首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to malfunctioning and mis-calibration of cells in digital x-ray detectors as well as impurities on the scintillator screens, stripe artifacts arise in the sinogram which in turn generate ring artifacts in the reconstructed x-ray computed tomography images. In this paper, a novel technique is proposed for the detection and removal of stripe artifacts in a sinogram with a view to suppress the ring artifacts from the tomographic images. To accurately detect the stripe creating pixels using a derivative-based algorithm, at first the sinogram is windowed to create a sub-sinogram by keeping the pixel of examination at the center position in the sub-sinogram. The other pixels in the sub-sinogram are selected from a polyphase component of the sinogram. A new mathematical index is proposed here to isolate the strong and weak ring-generating stripes from the good ones. For the correction of strong ring artifacts resulting from the defective detector elements and dusty scintillator crystals, 2D variable window moving average and weighted moving average filters are proposed in this work. On the other hand, a conventionally trusted constant bias correction scheme is adopted to correct the responses of the mis-calibrated detector elements. To evaluate and compare the performance of the proposed algorithm, real micro-CT images acquired from two flat panel detectors under different operating conditions are used. Experimental results show that the proposed method can remove ring artifacts more effectively without imparting noticeable distortion in the image as compared to a recently reported technique in the literature.  相似文献   

2.
Tang X  Ning R  Yu R  Conover D 《Medical physics》2001,28(5):812-825
The application of x-ray flat panel imagers (FPIs) in cone beam volume CT (CBVCT) has attracted increasing attention. However, due to a deficient semiconductor array manufacturing process, defective cells unavoidably exist in x-ray FPIs. These defective cells cause their corresponding image pixels in a projection image to behave abnormally in signal gray level, and result in severe streak and ring artifacts in a CBVCT image reconstructed from the projection images. Since a three-dimensional (3-D) back-projection is involved in CBVCT, the formation of the streak and ring artifacts is different from that in the two-dimensional (2-D) fan beam CT. In this paper, a geometric analysis of the abnormality propagation in the 3D back-projection is presented, and the morphology of the streak and ring artifacts caused by the abnormality propagation is investigated through both computer simulation and phantom studies. In order to calibrate those artifacts, a 2D wavelet-analysis-based statistical approach to correct the abnormal pixels is proposed. The approach consists of three steps: (1) the location-invariant defective cells in an x-ray FPI are recognized by applying 2-D wavelet analysis on flat-field images, and a comprehensive defective cell template is acquired; (2) based upon the template, the abnormal signal gray level of the projection image pixels corresponding to the location-invariant defective cells is replaced with the interpolation of that of their normal neighbor pixels; (3) that corresponding to the isolated location-variant defective cells are corrected using a narrow-windowed median filter. The CBVCT images of a CT low-contrast phantom are employed to evaluate this proposed approach, showing that the streak and ring artifacts can be reliably eliminated. The novelty and merit of the approach are the incorporation of the wavelet analysis whose intrinsic multi-resolution analysis and localizability make the recognition algorithm robust under variable x-ray exposure levels between 30% and 70% of the dynamic range of an x-ray FPI.  相似文献   

3.
High resolution tomographic images acquired with a digital X-ray detector are often degraded by the so called ring artifacts. In this paper, a detail analysis including the classification, detection and correction of these ring artifacts is presented. At first, a novel idea for classifying rings into two categories, namely type I and type II rings, is proposed based on their statistical characteristics. The defective detector elements and the dusty scintillator screens result in type I ring and the mis-calibrated detector elements lead to type II ring. Unlike conventional approaches, we emphasize here on the separate detection and correction schemes for each type of rings for their effective removal. For the detection of type I ring, the histogram of the responses of the detector elements is used and a modified fast image inpainting algorithm is adopted to correct the responses of the defective pixels. On the other hand, to detect the type II ring, first a simple filtering scheme is presented based on the fast Fourier transform (FFT) to smooth the sum curve derived form the type I ring corrected projection data. The difference between the sum curve and its smoothed version is then used to detect their positions. Then, to remove the constant bias suffered by the responses of the mis-calibrated detector elements with view angle, an estimated dc shift is subtracted from them. The performance of the proposed algorithm is evaluated using real micro-CT images and is compared with three recently reported algorithms. Simulation results demonstrate superior performance of the proposed technique as compared to the techniques reported in the literature.  相似文献   

4.
We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation.  相似文献   

5.
Ning R  Tang X  Conover D  Yu R 《Medical physics》2003,30(7):1694-1705
Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.  相似文献   

6.
Modern computed tomography systems allow volume imaging of the heart. Up to now, approximately two-dimensional (2D) and 3D algorithms based on filtered backprojection are used for the reconstruction. These algorithms become more sensitive to artifacts when the cone angle of the x-ray beam increases as it is the current trend of computed tomography (CT) technology. In this paper, we investigate the potential of iterative reconstruction based on the algebraic reconstruction technique (ART) for helical cardiac cone-beam CT. Iterative reconstruction has the advantages that it takes the cone angle into account exactly and that it can be combined with retrospective cardiac gating fairly easily. We introduce a modified ART algorithm for cardiac CT reconstruction. We apply it to clinical cardiac data from a 16-slice CT scanner and compare the images to those obtained with a current analytical reconstruction method. In a second part, we investigate the potential of iterative reconstruction for a large area detector with 256 slices. For the clinical cases, iterative reconstruction produces excellent images of diagnostic quality. For the large area detector, iterative reconstruction produces images superior to analytical reconstruction in terms of cone-beam artifacts.  相似文献   

7.
X-ray scatter correction algorithm for cone beam CT imaging   总被引:5,自引:0,他引:5  
Ning R  Tang X  Conover D 《Medical physics》2004,31(5):1195-1202
Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.  相似文献   

8.
X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.  相似文献   

9.

Purpose

The development of flat panel detector technology has resulted in renewed interest in the possibility of generating CT-like images from rotational angiographic acquisitions. At least two commercial products now use cone beam reconstruction software in conjunction with flat panel detectors to produce such images. The purpose of the work presented here is to report on image quality obtained from one such system in objective and subjective terms and to compare it with the quality of images obtained from a modern multi-detector CT scanner.

Method

The Image quality was assessed using a CATPHAN 500 model and an AAPM CT Performance Phantom model. Image noise, CT number accuracy, CT number consistency, Low Contrast Resolution, surface dose and Modulation Transfer Function were assessed for the flat panel detector and compared with results obtained from a 4 slice CT scanner.

Results

As expected image quality obtained from the CT scanner was much better than from the flat panel detector. Low contrast resolution was much worse and the surface dose was higher for the flat panel detector than the CT scanner. There was an inaccuracy in CT number determination and the noise was greater by a factor of two or three. Limiting resolution was better on images from the CT scanner.

Conclusion

The poor low contrast resolution from flat panel detector was expected given the expected resolution of ±10 Hounsfield Units. These systems should not be considered as diagnostic CT scanners. However, the remaining performance figures indicate that the CT-like images obtained from this type of equipment are of sufficient quality for at least some clinical applications, such as detection of brain haemorrhages in the vascular suite.  相似文献   

10.
We analyse the performance of statistical reconstruction (SR) methods when applied to non-continuous x-ray detectors. Robustness to projection gaps is required in x-ray CT systems with multiple detector modules or with defective detector pixels. In such situations, the advantage of statistical reconstruction is that it is able to ignore missing or faulty pixels and that it makes optimal use of the remaining line integrals. This potentially obviates the need to fill the sinogram discontinuities by interpolation or any other approximative pre-processing techniques. In this paper, we apply SR to cone beam projections of (i) a hypothetical modular detector micro-CT scanner and of (ii) a system with randomly located defective detector elements. For the modular-detector system, SR produces reconstruction volumes free of noticeable gap-induced artefacts as long as the location of detector gaps and selection of the scanning range provide complete object sampling in the central imaging plane. When applied to randomly located faulty detector elements, SR produces images free of substantial ring artefacts even for cases where defective pixels cover as much as 3% of the detector area.  相似文献   

11.
The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.  相似文献   

12.
For medical imaging applications, such as cardiac imaging, dual-source computed tomography (CT) improves the temporal resolution by the simultaneous use of two cone beams, which acquire twice as many projections as single-source CT does within the same time interval. Besides this advantage, a drawback of such a system is additional x-ray scatter originating from the extra (cross-illuminating) cone beam. In this work, a comparison with single-source CT images is performed under same-dose conditions for two different thorax phantoms, and for different cone beam angles corresponding to a coverage of 20, 40, 80, and 160 mm on the rotation axis (z coverage). As a general result, the HU-magnitude of scatter-induced streak and cupping artifacts scale almost proportional to the illuminated volume. In dual-source CT, cross scatter induces a further factor of almost 2 in the scaling of artifacts in comparison to single-source CT. For all examined systems, the scatter-induced noise reduces the contrast-to-noise ratio (CNR). In the case of an ideal scatter correction, the CNR is reduced even more, but contrast and CNR can be restored by an additional x-ray dose. With a 32-slice single-source CT (z overage of 20 mm) taken as a reference, a corresponding dual-source CT requires 7% more dose to maintain the same CNR. A CT system with a z coverage of 40, 80, and 160 mm requires 8%, 23%, and 54% more dose in a single-source configuration, respectively, and 20%, 47%, and 102% more dose in a dual-source configuration, respectively. In conclusion, a dual-source CT is comparable to a single-source CT with twice the z coverage concerning image degradation by scatter.  相似文献   

13.
An iterative approach to the beam hardening correction in cone beam CT   总被引:3,自引:0,他引:3  
In computed tomography (CT), the beam hardening effect has been known to be one of the major sources of deterministic error that leads to inaccuracy and artifact in the reconstructed images. Because of the polychromatic nature of the x-ray source used in CT and the energy-dependent attenuation of most materials, Beer's law no longer holds. As a result, errors are present in the acquired line integrals or measurements of the attenuation coefficients of the scanned object. In the past, many studies have been conducted to combat image artifacts induced by beam hardening. In this paper, we present an iterative beam hardening correction approach for cone beam CT. An algorithm that utilizes a tilted parallel beam geometry is developed and subsequently employed to estimate the projection error and obtain an error estimation image, which is then subtracted from the initial reconstruction. A theoretical analysis is performed to investigate the accuracy of our methods. Phantom and animal experiments are conducted to demonstrate the effectiveness of our approach.  相似文献   

14.
A concept of a photon counting cone beam CT is proposed. The system uses a new Multi Slit Multi Slice (MSMS) cone beam acquisition geometry utilizing a linear array photon counting detectors. The MSMS cone beam acquisition is a direct analogy of the scanning multislit acquisition used in projection x-ray imaging. This geometry provides a CT imaging with dose efficient scatter rejection and allows for using available photon counting detectors. The microchannel plate (MCP) detector is proposed as a linear array photon counting detector for MSMS cone beam CT system. Initial testing of the MCP detector for CT application was performed. The field of view of the prototype MCP detector is 60 mm. A delay line position encoding electronics was used. The electronics has a single channel input for evaluation of events from the entire detector field of view. This limits the system count rate at 2 x 10(5) count/s. The spatial resolution of this detector is 80 microm FWHM at 40 kVp and 200 microm FWHM at 90 kVp tube voltages. The detector noise in CT projections is less than 1 count/pixel for the 80 microm pixel size. The CT projections contain quantum-limited and scatter free signal. Images of a contrast phantom and a small animal were acquired at 50 kVp and 80 kVp tube voltages. The CT numbers for different contrast elements were calculated for a given x-ray spectrum and compared with experimental values. The quantum efficiency of the current detector is 56% at 90 kVp, which is suboptimal because of the large channel diameter (25 microm) of these MCPs. The MCPs with smaller channels and higher efficiencies are being tested. The quantum efficiency was measured to be 70% for a new MCP with 5 microm channel diameter. Design parameters of a clinically applicable photon counting MSMS cone beam CT for breast imaging was evaluated. System uses 20 cm field of view MCP detectors based on 5 microm channel MCPs and high count rate ASIC electronics. It was concluded that the MSMS cone beam CT with a photon counting MCP detector is feasible for volume breast imaging.  相似文献   

15.
Tang X  Hsieh J  Dong F  Fan J  Toth TL 《Medical physics》2008,35(7):3232-3238
Diagnostic computed tomography (CT) images are usually acquired in both helical and axial scans in the clinical applications using cone beam volumetric CT. In addition to faster patient throughput, a helical scan in volumetric CT can provide better image quality because of the satisfaction of data sufficiency condition, and thus has been performed far more frequently so far in the clinic. However, the first and last images in a helical scan are usually prescribed at the locations that are half helical turn indented from the starting and ending points of the scan. Due to such an indention, the dose efficiency of helical scan deteriorates with increasing detector dimension along z direction. To improve the dose efficiency of helical scan in volumetric CT, a hybrid helical cone beam filtered backprojection (CB-FBP) algorithm is presented here to reconstruct helical images beyond the conventional indented image zone. The hybrid algorithm is a combination of the ray-wise three-dimensional (3D) weighted CB-FBP algorithms that are recently proposed for helical and axial CB image reconstructions. Through the hybridization, the ray-wise 3D weighting becomes dependent on both helical pitch and image slice location. Phantom study shows that the conventional indented image zone in helical scan can be extended substantially by using the hybrid algorithm. Consequently, the dose efficiency of volumetric CT in helical scan can be improved significantly. It is believed that, with increasing detector dimension along z direction in cone beam volumetric CT, the hybrid algorithm will become more attractive in clinical applications.  相似文献   

16.
Effect of scattered radiation on image noise in cone beam CT   总被引:5,自引:0,他引:5  
Cone beam CT has a capability for the 3-dimensional imaging of large volumes with isotropic resolution, and has a potentiality for 4-dimensional imaging (dynamic volume imaging), because cone beam CT acquires data of a large volume with one rotation of an x-ray tube-detector pair. However, one of the potential drawbacks of cone beam CT is a larger amount of scattered x-rays, which may enhance the noise in reconstructed images, and thus affect the low-contrast detectablity. Our aim in this work was to estimate the scatter fractions and effects of scatter on image noise, and to seek methods of improving image quality in cone beam CT. First we derived a relationship between the noise in a reconstructed image and in an x-ray intensity measurement. Then we estimated the scatter to primary ratios in x-ray measurements using a Monte-Carlo simulation. From these we estimated the image noise under relevant clinical conditions. The results showed that the scattered radiation made a substantial contribution to the image noise. However, focused collimators could improve it by decreasing the scattered radiation drastically while keeping the primary radiation at nearly the same level. A conventional grid also improved the image noise, though the improvement was less than that of focused collimators.  相似文献   

17.
A postreconstruction method for correcting the beam-hardening artifacts in computed tomography (CT) images is proposed. This method does not require x-ray spectrum measurement. The authors assumed that a pixel in a CT image can be decomposed into equivalent tissue percentages, depending on its CT number. A scout view of the step wedges made of these equivalent tissues was performed to obtain a beam-hardening correction curve for each tissue. Projecting through the CT image from various angles generated simulated projection data and the total thickness of each tissue along the ray. The correction term was estimated using the tissue thickness traveled by the ray, and this term was then added to its corresponding projection data. A second reconstruction using the corrected projection data yielded a beam-hardening corrected image. The preliminary results show that this method reduces beam hardening artifacts by 14% for aluminum and increased the object contrast by 18% near the aluminum-water boundary. The variation in CT numbers at different locations were reduced, and the aluminum CT number also was restored.  相似文献   

18.
Altunbas MC  Shaw CC  Chen L  Lai C  Liu X  Han T  Wang T 《Medical physics》2007,34(7):3109-3118
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals was estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intraslice and interslice variations in adipose tissue CT numbers supported our observations.  相似文献   

19.
Cone beam transmission CT (CB-CT) improves SPECT imaging by providing high-quality attenuation maps for attenuation compensation and for correlated SPECT and CT imaging. The present work measures the detection nonuniformity for CB-CT implemented with a gamma camera, and applies nonuniformity corrections to make CB-CT more uniform and accurate. Two cone beam collimators were investigated, as well as the uncollimated cone beam geometry, using both uniformity images and CB-CT reconstructions of a uniform circular cylinder. Uniformity images were acquired as a function of point source position relative to the nominal focal point. The uniformity images for both collimators were highly nonuniform, with some regions differing by more than 15% from the average image counts per pixel, indicating that the holes do not focus to the same point. The most uniform images were obtained with the point source located at or near the nominal focal point. Radiographs estimated the misfocusing of the holes to be about 0.6 degrees in some regions. There were no indications that the hole size was nonuniform. The CB-CT reconstructions of data acquired with collimator showed no obvious signs of image artifact from the detection nonuniformities. However, low-noise simulated data with well-localized detection defects produced readily-apparent circular artifacts. The nonuniformity correction was accurate and easy to apply, and should be used whenever quantitative accuracy is required. The uniformity images acquired without collimator lacked the collimator-produced nonuniformities, but had decreased counts near the detector edge. The decrease was predictable, using simple geometric considerations. Uniform cylinder reconstructions of "without collimator" data showed a corresponding decrease in center density relative to the edge (edge-to-center ratio = 1.25), which was improved by the nonuniformity correction (ratio = 0.21). Accurate CB-CT without collimator will require further correction for photon scatter.  相似文献   

20.
A detailed analysis of the effects of temperature changes, over time and between array elements, on the generation of circular artifacts in images produced by x-ray computed tomography was reported. We give formulas for calculating--according to the x-ray energy, detector sensitivity, and observed image quality (contrast and spatial resolution)--the maximum offset temperature coefficient and maximum gain temperature coefficient that will allow circular-artifact-free imaging. A temperature-controlled and insulated solid-state x-ray detector array, consisting of Gd2O2S:Pr,Ce,F ceramic scintillators coupled to crystal Si pin-photodiodes and designed to meet the requirements for these coefficients, produced high-resolution artifacts-free CT images of a phantom head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号