首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification of microcystins by DEAE and C(18) cartridge chromatography.   总被引:7,自引:0,他引:7  
Microcystins (MCs) were purified by DEAE and C(18) cartridge chromatography. Addition of EtOH to the eluents (20%) in DEAE chromatography gave higher resolution than no addition of EtOH. The chromatogram showed three peaks: MC-LR; MC-LY and MC-LF; MC-LW. MC-LR and MC-LW were obtained by one step chromatography with purity of 96 and 88%, respectively. The separation of MC-LF and MC-LW with DEAE chromatography was better than that with reversed-phase chromatography. MC-LY and MC-LF were separated with C(18) cartridge. On the chromatogram, there were three peaks consisting of MC-LY (81% purity), MC-LF (86%), and an unknown compound which was considered as a MC variant judging from the results in HPLC/PDA, FAB-MS, and 1H NMR analyses, but the structure could not be determined. It is concluded that the combination of DEAE and C(18) cartridge chromatography would be a practical approach for the purification of various MCs.  相似文献   

2.
Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brain-barrier (BBB) and blood-cerebrospinal-fluid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses, the presence of murine Oatp (mOatp) in primary murine whole brain cells (mWBC) was investigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LF) with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays.All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 μM) and BSP (50 μM). MC-Western blot analysis demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vitro data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.  相似文献   

3.
Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.  相似文献   

4.
Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1) and 12-times (8 mg L−1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria.  相似文献   

5.
Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition.  相似文献   

6.
Microcystins (MC) are a group of amphiphatic peptide hepatotoxins and protein phosphatase inhibitors produced by certain cyanobacteria (blue-green algae). Microcystins are believed to require an active transport mechanism to penetrate the plasma membranes of animal cells. In this study the surface barostat technique showed that two more hydrophobic microcystins MC-LF, containing Leu and Phe, and MC-LW, containing Leu and Trp, had a higher surface activity on an egg phosphatidylcholine-cholesterol (7:3, molar ratio) monolayer as compared to that of a more hydrophilic variant MC-LR, containing Leu and Arg. Fluorescence anisotropy measurements of 1-[4-(trimethylamine)phenyl]-hexa-1,3,5-trien (TMA-DPH) were used to assess changes in the fluidity or lipid packing of model membranes in the presence of toxins. All three toxins caused a decrease in the steady-state anisotropy of TMA-DPH, suggesting that the toxins interacted with the membranes. The change in anisotropy was more pronounced for MC-LF and MC-LW than for MC-LR. Moreover, the fluorescence emission maximum of Trp in MC-LW was shifted slightly towards a shorter wavelength and the intensity was enhanced when allowed to interact with lipid vesicles, suggesting that the single Trp in MC-LW moved into a more unpolar environment when interacting with the vesicles. The differences between hydrophilic and hydrophobic microcystins could result in changes in organotropism, toxicokinetics and bioaccumulation.  相似文献   

7.
Cellular uptake of microcystins (MCs), a family of cyclic cyanobacterial heptapeptide toxins, occurs via specific organic anion transporting polypeptides (OATPs), where MCs inhibit serine/threonine-specific protein phosphatase (PP). Despite comparable PP-inhibitory capacity, MCs differ greatly in their acute toxicity, thus raising the question whether this discrepancy results from MC-specific toxikokinetic rather than toxicodynamic differences. OATP-mediated uptake of MC congeners MCLR, -RR, -LW and -LF was compared in primary human hepatocytes and HEK293 cells stably expressing recombinant human OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3 in the presence/absence of OATP substrates taurocholate (TC) and bromosulfophthalein (BSP) and measuring PP-inhibition and cytotoxicity. Control vector expressing HEK293 were resistant to MC cytotoxicity, while TC and BSP competition experiments reduced MC cytotoxicity in HEK293-OATP transfectants, thus confirming the requirement of OATPs for trans-membrane transport. Despite comparable PP-inhibiting capabilities, MCLW and -LF elicited cytotoxic effects at lower equimolar concentrations than MCLR and MCRR, hence suggesting congener selective transport into HEK293-OATP transfectants and primary human hepatocytes. Primary human hepatocytes appeared one order of magnitude more sensitive to MC congeners than the corresponding HEK293 -OATP transfectants. Although the latter maybe due to a much lower level of PPs in primary human hepatocytes, the presence of OATPs other than 1B1 or 1B3 may have added to an increased uptake of MCs. In view of the high sensitivity of human hepatocytes and currently MCLR-only based risk calculations, the actual risk of human MC-intoxication and ensuing liver damage could be underestimated in freshwater cyanobacterial blooms where MCLW and-LF predominate.  相似文献   

8.
Cyanobacterial toxins, especially microcystins (MCs), are found in eutrophized waters throughout the world. Acute poisonings on animals and humans have been reported following MC exposure. Around 80 MCs variants have been isolated in surface waters worldwide so far. The toxicity of the most frequent MC congener, MC-LR, is well known; however, studies dealing with MC-RR and MC-YR are less abundant. In this present work, the toxic effects of MC-RR and MC-YR at concentrations of 50, 100, 150 and 200 μM have been investigated in the human colon carcinoma cell line Caco-2 both undifferentiated and differentiated after 24 and 48 h exposure. Toxicity endpoints assessed were cell number by quantification of total protein content of the cell cultures; cell viability by means of neutral red uptake, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) metabolization to detect mitochondrial changes. Moreover, morphological alterations were also investigated. Results showed that protein content was the most sensitive endpoint for MC-RR with reductions of 45% after 48 h exposure to 200 μM MC-RR in differentiated cells (EC50 > 200 μM); whereas for MC-YR is the inhibition of neutral red uptake with reductions higher than 80% at 100 μM in undifferentiated cells after 48 h (EC50 of 57.3 μM). Furthermore, alteration in the cells was shown in the morphological studies, particularly at high concentrations, undergoing general reduction in cell number and hydropic degeneration. The sensitivity of the cultures to these toxins was highly affected by the exposure time and in a lesser extent by the differentiation state, with MC-YR showing higher toxicity than MC-RR.  相似文献   

9.
Microcystin‐LR (MC‐LR) is a cyanobacteria‐derived heptapeptide that has been commonly characterized as a hepatotoxin. Although the liver is a primary organ in glucose homeostasis, the effect of MC‐LR on glucose metabolism remains unclear. In this study, the human liver cell line HL7702 and ICR mice were exposed to various concentrations of MC‐LR for 24 h, and the proteins involved in insulin signaling were investigated. The results showed that MC‐LR treatment induced the hyperphosphorylation of insulin receptor substrate 1 (IRS1) at several serine sites, S307, S323, S636/639, and S1101 in HL7702 cells, and S302, S318, S632/635, and S1097 in mice livers. In addition, the activation of S6K1 was demonstrated to play an important role in MC‐LR‐induced IRS1 hyperphosphorylation at several serine sites. Decreased levels of total IRS1 were observed in the mice livers, but there was no significant change in HL7702 cells. MC‐LR also induced glycogen synthase (GS) hyperphosphorylation at S641 (inactivating GS) both in vitro and in vivo, even glycogen synthase kinase 3, a well‐known GS kinase, was inactivated after MC‐LR treatment. Moreover, MC‐LR could block insulin‐induced GS activation. In addition, glucose transport in liver cells was not impacted by MC‐LR either with or without insulin stimulation. Our study implies that MC‐LR can interfere with the actions of IRS1 and GS in insulin signaling and may have a toxic effect on glucose metabolism in the liver.  相似文献   

10.
Our previous studies have described the toxic effects of microcystin‐LR (MC‐LR) in various normal cell lines and human hepatoma SMMC‐7721 cells, but the specific effects of MC‐LR in other types of cancer cells with respect to protein phosphatase 2A (PP2A) have not been fully elaborated. A549 human lung adenocarcinoma cells have been identified to express organic anion‐transporting polypeptides (OATP) involved in cellular uptake of MC‐LR, and thus probably make an appropriate in vitro model to assess MC‐LR's cytotoxicity. Hence, in our present study, A549 cells were treated with various concentrations of MC‐LR for 24 h. The presence of MC‐LR in A549 cells was confirmed, and PP2A activity, PP2A substrates, cytoskeleton, apoptosis, and proliferation were subsequently explored. The results showed that 5–10 μM MC‐LR inhibited PP2A activity significantly but 0.5–1 μM MC‐LR did not change PP2A activity dramatically. The inhibition could result from the hyperphosphorylation of PP2A/C at Tyr307, an elevation in the total PP2A/C expression and the dissociation of α4/PP2A/C complexes. Moreover, MC‐LR led to rearrangements of filamentous actin and microtubules, which might be correlated with the hyperphosphorylation of Ezrin, VASP and HSP27 due to PP2A inhibition and mitogen‐activated protein kinase (MAPK) activation. However, exposure to MC‐LR for 24 h failed to trigger either apoptosis or proliferation, which might be related to PP2A‐inhibition‐induced hyperphosphorylation of Bcl‐2 and Bad and the activation status of Akt. In conclusion, our data indicated that MC‐LR induced extensive molecular and cellular alterations in A549 cells through a PP2A‐centered pathway, which differed in some respects from our previous study in SMMC‐7721 cells. To our knowledge, this is the first report comprehensively demonstrating the effects of MC‐LR in A549 cells, and our findings provide insights into the mechanism of MC‐LR toxicity in cancer cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1065–1078, 2017.  相似文献   

11.
Perron MC  Qiu B  Boucher N  Bellemare F  Juneau P 《Toxicon》2012,59(5):567-577
The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings indication on the mode of action of MCs at the photosynthetic apparatus level. This is the first report showing a photosynthetic response within 15 min of exposure. Our results suggest that bioassay based on chlorophyll fluorescence can be used as a rapid and sensitive tool to detect microcystin.  相似文献   

12.
Previously, we have reported alterations to HSP27 during Microcystin‐LR (MC‐LR)‐induced cytoskeletal reorganization in the human liver cell line HL7702. To further elucidate the detailed mechanism of MC‐LR‐induced cytoskeletal assembly, we focused on two cytoskeletal‐related proteins, Tau and VASP. These two proteins phosphorylated status influences their ability to bind and stabilize cytoskeleton. We found that MC‐LR markedly increased the level of Tau phosphorylation with the dissociation of phosphorylated Tau from the cytoskeleton. Furthermore, the phosphorylation of Tau induced by MC‐LR was suppressed by an activator of PP2A and by an inhibitor of p38 MAPK. VASP was also hyperphosphorylated upon MC‐LR exposure; however, its phosphorylation appeared to regulate its cellular localization rather than cytoskeletal dynamics, and its phosphorylation was unaffected by the PP2A activator. These data suggest that phosphorylated Tau is regulated by p38 MAPK, possibly as a consequence of PP2A inhibition. Tau hyperphosphorylation is likely an important factor leading to the cytoskeletal destabilization triggered by MC‐LR and the role of VASP alteration upon MC‐LR exposure needs to be studied further. To our knowledge, the finding that Tau is implicated in cytoskeletal destabilization in MC‐LR‐treated hepatocytes and MC‐LR‐induced VASP's alteration has not been reported previously. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 92–100, 2015.  相似文献   

13.
Li Li  Ping Xie  Jun Chen 《Toxicon》2005,46(5):533-545
Phytoplanktivorous bighead carp were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 200 and 500 MC-LReq.microg kg(-1) bw, and the changes in extractable MCs in liver and in the ultrastructure of hepatocytes were studied at 1, 3, 12, 24 and 48 h after injection. Quantitative and qualitative determinations of MCs in the liver were conducted by HPLC and LC-MS, respectively. MC concentration in the liver reached the maxima at 12h (2.89 microg MCsg(-1) dry weight at the lower dose) or at 3h (5.43 microg MCsg(-1) dry weight at the higher dose) post-injection, followed by sharp declines afterwards, whereas the ultrastructural changes of hepatocytes in both dose groups suggest progressive increases in severity toward the directions of apoptosis and necrosis from 1 to 24h, respectively. There were two new findings in fish: widening of intercellular spaces was among the early ultrastructural changes induced by MCs and ultrastructural recovery of hepatocytes was evident at 48 h post-injection in both dose groups. Both the present and previous studies suggest that with in vivo or in vitro exposure to microcystins, hepatocyte damage in fish tends to proceed toward the direction of apoptosis at lower MC concentrations but toward the direction of necrosis at high MC concentrations. The temporal dynamics of MCs in the liver suggest that bighead carp may have a mechanism to degrade or bind MC-LR actively after it enters the blood system.  相似文献   

14.
Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3μM (60μg/L) mercury, 750μg/L Aroclor 1254, and 50μM (14,500μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.  相似文献   

15.
Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) leading to more than 80 MC variants. In this study, we focused on the most common variant, microcystin-LR (MC-LR), and microcystin-RR (MC-RR), a variant differing by only one AA. Despite their structural similarity, MC-LR elicits higher liver toxicity than MC-RR partly due to a discrepancy in their uptake by hepatic organic anion transporters (OATP 1B1 and 1B3). However, even though ingestion is the major pathway of human exposure to MCs, intestinal absorption of MCs has been poorly addressed. Consequently, we investigated the cellular uptake of the two MC variants in the human intestinal cell line Caco-2 by immunolocalization using an anti-MC antibody. Caco-2 cells were treated for 30 min to 24 h with several concentrations (1-50 μM) of both variants. We first confirmed the localization of OATP 3A1 and 4A1 at the cell membrane of Caco-2 cells. Our study also revealed a rapid uptake of both variants in less than 1 h. The uptake profiles of the two variants did not differ in our immunostaining study neither with respect to concentration nor the time of exposure. Furthermore, we have demonstrated for the first time the nuclear localization of MC-RR and confirmed that of MC-LR. Finally, our results suggest a facilitated uptake and an active excretion of MC-LR and MC-RR in Caco-2 cells. Further investigation on the role of OATP 3A1 and 4A1 in MC uptake should be useful to clarify the mechanism of intestinal absorption of MCs and contribute in risk assessment of cyanotoxin exposure.  相似文献   

16.
The dose-response relationship for the induction of micronuclei (MN) and the impact of glutathione (GSH) detoxication on naphthalene-induced cytotoxicity and genotoxicity were investigated in human TK6 cells. TK6 cells were exposed to 10 concentrations ranging from 0.0625 to 30μM naphthalene in the presence of β-naphthoflavone- and phenobarbital (βNP/PB)-induced rat liver S9 with a nicotinamide adenine dinucleotide phosphate-generating system. Three approaches were used to identify a no-observed-effect level (NOEL) for naphthalene-induced genotoxicity: (1) laboratory criteria of ≥ twofold increase over the concurrent solvent controls (NOEL = 10μM), (2) ANOVA with Bonferroni correction (NOEL = 2.5μM), and (3) the benchmark dose approach (BMCL(10) = 3.35μM). The NOEL and point of departure micronucleus frequency for naphthalene-induced MN are between the tested naphthalene concentrations of 2.5-10.0μM in this experimental system. Supplementation of the exposure system with physiological relevant concentrations of 5mM GSH eliminated naphthalene-induced cytotoxicity and genotoxicity; no increased cytotoxicity or genotoxicity was observed at concentrations of up to 500μM naphthalene in the presence of GSH compared with 2.5-10.0μM in the absence of GSH. Naphthalene bioactivation by βNP/PB-induced rat liver S9 exhibits a nonlinear dose-response for the induction of MN in TK6 cells with a NOEL of 2.5-10μM that in the presence of GSH is shifted upward greater than 50- to 200-fold. These data demonstrate a nonlinear dose-response for naphthalene-induced genotoxicity that is eliminated by GSH, and both observations should be considered when assessing human risk from naphthalene exposures.  相似文献   

17.
BackgroundMast cells (MCs) mediate a key role in allergic diseases. Detailed studies of how the neuroleptic drug pimozide affects MC activity are lacking. The aim of this study was to investigate pimozide inhibition of immunoglobulin E (IgE)-mediated MC activation and MC-mediated allergic responses.MethodMCs were stimulated with anti-dinitrophenyl (DNP) IgE antibodies and DNP-horse serum albumin (HSA) antigen (Ag), and anti-allergic pimozide effects were detected by measuring β-hexosaminidase levels. Morphological changes were observed histologically. In vivo pimozide effects were assessed in passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-sensitized active systemic anaphylaxis mouse (ASA) model experiments. Levels of phosphorylated (p-) SYK (spleen tyrosine kinase) and MAPKs (mitogen-activated protein kinases) were detected in western blots.ResultsWe found that pimozide inhibited MC degranulation, reduced MC release of β-hexosaminidase dose-dependently in activated RBL-2H3 (IC50: 13.52 μM) and bone marrow derived MC (BMMC) (IC50: 42.42 μM), and reduced MC morphological changes. The IgE/Ag-induced migration effect was suppressed by pimozide treatment dose-dependently. Pimozide down-regulated IgE/Ag-induced phosphorylation of SYK and MAPKs in activated MCs. Moreover, pimozide attenuated allergic reactions in PCA and ASA model mice, and decreased MC populations among splenic cells.ConclusionsThe antipsychotic drug pimozide can suppress IgE-mediated MC activation in vitro and in vivo and should be considered for repurposing to suppress MC-mediated diseases.  相似文献   

18.
Plants of Crotalaria genus (Leguminosae) present large amounts of the pyrrolizidine alkaloid monocrotaline (MCT) and cause intoxication to animals and humans. Therefore, we investigated the MCT-induced cytotoxicity, morphological changes, and oxidative and genotoxic damages to glial cells, using the human glioblastoma cell line GL-15 as a model. The comet test showed that 24 h exposure to 1-500 μM MCT and 500 μM dehydromonocrotaline (DHMC) caused significant increases in cell DNA damage index, which reached 42-64% and 53%, respectively. Cells exposed to 100-500 μM MCT also featured a contracted cytoplasm presenting thin cellular processes and vimentin destabilisation. Conversely, exposure of GL-15 cells to low concentrations of MCT (1-10 μM) clearly induced megalocytosis. Moreover, MCT also induced down regulation of MAPs, especially at the lower concentrations adopted (1-10 μM). Apoptosis was also evidenced in cells treated with 100-500 μM MCT, and a later cytotoxicity was only observed after 6 days of exposure to 500 μM MCT. The data obtained provide support for heterogenic and multipotential effects of MCT on GL-15 cells, either interfering on cell growth and cytoskeletal protein expression, or inducing DNA damage and apoptosis and suggest that the response of glial cells to this alkaloid might be related to the neurological signs observed after Crotalaria intoxication.  相似文献   

19.
Developing polyamine-drug conjugates that are capable of specific entry to tumor cells is attractive in improving chemotherapeutic efficacy. Currently, the exact cytotoxic mechanism of these conjugates is not well known. Here, our research revealed the effect of a mononaphthalimide-spermidine (MNISpd) conjugate on the growth and survival of HeLa cells and possible mechanisms. In characterizing the mechanism of MNISpd cytotoxicity, inhibition of proliferation is observed in the 0.5-6 μM range and there is evidence of apoptosis at equal or greater than 6 μM, but with less toxicity on HELF cell. The lower concentrations of MNISpd induced a cell cycle arrest correlated with enhanced p21 expression and decreased cdc2 but not Cdk2 expression. MNISpd -induced apoptosis was correlated with caspase-3 activation, decreased XIAP expression and a loss of mitochondrial membrane potential. Apoptosis but not cell cycle arrest was susceptible to N-acetyl-l-cysteine (NAC) treatment. It is proposed that MNISpd-induced apoptosis in HeLa cells is related to oxidative stress and that at lower exposure concentrations effects on cell proliferation predominate while at higher concentrations apoptosis develops.  相似文献   

20.
《Toxicology in vitro》2011,25(5):1075-1084
The effects of arsenic trioxide (ATO) in combination with sulindac (SUL), sulindac sulfide (SS) or sulindac sulfone (SF) on human (Jurkat, HL-60, K562 and HPB-ALL) and mouse (EL-4) leukemic cell lines were investigated. The cells showed different sensitivity to sulindacs (2.5-200 μM) with SS being the most cytotoxic (72 h WST-1 reduction test). The cytotoxicity of ATO was enhanced by combination with sulindacs. The combination of ATO (1 μM) with SS or SF at concentrations over 50 μM induced considerable cytotoxicity in all cell lines. Normal human lymphocytes exposed for 48 h to the combinations showed smaller decrease in viability. Measurements of Jurkat, HL-60 and K562 cells exposed to ATO (1 μM) and sulindacs (100 μM or 200 μM for K562 cells) indicated apoptosis as the main cell death mechanism. The mitochondrial membrane potential measurements (JC-1 probe) indicated an active involvement of mitochondria in the process. The results did not indicate involvement of an inhibitory effect of the combinations on NF-κB activity in Jurkat, HL-60 and K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号