首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
HIV-1 entry is an attractive target for anti-HIV-1 therapy. However, there are no entry inhibitors approved for the clinical treatment of HIV-1 infection. This is likely to be changed in the near future since promising HIV-1 entry inhibitors, such as T20 and some chemokine receptor antagonists, are in the pipeline to join the repertoire of anti-HIV-1 therapeutics. This review will focus on what might be potential targets on the key components of the viral entry machinery, gp120 and gp41. These two molecules are the viral proteins responsible for HIV-1 entry. Binding to CD4 induces a series of structural changes in gp120 and allows it to interact with chemokine receptors. The receptor binding eventually triggers conformational changes in gp41, which result in the formation of a fusion active molecule to attack the cell membrane. The structural and functional motifs that operate this delicate fusion machinery could become the Achilles' heel of the virus.  相似文献   

5.
6.
HIV co-receptor inhibitors as novel class of anti-HIV drugs   总被引:9,自引:0,他引:9  
Schols D 《Antiviral research》2006,71(2-3):216-226
Entry inhibitors constitute a new class of drugs to treat infection by human immunodeficiency virus type 1 (HIV-1). The first member of this class, enfuvirtide, previously known as T-20 and targeting gp41, has now been licensed for therapeutic use. Several other entry inhibitors are in various stages of pre-clinical or clinical development. In this review we focus on the chemokine receptor inhibitors targeting CCR5 and CXCR4 that are the main HIV co-receptors for viral entry.  相似文献   

7.
Seven transmembrane segment (7TMS) receptors for chemokines and related molecules have been demonstrated to be essential, in addition to CD4, for HIV and SIV infection. The β-chemokine receptor CCR5 is the primary, perhaps sole, coreceptor for HIV-1 during the early and chronic phases of infection, and supports infection by most primary HIV-1 and many SIV isolates. Late-stage primary and laboratory-adapted HIV-1, HIV-2, and SIV isolates can use other 7TMS receptors. CXCR4 appears especially important in late-stage HIV infection; several related receptors can also be used. The specificity of SIV viruses is similar. Commonalities among these receptors, combined with analyses of mutated molecules, indicate that discrete, conformationally-dependent sites on the chemokine receptors determine their association with the third variable and conserved regions of viral envelope glycoproteins. These studies are useful for elucidating the mechanism and molecular determinants of HIV-1 entry, and of inhibitors to that entry.  相似文献   

8.
9.
The HIV entry inhibitors revisited   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
12.
Historically, therapeutic benefit in the treatment of human immunodeficiency virus infection (HIV-1) infection has been best achieved by targeting viral proteins like HIV protease involved in viral replication rather than host cell proteins, like CD4, which facilitate the process of viral infection. Two discoveries in 1996 presented a novel opportunity to redress this issue: 1) the understanding that heptahelical G-protein coupled chemokine receptors on the surface of T cells and macrophages functioned together with CD4 to mediate viral entry, and 2) the observation that CD4 positive T cells from individuals homozygous for the CCR5 delta 32 null allele were resistant to infection by macrophage-tropic strains of the virus in vitro and in vivo. Since that time, data demonstrating that selective blockade of two chemokine receptors, CCR5 and CXCR4, by small molecule chemokine receptor antagonists or receptor-directed biologics could robustly inhibit the infection of human peripheral blood mononuclear cells (PBMCs) by macrophage-tropic and T-cell line tropic strains respectively in vitro has validated this potential approach to therapy. Early clinical trial data now also confirms that these types of agents will have anti-viral activity in some HIV-1 infected individuals; however to date, dose limiting off-target activities have prohibited a full test of their potential clinical value. It also remains to be seen how these types of agents will fare in synergy with existing HIV-1 targeted antivirals, or those currently in development.  相似文献   

13.
HIV co-receptors as targets for antiviral therapy   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
目前,在艾滋病研究领域中对趋化因子及其受体的研究受到极大关注。而趋化因子受体可作为HIV-1进入T细胞的协同受体这一重大发现,为人类寻找新的抗HIV/AIDS药物提供了新的思路,即以趋化因子受体为靶点,筛选能够与该受体结合并随即阻碍HIV-1进入细胞的药物。目前针对HIV/AIDS治疗而开发的几类趋化因子受体拮抗剂都还处于临床试验阶段。本文将对趋化因子受体及趋化因子受体结抗剂的研究进展进行扼要综述。  相似文献   

16.
The interaction between HIV gp120 and galactose-containing cell surface glycolipids such as GalCer or Gb(3) is known to facilitate HIV binding to both CD4(+) as well as CD4(-) cells. In an effort to develop small molecule HIV-1 entry inhibitors with improved solubility and efficacy, we have synthesized a series of C-glycoside analogs of GalCer and tested their anti HIV-1 activity. The analogs were tested for gp120 binding using a HIV-1 (IIIB) V3-loop specific peptide. Two of the six analogs that interfered with gp120 binding also inhibited HIV Env-mediated cell-to-cell fusion and viral entry in the absence of any significant cytotoxicity. Analogs with two side chains did not show inhibition of fusion and/or infection under identical conditions. The inhibition of virus infection seen by these compounds was not coreceptor dependent, as they inhibited CXCR4, CCR5 as well as dual tropic viruses. These compounds showed inhibition of HIV entry at early steps in viral infection since the compounds were inactive if added post viral entry. Temperature-arrested state experiments showed that the compounds act at the level of virus attachment to the cells likely at a pre-CD4 engagement step. These compounds also showed inhibition of VSV glycoprotein-pseudotyped virus. The results presented here show that the glycoside derivatives of GalCer with simple side chains may serve as a novel class of small molecule HIV-1 entry inhibitors that would be active against a number of HIV isolates as well as other enveloped viruses.  相似文献   

17.
Highly active antiretroviral therapy (HAART) has led to major declines in morbidity and mortality of HIV-1-infected individuals, but the increasing prevalence of drug-resistant viral isolates, combined with the toxicity and other limitations of current treatments, make the development of new therapies a high priority. As knowledge of viral entry has expanded, this step of the viral life cycle has become a target for novel therapeutic strategies. An emerging group of antiretrovirals, known collectively as entry inhibitors, targets several distinct steps in viral entry including CD4 binding, chemokine receptor engagement and the structural changes in the viral envelope required for fusion between viral and cellular membranes. Many entry inhibitors are in various stages of clinical development, with one already licensed for use. This review will provide an overview of the mechanisms involved in the entry process, highlight promising entry blockers under development and discuss several considerations related to treatment that are unique to this class of antiretroviral drugs.  相似文献   

18.
Highly active antiretroviral therapy (HAART) has led to major declines in morbidity and mortality of HIV-1-infected individuals, but the increasing prevalence of drug-resistant viral isolates, combined with the toxicity and other limitations of current treatments, make the development of new therapies a high priority. As knowledge of viral entry has expanded, this step of the viral life cycle has become a target for novel therapeutic strategies. An emerging group of antiretrovirals, known collectively as entry inhibitors, targets several distinct steps in viral entry including CD4 binding, chemokine receptor engagement and the structural changes in the viral envelope required for fusion between viral and cellular membranes. Many entry inhibitors are in various stages of clinical development, with one already licensed for use. This review will provide an overview of the mechanisms involved in the entry process, highlight promising entry blockers under development and discuss several considerations related to treatment that are unique to this class of antiretroviral drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号