共查询到20条相似文献,搜索用时 0 毫秒
1.
L L Hamm D Trigg D Martin C Gillespie J Buerkert 《The Journal of clinical investigation》1985,75(2):478-485
Nonionic diffusion and diffusion equilibrium of ammonia have been generally accepted as the mechanism of urinary ammonium excretion. However, these characteristics have not been examined directly in vitro. In the present studies, nonionic diffusion and diffusion equilibrium of ammonia were examined in rabbit cortical collecting tubules perfused in vitro. Collected fluid ammonium and pH were measured in tubules exposed to chemical gradients of NH3/NH+4. In tubules perfused with an acid perfusate free of ammonia and bathed with solutions containing NH4Cl, collected fluid ammonia failed to equilibrate across the epithelium except at slow flow rates. The estimated apparent permeability coefficient to NH3 was approximately 5 X 10(-3) cm/s. Predominant nonionic diffusion of NH3, rather than transport of NH+4, was indicated by alkalinization of luminal fluid in tubules exposed to peritubular NH4Cl and by the relative influence of peritubular NH+4 and NH3 on ammonia entry. In tubules perfused with an acid solution containing NH4Cl, little loss of ammonium was detectable, indicating a low permeability to NH+4. In contrast to the restricted diffusion of NH3 in cortical collecting tubules, proximal convoluted tubules exhibited a much higher apparent permeability to NH3. In conclusion, nonionic diffusion of NH3 accounted for most ammonium transport in the proximal convoluted tubule and in the cortical collecting tubule. However, there was relatively restricted diffusion in the collecting tubules; this may account for the failure of whole kidney ammonium excretion to obey quantitatively the predictions of nonionic diffusion and diffusion equilibrium of ammonia. 相似文献
2.
The cortical collecting tubule (CCT) is an important nephron segment for Na+, K+, water and acid-base transport. Differential loading characteristics of the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) and basolateral Cl- removal were used to identify and study intracellular pH (pHi) regulation in each of three cell types involved in this transport. Both principal cells and beta-intercalated cells were found to have a basolateral Na+/H+ exchanger based on the Na+ and amiloride sensitivity of pHi recovery from acid loads. Intercalated cells demonstrated abrupt pHi changes with basolateral Cl- removal. alpha-intercalated cells alkalinized; beta-intercalated cells acidified. In the beta-intercalated cells, luminal Cl- removal blocked changes in pHi in response to changes in luminal HCO3- or peritubular Cl-, providing direct evidence for a luminal Cl-/HCO3- exchanger. In principal cells, brief removal of either peritubular or luminal Cl- resulted in no change in pHi; however, return of peritubular Cl- after prolonged removal resulted in a rapid fall in pHi consistent with a basolateral Cl-/HCO3- exchanger, which may be relatively inactive under baseline conditions. Therefore, Cl-/HCO3- exchange is present in all three cell types but varies in location and activity. 相似文献
3.
Characterization of acidification in the cortical and medullary collecting tubule of the rabbit 总被引:13,自引:13,他引:0
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Ouabain and lithium decrease acidification in open-circuited bladders by eliminating the electrical gradient favoring acidification. The effect of ouabain and lithium on acidification in cortical and medullary collecting tubules derived from starved New Zealand white rabbits was studied by using the techniques of isolated nephron microperfusion and microcalorimetric determination of total CO2 flux. Bath and perfusion solutions were symmetric throughout all studies, and solutions contained 25 meq of bicarbonate and were bubbled with 93.3% O2/6.7% CO2 gas mixtures. In cortical collecting tubules, ouabain (10(-8) M) addition to bath resulted in a decrease in both potential difference (PD), from -16.4 to -2.2 mV (P less than 0.001), and total CO2 flux (JTCO2), from +6.0 to 1.5 pmol/mm per min (P less than 0.005). In medullary collecting tubules neither PD nor JTCO2 changed with the addition of ouabain in either 10(-8) or 10(-4) M concentration. Replacement of 40 mM NaCl with 40 mM LiCl in both perfusate and bath in cortical collecting tubules resulted in decreases in both PD, from -11.6 to 0.4 mV (P less than 0.005), and JTCO2, from +10.8 to +4.2 pmol/mm per min (P less than 0.025). This substitution had no effect on medullary collecting tubules. When control flux rates were plotted against animal bladder urine pH, both medullary and cortical tubules showed good inverse correlation between these variables, with higher values of flux rate for the medullary tubules. The data support a role for transepithelial PD in acidification in the cortical collecting tubule and also suggest that both cortical and medullary segments of the collecting tubule participate when urinary acidification is increased during starvation in the rabbit. 相似文献
4.
Secondary effect of aldosterone on Na-KATPase activity in the rabbit cortical collecting tubule. 总被引:14,自引:12,他引:2
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The possibility that mineralocorticoids have a direct influence on renal Na-K ATPase activity has been the focus of intense research effort and some controversy for a number of years. Early studies were hindered by an inability to differentiate between possible glucocorticoid vs. mineralocorticoid effects on this enzyme within the multitude of cells that comprise the heterogeneous mammalian nephron. This study attempts to circumvent this problem by monitoring Na-K ATPase activity in the rabbit renal cortical collecting tubule (CCT), a proposed target epithelium for mineralocorticoids. Using an ultramicro assay, Na-K ATPase activity was measured in CCT from normal, adrenalectomized (adx), and adx rabbits subjected to one of several corticosteroid treatment protocols. The results indicate that Na-K ATPase activity in the CCT decreased by 86% subsequent to adrenalectomy. Injection of physiological doses of aldosterone (10 micrograms/kg) but not dexamethasone (100 micrograms/kg) restored CCT Na-K ATPase activity in adx rabbits to normal levels within 3 h after injection. An insignificant rise in activity was observed 1.5h after aldosterone treatment. In addition, spirolactone SC 26304, a specific mineralocorticoid antagonist, blocked the action of aldosterone on Na-K ATPase.. Therefore an acute increase in Na-K ATPase activity participates in the action of aldosterone on Na transport in this segment. To differentiate between primary vs. secondary activation of this enzyme, adx animals were treated with amiloride before the injection of aldosterone with the intent of blocking luminal membrane Na entry into CCT. In these animals, pretreatment with amiloride blocked the increase in CCT Na-K ATPase act activity seen with aldosterone alone at 3 h. Thus the increase in activity with aldosterone appears to be a secondary adaptation that is dependent on an aldosterone-enhanced increase in the passive entry of Na across the luminal membrane. The subcellular mechanism by which Na modulates Na-K ATPase activity remains obscure. 相似文献
5.
A functional comparison of the cortical collecting tubule and the distal convoluted tubule. 总被引:22,自引:17,他引:5
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Electrical and permeability features of the distal convoluted tubule (DCT) and the cortical collecting tubule (CCT) were examined using the technique in which isolated segments of rabbit tubules were perfused in vitro. When rabbits were given a regular diet and tubules were perfused and bathed in artificial solutions simulating plasma ultrafiltrate, the potential difference (PD) was +3.7 plus or minus 1.9 mV in the CCT and -40.4 plus or minus 2.8 mV in the DCT. When rabbits were given a low sodium, high potassium diet plus i.m. deoxycorticosterone acetate (DOCA) (1 mg/kg per day), the PD in both the CCT (-30.8 plus or minus 3.9 mV) and the DCT (-33.8 plus or minus 5.5 mV) was negative. The PD in the CCT was quantitatively similar to that of diet plus DOCA when animals were given DOCA alone. The PD in both segments was inhibited by ouabain (10-minus 5 M) in the bath or by amiloride (10-minus 5 M) in the perfusate. Addition of vasopressin (200 muU/ml) to the bath caused a gradual decline of PD to zero in the CCT but failed to produce a potential response in the DCT. Osmotic water permeability was essentially zero in both segments in the absence of vasopressin. After addition of the vasopressin to the bath, osmotic water permeability in the DCT remained zero but increased to 71.9 plus or minus 25.5 X 10-minus 7 cm/s per atm in the CCT. We conclude that both segments are similar in that each possesses an electrogenic transport process but that these segments differ in that: (a) the CCT requires either exogenous or endogenous mineralocorticoid to maintain a maximal negative PD, whereas the PD in the DCT appears to be independent of mineralocorticoid effect; and (b) the CCT responds to vasopressin with a marked rise in water permeability, whereas the DCT is impermeable to water before and after addition of vasopressin. 相似文献
6.
Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule.
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
L G Fine N Yanagawa R G Schultze M Tuck W Trizna 《The Journal of clinical investigation》1979,64(4):1033-1043
As a renal function declines in patients and experimental animals with chronic renal disease, potassium homeostasis is maintained by a progressive increase in potassium secretion by the surviving nephrons, a phenomenon known as potassium adaptation. To determine the nephron site and the underlying mechanisms responsible for this phenomenon, studies were performed on normal and 75% nephrectomized rabbits maintained on normal or high-potassium diets. Cortical collecting tubules (CCT) were dissected from the normal and remnant kidneys and perfused in vitro in an artificial solution. In normal CCT mean (+/- SE) net K secretion, JK, (peq/cm per s) was 1.26 +/- 0.43 (normal diet) and 3.27 +/- 0.66 (high-K diet). In uremic CCT, JK was 3.55 +/- 0.60 (normal diet) and 6.83 +/- 0.58 (high-K diet). By reducing the dietary intake of potassium in proportion to the reduction of renal mass in these uremic animals, the adaptation in K secretion was prevented (JK: 1.22 +/- 0.40). Transepithelial potential difference was similar in CCT from normal and uremic animals on a normal diet despite the fact that JK was significantly greater in the latter group. However, in both normal and uremic CCT, the increase in JK caused by potassium loading was associated with an increase in luminal negativity. Uremic CCT underwent significant compensatory hypertrophy regardless of the dietary intake or potassium secretory rates. Plasma aldosterone levels were elevated only in the uremic-high potassium rabbits suggesting that a mineralocorticoid effect on the CCT may be exaggerated when potassium loading is superimposed upon decreased excretory capacity. The activity of Na-K ATPase was comparable in normal and uremic CCT from rabbits on either normal or high-K diets indicating that potassium adaptation may occur independently of changes in the activity of this enzyme. Intracellular potassium content measured chemically and by 42K exchange, was not significantly altered in either normal or uremic CCT when dietary potassium intake was increased, despite the fact the JK was increased under these circumstances. These data indicate that the CCT is an important site of potassium adaptation in the surviving nephrons of animals with reduced renal mass. This adaptation is an intrinsic property of the CCT and is expressed in the absence of a uremic milieu. Potassium adaptation by the uremic CCT is not fixed according to the degree of compensatory hypertrophy but varies according to the excretory requirements of the animal. Transepithelial potential difference and circulating aldosterone levels contribute to the adaptation but neither factor can entirely account for the phenomenon. Potassium adaptation by the CCT occurs in the absence of changes in Na-K ATPase activity and intracellular potassium content. 相似文献
7.
Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule. 总被引:2,自引:5,他引:2
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Epidermal growth factor (EGF) is a 53-amino acid polypeptide which is a potent mitogen for cultured cells. The kidney has recently been shown to be a major site of synthesis for the EGF precursor. EGF infusions in sheep result in a diuresis and natriuresis despite a fall in GFR, suggesting a direct tubular effect. Using in vitro microperfusion of rabbit cortical collecting tubules (CCTs) at 37 degrees C, we examined the effect of EGF on the transepithelial voltage (Vt) and arginine vasopressin (AVP)-stimulated hydraulic conductivity (Lp). Pretreatment with peritubular EGF at concentrations from 10(-8) to 10(-12) M resulted in a 50% inhibition of both AVP- and 8-chlorophenythio-cyclic AMP-stimulated peak Lp. This effect was reversed by the protein kinase C inhibitor, staurosporine, but unaffected by indomethacin. CCTs with an initially negative Vt, depolarized after exposure to bath EGF. 10(-8) M EGF applied from the lumen had no effect on either Lp or Vt. Specific binding of 20 nM 125I-EGF to microdissected CCTs was also demonstrated. These results suggest that EGF can modulate both salt and water transport in the CCT via a receptor linked to protein kinase C activation. 相似文献
8.
A1 and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP. 总被引:1,自引:6,他引:1
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
L J Arend W K Sonnenburg W L Smith W S Spielman 《The Journal of clinical investigation》1987,79(3):710-714
Adenosine analogs were used to investigate the cellular mechanisms by which adenosine may alter renal tubular function. Cultured rabbit cortical collecting tubule (RCCT) cells, isolated by immunodissection, were treated with 5'-N-ethylcarboxamideadenosine (NECA), N6-cyclohexyladenosine (CHA), and R-N6-phenylisopropyladenosine (PIA). All three analogs produced both dose-dependent inhibition and stimulation of RCCT cell cyclic AMP (cAMP) production. Stimulation of cAMP accumulation occurred at analog concentrations of 0.1 microM to 100 microM with the rank order of potency NECA greater than PIA greater than CHA. Inhibition occurred at concentrations of 1 nM to 1 microM with the rank order of potency CHA greater than PIA greater than NECA. These effects on cAMP production were inhibited by 1,3-diethyl-8-phenylxanthine and isobutylmethylxanthine. CHA (50 nM) blunted AVP- and isoproterenol-stimulated cAMP accumulation. This modulation of hormone-induced cAMP production was abolished by pretreatment of RCCT cells with pertussis toxin. Prostaglandin E2 production was unaffected by 0.1 mM CHA. These findings indicate the presence of both inhibitory (A1) and stimulatory (A2) receptors for adenosine in RCCT cells. Moreover, occupancy of the A1 receptor causes inhibition of both basal and hormone-stimulated cAMP formation through an action on the inhibitory guanine nucleotide-binding regulatory component, Ni, of the adenylate cyclase system. 相似文献
9.
Modulation of the hydro-osmotic effect of vasopressin on the rabbit cortical collecting tubule by adrenergic agents 总被引:3,自引:2,他引:1
Radha K. Krothapalli W. Brian Duffy Harry O. Senekjian Wadi N. Suki 《The Journal of clinical investigation》1983,72(1):287-294
The effects of catecholamines on antidiuretic hormone ([Arg(8)]-vasopressin [AVP])-induced water absorption were evaluated in cortical collecting tubules isolated from the rabbit kidney and perfused in vitro. In the presence of AVP (100 muU/ml), net fluid volume absorption (J(v), nanoliters per minute per millimeter) was 1.14+/-0.12 and osmotic water permeability coefficient (P(f), X 10(-4) centimeters per second) was 217.3+/-39.9. The addition of the alpha-adrenergic agonist, phenylephrine (PE), in a concentration of 10(-6) M resulted in a significant decrease in J(v) and P(f) to 0.83+/-0.13 (P < 0.001) and 148.8+/-41.8 (P < 0.02), respectively. Increasing the concentration of PE to 10(-5) M resulted in a further decrease in J(v) and P(f) to 0.53+/-0.05 (P < 0.05 vs. PE 10(-6) M) and 88.5+/-9.0 (P 0.05 vs. PE 10(-6) M), respectively. In a separate group of tubules, in the presence of AVP (100 muU/ml) and PE (10(-5) M), J(v) and P(f) were 0.35+/-0.07 and 66.0+/-17.3, respectively. The addition of the alpha-adrenergic antagonist, phentolamine (PH), in a concentration of 10(-6) M resulted in a significant increase in J(v) to 1.07+/-0.19 (P < 0.001) and P(f) to 193.3+/-35.9 (P < 0.005). PH (10(-5) M) alone did not significantly affect J(v) and P(f) in the presence of AVP (100 muU/ml) nor in the presence of 8-bromo adenosine 3',5' cyclic monophosphate (8-BrcAMP). J(v) and P(f) were 1.20+/-0.21 and 174.0+/-25.8, respectively, in the presence of 8-BrcAMP (10(-4) M).We next examined the effect of the beta-adrenergic agonist, isoproterenol (ISO), on J(v) and P(f) in the presence of AVP. J(v) and P(f) were 1.04+/-0.10 and 202.6+/-17.2, respectively, in the presence of AVP (100 muU/ml) and 1.06+/-0.18 and 193.4+/-27.7, respectively, in the presence of AVP (10muU/ml). However, in the presence of AVP in a concentration of 2.5 muU/ml, J(v) was 0.60+/-0.07 and P(f) was 100.7+/-24.7. ISO (10(-6) and 10(-5) M) did not have any significant effect in the presence of the above maximal and submaximal concentrations of AVP. In the absence of AVP, control J(v) was 0.01+/-0.12 and P(f) was 4.6+/-11.0. The addition of ISO at 25 or 37 degrees C did not result in any significant change in J(v) or P(f).These studies indicate that alpha-adrenergic agonists directly inhibit AVP-mediated water absorption at the level of the tubule, an effect that can be blocked by a specific alpha-adrenergic antagonist. This effect appears to be exerted at the level of activation of adenylate cyclase since it is absent in the presence of cAMP. The beta-adrenergic agonists do not directly inhibit or enhance AVP-mediated water absorption at the level of the renal tubule. 相似文献
10.
Hydraulic water permeability and transepithelial voltage in the isolated perfused rabbit cortical collecting tubule following acute unilateral ureteral obstruction.
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Ureteral obstruction affects the kidney's ability to conserve water and sodium. Using the isolated perfused tubule technique, we studied cortical collecting tubules (CCT) taken from rabbits subjected to a sham operation or to 4 h of unilateral ureteral obstruction (UUO). Tubules were perfused in the presence of an osmotic gradient directed to promote water movement from lumen to bath, and volume flux (Jv), hydraulic water permeability (Lp), and transepithelial voltage (V1) were determined. In tubules from sham-operated and UUO animals, basal (before exposure to vasopressin) J, and Lp were not different from zero. After addition of 200 microU . ml-1 of arginine vasopressin (aVP) to the bath, Jv and Lp increased to 1.64 +/- 0.23 nl . mm-1 . min-1 and 127.9 +/- 19.8 cm . s-1 . atm-1 x 10(7), respectively, in tubules from sham-operated animals, but not only 0.27 +/- 0.09 nl . mm-1 . min-1 an 18.8 +/- 6.2 cm . s-1 . atm-1 . 10(7) in tubules from UUO animals. Pretreatment with desoxycorticosterone acetate (DOCA) or indomethacin in vivo did not prevent the blunted vasopressin response seen in tubules taken from UUO animals. The Jv and Lp responses to the cyclic AMP (cAMP) analogue, 8-Br-cAMP, were also diminished in tubules taken from UUO animals compared with shams. V1, measured during the basal period, was diminished in tubules from UUO kidneys (-5.0 +/- 2.1 mV) compared with shams (-21.9 +/- 4.1 mV), and pretreatment with DOCA did no prevent the effects of UUO on V1. In contrast, tubules taken from animals that received indomethacin prior to UUO developed voltages not different from voltages in tubules taken from sham-operated animals (-17.3 +/- 1.7 mV). We conclude that, although CCT from UUO animals can maintain osmotic gradients, their ability to respond to vasopressin by increasing Lp is impaired by an intrinsic defect located at a step beyond the generation of cAMP, and that prostaglandin inhibition or DOCA pretreatment do not reverse the decreased responsiveness of Lp to aVP. UUO also diminished V1, and this abnormality was prevented by previous treatment with indomethacin, suggesting that prostaglandins may mediate the effect of UUO on V1. 相似文献
11.
Triiodothyronine enhances renal response to aldosterone in the rabbit collecting tubule. 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Since thyroid hormones and mineralocorticoids were observed to stimulate kidney Na-K-ATPase in similar sites and with similar time courses, this study was initiated to evaluate whether aldosterone is involved in the stimulation of Na-K-ATPase observed in collecting tubules 3 h after triiodothyronine (T3) administration to thyroidectomized (TX) rabbits. Results indicate that: Plasma aldosterone level decreased markedly in TX rabbits but was not restored 3 h after T3 injection; Early stimulation of Na-K-ATPase by T3 was abolished when plasma aldosterone level was suppressed by adrenalectomy or when aldosterone effects were blocked by spironolactone; Administration of aldosterone to TX rabbits mimicked the action of T3; Sensitivity of Na-K-ATPase to aldosterone markedly decreased after thyroidectomy. These results demonstrate an interaction between aldosterone and T3 in the control of Na-K-ATPase in the collecting tubule. Triiodothyronine enhances the sensitivity of Na-K-ATPase to aldosterone which, in turn, produces a stimulatory action despite the decreased plasma level observed during hypothyroidism. 相似文献
12.
Cl self-exchange by the rabbit cortical collecting tubule (CCT) occurs via an apical anion exchanger in series with a basolateral Cl conductance. We studied the effects of organic acids on CCT Cl self-exchange. We found no evidence for transport of acid anions by the self-exchange system. Rather, Cl self-exchange was inhibited by a variety of organic acids. The degree of inhibition correlated with the chloroform/water partition coefficient and was enhanced by lowering pH, indicating inhibition by the lipid-soluble, protonated species. Inhibition by the representative acid iso-butyrate was dose-dependent and showed sidedness (basolateral greater than apical). Iso-butyrate also reversibly reduced transepithelial conductance without altering K permeability, suggesting inhibition of the principal cell basolateral Cl conductance. Because small organic compounds with similar lipid solubilities but no carboxyl group had no effect, both the carboxyl group and the lipid-solubility of organic acids appear to be important. The results are consistent with blockade of chloride channels by organic acids. 相似文献
13.
Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule. 总被引:1,自引:1,他引:1
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
To characterize the type of alpha adrenergic receptor, the effects of specific alpha adrenergic agonists and antagonists on antidiuretic hormone [( Arg8]-vasopressin [AVP])-induced water absorption were evaluated in cortical collecting tubules isolated from the rabbit kidney and perfused in vitro. In the presence of AVP (100 microU/ml), net fluid volume absorption (Jv, nanoliters per minute per millimeter) was 1.39 +/- 0.09 and osmotic water permeability coefficient (Pf, X 10(-4) centimeters per second) was 150.2 +/- 15.0. The addition of 10(-6) M phenylephrine (PE), an alpha adrenergic agonist, resulted in a significant decrease in Jv and Pf to 0.72 +/- 0.11 (P less than 0.005) and 69.9 +/- 10.9 (P less than 0.005). The addition of 10(-4) M prazosin (PZ), an alpha adrenergic antagonist, did not cause any significant change in Jv and Pf, which were 0.71 +/- 0.09 (P = NS vs. AVP + PE) and 67.8 +/- 9.5 (P = NS vs. AVP + PE), respectively. In a separate group of tubules, in the presence of AVP (100 microU/ml) and PE (10(-6) M), Jv and Pf were 0.78 +/- 0.17 and 76.1 +/- 18.0, respectively. The addition of 10(-6) M yohimbine (Y), an alpha 2 adrenergic antagonist, resulted in a significant increase in Jv to 1.46 +/- 0.14 (P less than 0.01) and Pf to 157.5 +/- 22.3 (P less than 0.005). Y (10(-4) M) or PZ (10(-4) M) alone did not significantly affect Jv and Pf in the presence of AVP )100 microU/ml). The effect of the natural endogenous catecholamine norepinephrine (NE) on Jv and Pf in the presence of AVP and propranolol (PR) was next examined. Jv and Pf were 1.53 +/- 0.07 and 176.3 +/- 5.2, respectively, in the presence of AVP (100 microU/ml) and PR (10(-4) M). The addition of NE (10(-8) M) resulted in a significant decrease in Jv to 1.19 +/- 0.11 (P less than 0.05) and Pf to 127.0 +/- 11.3 (P less than 0.02). Increasing the concentration of NE to 10(-6) M resulted in a further decrease in Jv and Pf to 0.70 +/- 0.10 (P less than 0.01 vs. NE 10(-8) M) and 68.5 +/- 10.6 (P less than 0.01 vs. NE 10(-8) M), respectively. The inhibitory effect of NE on AVP-induced water absorption was blocked by Y, but not by PZ. The effect of the alpha 2 adrenergic agonist clonidine (CD) on Jv and Pf was also examined. In the presence of AVP (10 microU/ml) Jv and Pf were 1.65 +/- 0.04 and 175.1 +/- 13.1, respectively. The addition of CD (10(-6) M) resulted in a significant decrease in Jv to 1.08 +/- 0.12 (P < 0.01) and Pf to 108.1 +/- 15.4 (P < 0.01). Increasing the concentration of CD to 10(-4) M resulted in a further significant decrease in Jv and Pf to 0.57 +/- 0.13 (P < 0.02 vs. CD 10(-6) M) and 54.7 +/- 13.8 (P < 0.01 vs. CD 10(-6) M), respectively. Similar results were obtained in the presence of AVP (100 microU/ml). The inhibitory effect of CD on AVP-induced water absorption was blocked by Y. CD did not significantly affect Jv and Pf in the presence of 8-bromo adenosine 3',5'-cyclic monophosphate. These studies indicate that alpha adrenergic agonists directly inhibit AVP-mediated water absorption at the level of renal tubule, an effect that can be blocked by specific alpha2 adrenergic antagonists, but not by specific alpha1 adrenergic antagonists. Alpha2 adrenergic stimulation directly inhibits AVP-mediate water absorption at the level of the tubule, an effect that can be blocked by a specific alpha2 adrenergic antagonist. This effect appears to be exerted at the level of activation of adenylate cyclase, since it is absent in the present of cyclic AMP. 相似文献
14.
Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Because treatment with lithium salts may impair renal concentrating ability, we investigated the possibility of a direct effect of lithium ions on the permeability to water of the collecting duct epithelium. The coefficient of hydraulic conductivity (Lp) of isolated perfused rabbit cortical collecting tubules (CCT) was measured in the presence and absence of arginine-8-vasopressin (AVP), or 8-bromo (Br) cyclic AMP (cAMP) and/or lithium chloride (Li 10 mM). In the absence of AVP, Li in the lumen for 30 min failed to affect basal water permeability; however, in tubules preincubated with Li in the lumen for 80 min, basal water permeability was reduced to 30% of the value found in control tubules (P less than 0.01). In CCT incubated at 25 degrees C with Li in the lumen for 3 h, the hydroosmotic response to 2.5 microU X ml-1 AVP (Lp = 6.88 +/- 1.54 nl X cm-2 X s-1 X atm-1) was significantly lower than that in the control tubules (13.98 +/- 1.59, P less than 0.01); the inhibition was not reversible. When Li was present in the peritubular medium only, the hydroosmotic effect of AVP was not different from that of the controls. The hydroosmotic effect of 25 microU/ml AVP was investigated at 37 degrees C. CCT exposed to Li in the lumen had a 49% inhibition of peak Lp under AVP (Lp = 10.98 +/- 1.17) as compared with control tubules (Lp = 21.39 +/- 1.51; P less than 0.005). In contrast, the hydroosmotic response to 8-Br-cAMP was not affected by lithium. The results are compatible with the view that Li inhibits the action of AVP at the level of the regulating protein or the catalytic unit of the membrane adenylate cyclase and that the site of the interaction can be reached by lithium only from the cytoplasmic side. The Li-antidiuretic hormone (ADH) interaction found here may represent the earliest pathophysiological event underlying the renal concentrating defect observed after Li administration. 相似文献
15.
Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. 总被引:8,自引:6,他引:2
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
We explored the role for protein kinase C (PKC) in modulating vasopressin (AVP)-stimulated hydraulic conductivity (Lp) in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. In control studies, 10 microU/ml AVP increased Lp (mean +/- SE, X 10(-7) centimeters/atmosphere per second) from 4.4 +/- 0.9 to 166.0 +/- 10.4. Pretreatment with dioctanoylglycerol (DiC8) suppressed AVP stimulated peak Lp (peak Lp, 21.9 +/- 3.1). Pretreatment with 10(-9) and 10(-7) M 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) also blocked the increase in Lp in a dose-dependent fashion (peak Lp, 59.3 +/- 7.5 and 18.6 +/- 4.8, respectively). Inactive phorbol ester, 4 alpha-phorbol 12 beta,13 alpha-didecanoate (10(-7) M), had no effect. PMA also suppressed the increase in Lp induced by 10(-4) M 8-p-chlorophenylthio-cyclic AMP (CcAMP): peak Lp was 169.4 +/- 14.9 in control, 79.2 +/- 5.5 with 10(-9) M PMA, and 25.7 +/- 2.9 with 10(-7) M PMA. Furthermore, when 10(-7) M PMA was added to the bath 10 min after exposure to AVP, the Lp response to AVP was blocked. Peak Lp was 52.4 +/- 9.6 with PMA vs. 165.1 +/- 10.0 in control. Phosphatidic acid (PA), which is thought to stimulate phosphatidylinositol (PI) turnover, produced similar inhibitory effects on AVP as well as CcAMP-stimulated Lp: PA suppressed 10-microU/ml AVP-induced peak Lp from a control value of 159.6 +/- 7.9 to 88.9 +/- 15.8, and 10(-4) M CcAMP induced peak Lp from 169.4 +/- 14.9 to 95.5 +/- 7.7. We conclude that PMA, at concentrations known to specifically activate PKC, suppresses the hydroosmotic effect of AVP on CCT; This suppression is primarily a post-cAMP event; Inhibition of AVP-stimulated Lp by DiC8 and PA also suggests an inhibitory role for the PKC system; The ability of pre- and post-AVP administration of PMA to blunt the AVP response suggests that agents that act through modulation of PI turnover in CCT may regulate the hydroosmotic effect of AVP. 相似文献
16.
Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. 总被引:5,自引:9,他引:5
We have used rat cortical collecting tubules perfused in vitro to study the effects of antidiuretic hormone (ADH) and desoxycorticosterone (DOCA) on the unidirectional fluxes of sodium. We found that in the basal state, lumen-to-bath flux (Jlb) and bath-to-lumen flux (Jbl) of 22Na were approximately equal, 39.5 +/- 3.9 and 41.8 +/- 11.0 pmol X min-1 X min-1, respectively, resulting in no net flux. Addition of 100 microU/ml ADH to the bath produced a stable increase in Jlb to 58.3 +/- 4.7 pmol X min-1 X mm-1. Pretreatment of the animal with DOCA for 4 to 7 d (20 mg/kg per d) increased baseline Jlb to 81.6 +/- 8.7 pmol X min-1 X mm-1. Addition of ADH to a tubule from a DOCA-pretreated rat caused an increase in Jlb to 144.1 +/- 12.0 pmol X min-1 X mm-1 X Neither hormone had an effect on Jbl X Thus ADH produced a greater absolute and fractional increase in Jlb when the animal was pretreated with DOCA, and the ADH-induced increase over baseline was greater than the DOCA-induced increase. Both the ADH-and DOCA-induced stimulation of Jlb were completely abolished by 10(-5) M luminal amiloride, suggesting that the route of sodium transport stimulated by both hormones involves apical sodium channels. However, ADH and DOCA have very different time courses of action; ADH acted within minutes, while aldosterone and DOCA are known to require 90-180 min. The facilitating action of ADH on DOCA-induced stimulation of sodium transport may be important for maximal sodium reabsorption and for the ability to achieve a maximally concentrated urine. 相似文献
17.
Luminal vasopressin modulates transport in the rabbit cortical collecting duct. 总被引:1,自引:1,他引:1
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
We explored the action of luminal AVP in rabbit CCD perfused in vitro at 37 degrees C. Nanomolar concentrations of luminal AVP induced a sustained hyperpolarization of transepithelial voltage (Vt) in contrast to a transient hyperpolarization caused by basolateral AVP. 10 microM basolateral ouabain abolished the latter but not the former change in Vt. Despite a sustained hyperpolarization (from -20.7 +/- 2.9 to -34.1 +/- 4.7 mV; P less than 0.01), 10 nM luminal AVP only slightly altered net Na+ and K+ fluxes (7.6% stimulation and no significant change, respectively). Instead, luminal AVP appeared to modulate an acetazolamide-sensitive electrogenic ion transport because 200 microM basolateral acetazolamide suppressed the luminal AVP-induced hyperpolarization (percentage of Vt from -50.4 +/- 10.8 to -5.1 +/- 1.4; P less than 0.005). In terms of water transport, 10 nM luminal AVP did not change hydraulic conductivity (Lp, x 10(-7) cm/atm per s) (from 3.9 +/- 0.8 to 5.0 +/- 1.2), but suppressed the increase in Lp induced by 20 pM basolateral AVP (134.9 +/- 19.2 vs. 204.3 +/- 21.1 in control; P less than 0.05). These findings demonstrate distinct luminal action of AVP, suggesting amphilateral regulation of epithelial transport by AVP in the CCD. 相似文献
18.
B S Dixon M A Dillingham R J Anderson 《The Journal of laboratory and clinical medicine》1987,110(4):454-459
Flow rate dependence of both electrolyte and nonelectrolyte transport in various nephron segments has been described. Prior studies have used relatively leaky epithelia in which the flow rate-dependent transport phenomena can be explained in terms of alterations in axial and radial concentration profiles. In this study, the flow rate dependence of either vasopressin or cyclic adenosine monophosphate-stimulated water flux (Jv), hydraulic conductivity (Lp), and osmotic permeability (Pf) were measured in isolated perfused rabbit cortical collecting tubules. Increasing perfusion rate from 6.0 +/- 0.4 to 20.7 +/- 1.2 nl/min results in highly significant increases in Jv (131%) and in Lp and Pf (120%). In this relatively tight epithelium, osmotic equilibrium did not occur. Although the mechanism of this effect remains to be elucidated, the present results mandate maintenance of constant flow rates when examining the perfused cortical collecting tubular response to vasopressin. 相似文献
19.
Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration.
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The effects of changes in peritubular pH, carbon dioxide tension (PCO2), and HCO3- concentration on net HCO3- transport was examined in in vitro perfused cortical collecting tubules (CCTs) from unpretreated New Zealand white rabbits. Lowering peritubular HCO3- concentration and pH by reciprocal replacement of HCO3- with Cl-, significantly stimulated net HCO3- absorption. Lowering peritubular HCO3- concentration and pH, by substitution of HCO3- with gluconate, while keeping Cl- concentration constant, also stimulated net HCO3- absorption. Raising peritubular HCO3- concentration and pH, by reciprocal replacement of Cl- with HCO3-, inhibited net HCO3- absorption (or stimulated net HCO3- secretion). When the tubule was cooled, raising peritubular HCO3- concentration had no effect on net HCO3- transport, suggesting these results are not due to the passive flux of HCO3- down its concentration gradient. The effect of changes in ambient PCO2 on net HCO3- transport were also studied. Increasing the ambient PCO2 from 40 mmHg to either 80 or 120 mmHg, allowing pH to fall, had no effect on net HCO3- transport. Similarly, lowering ambient PCO2 to 14 mmHg had no effect on net HCO3- transport. Simultaneously increasing peritubular HCO3- concentration and PCO2, without accompanying changes in peritubular pH, i.e., isohydric changes, stimulated net HCO3- secretion to the same degree as nonisohydric increases in peritubular HCO3- concentration. Likewise, isohydric lowering of peritubular HCO3- concentration and PCO2 stimulated net HCO3- absorption. We conclude that: acute changes in peritubular HCO3- concentration regulate acidification in the CCT and these effects are mediated by a transcellular process; acute changes in ambient PCO2 within the physiologic range have no effect on HCO3- transport in the in vitro perfused CCT; and acute in vitro regulation of CCT acidification is independent of peritubular pH. 相似文献
20.
Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. 总被引:1,自引:16,他引:1
下载免费PDF全文
![点击此处可从《The Journal of clinical investigation》网站下载免费的PDF全文](/ch/ext_images/free.gif)
V L Schuster 《The Journal of clinical investigation》1985,75(6):2056-2064
We studied the effects of cyclic AMP (cAMP) on HCO-3 transport by rabbit cortical collecting tubules perfused in vitro. Net HCO-3 secretion was observed in tubules from NaHCO3- loaded rabbits. 8-Bromo-cAMP-stimulated net HCO-3 secretion, whereas secretion fell with time in control tubules. Both isoproterenol and vasopressin (ADH) are known to stimulate adenylate cyclase in this epithelium; however, only isoproterenol stimulated net HCO-3 secretion. The mechanism of cAMP-stimulated HCO-3 secretion was examined. If both HCO-3 and H+ secretion were to occur simultaneously in tubules exhibiting net HCO-3 secretion, cAMP might increase the net HCO-3 secretory rate by inhibiting H+ secretion, by stimulating HCO-3 secretion, or both. These possibilities were examined using basolateral addition of the disulfonic stilbene (4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In acidifying tubules from NH4Cl-loaded rabbits, DIDS eliminated HCO-3 reabsorption, a result consistent with known effects of DIDS as an inhibitor of H+ secretion. In contrast, cAMP left acidification (H+ secretion) intact. DIDS applied to HCO-3 secretory tubules failed to increase the HCO-3 secretory rate, indicating minimal H+ secretion in HCO-3 secreting tubules. Thus, inhibition of H+ secretion by cAMP could not account for the cAMP-induced stimulation of net HCO-3 secretion. cAMP-stimulated HCO-3 secretion was reversibly eliminated by 0 Cl perfusate, whereas luminal DIDS had no effect. Bath amiloride (1 mM) failed to eliminate cAMP-stimulated HCO-3 secretion when bath [Na+] was 145 mM or 5 mM. cAMP depolarized the transepithelial voltage. The collected fluid [HCO-3] after cAMP could be accounted for by electrical driving forces, suggesting that cAMP stimulates passive HCO-3 secretion. However, cAMP did not alter HCO-3 permeability measured under conditions expected to inhibit transcellular HCO-3 movement (0 Cl- solutions and bath DIDS). This measured HCO-3 permeability was not high enough to account, by passive diffusion, for the HCO-3 fluxes observed in Cl-containing solutions. We conclude the following: cAMP increased net HCO3- secretion by stimulating HCO3- secretion and not by inhibiting H+ secretion; this HCO3- secretion may have occurred by Cl-HCO3- exchange; Na+-H+ exchange appeared not to play a role in basolateral H+ extrusion under these conditions; and the stimulation of HCO3- secretion by isoproterenol, but not ADH, suggests the existence of separate cell cAMP pools or cellular heterogeneity in this cAMP response. 相似文献