular functions such as cell shape, motility, secretion, proliferation, and gene expression, it is likely that this pathway will intersect with other signaling pathways known to contribute to cardiovascular disease. Indeed, ROCKs have already been implicated in the regulation of vascular tone, proliferation, inflammation, and oxidative stress. However, it is not entirely clear how ROCKs are regulated, what some of their downstream targets are, and whether ROCK1 and ROCK2 mediate different cellular functions. Clinically, inhibition of ROCK pathway is believed to contribute to some of the cardiovascular benefits of statin therapy that are independent of lipid lowering (ie, pleiotropic effects). To what extent ROCK activity is inhibited in patients on statin therapy is not known, but it may have important clinical implications. Indeed, several pharmaceutical companies are already actively engaged in the development of ROCK inhibitors as the next generation of therapeutic agents for cardiovascular disease because evidence from animal studies suggests the potential involvement of ROCK in hypertension and atherosclerosis.  相似文献   

17.
Statins and thrombin   总被引:1,自引:0,他引:1  
L-Mevalonic acid is the distant precursor of cholesterol, in contrast to cholesterol, L-mevalonic acid, its distant precursor gives rise to farnesyl and geranylgeranyl pyrophosphates in relatively few metabolic steps. These isoprenyl pyrophophates covalently conjugate with specific G-proteins and serve as membrane anchors enabling them to carry out their function. Although farnesyl-proteins may participate in signal transduction, geranylgeranyl-proteins (e.g., Rho GTP binding proteins) are well known to downregulate signaling pathways by inhibiting L-mevalonic acid synthesis. Such inhibitors include 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, drugs (statins) and isoprenoids of dietary origins, where Rho protein activation appears to be necessary for cellular-mediated thrombin generation. Thrombin and other proteases (e.g., coagulation factor Xa, tryptase) upregulate protease-activated receptor (PAR) synthesis and PAR activation promotes synthesis and expression of other proteins [e.g., tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1)]. With the PAR-1 activating peptide SSFLRNP, we found that either cerivastatin or atorvastatin mitigated platelet stimulation in a time- and dose-dependent manner, as predicted if a statin-mediated Rho pathway is required. We also found that simvastatin decreased prothrombin fragments F1+2 in plasma from type 2 diabetics, demonstrating that statins downregulate thrombin generation. Thus, independent of cholesterol, statins and dietary isoprenoids behave as inhibitors of TF-dependent thrombin generation. Because thrombin has multiple physiological functions, the 20 pleiotropic effects reported for statins may reflect a common mechanism for downregulation of thrombin-mediated events, in particular at the cellular level.  相似文献   

18.
最近的基础和临床研究已经将大鼠肉瘤蛋白同源蛋白激酶(Ras homologue kinase,Rho激酶)确认为一个与多种心血管疾病密切相关的重要靶点。越来越多的证据表明,Rho/Rho激酶信号途径在多种细胞活动中都发挥重要的作用,比如血管平滑肌细胞的收缩、肌动蛋白细胞骨架组织、细胞黏附和迁移、胞质分裂和基因表达等,这些细胞活动都与心血管疾病的发病机制有关。随着更多Rho激酶抑制剂的出现,Rho激酶抑制剂正逐渐成为治疗心血管疾病的研究热点。本文对Rho激酶抑制剂的最新研究进展进行了综述,同时简要介绍Rho激酶的相关内容。  相似文献   

19.
Adenylate cyclases (AC) type 5 and 6 comprise the calcium-inhibited family of adenylate cyclase isoforms. Here we review recent discoveries in the regulation of AC5 and AC6 with a focus on posttranslational modifications including glycosylation, nitrosylation, and phosphorylation by the cyclic AMP-dependent protein kinase (PKA), protein kinase C (PKC), and Raf1. We also describe novel signaling interactions such as Galpha(q)-mediated potentiation of AC6 activation. Novel regulators of AC5 and AC6, including small molecules and proteins that physically interact with AC5 and AC6 such as snapin, regulator of G protein signaling 2 (RGS2), protein associated with myc (PAM), and caveolin peptides are discussed. We also describe several recent studies that demonstrate the usefulness of transgenic or adenoviral overexpression of AC5 and AC6 in models for disease states such as cardiovascular hypertrophy. The discovery of novel regulatory mechanisms for AC5 and AC6 and their potential role in crucial physiological processes provide new avenues for research into therapeutic interventions targeting the cyclic AMP pathway.  相似文献   

20.
The small GTPase Rho is involved in cell-to-substratum adhesion and cell contraction. These actions of Rho mediated by downstream Rho effectors such as Rho-associated coiled-coil forming protein kinase (ROCK) may be partly responsible for the progression of renal interstitial fibrosis. A body of evidence has been accumulated with regard to the involvement of the Rho-ROCK signaling pathway in the development of fibrotic lesions in various organs including the kidney. Tubulointerstitial fibrosis is a final common pathway to the eventual structural desolation of kidneys, and therefore is an important therapeutic target to cure or reverse the progressive functional deterioration. In this review, we will highlight the possible involvement of the Rho-ROCK signaling pathway in the pathogenesis of tubulointerstitial fibrosis and discuss the therapeutic approach toward tubulointerstitial fibrosis by the inhibition of the Rho-ROCK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号