首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Chronic obstructive pulmonary disease (COPD) is a debilitating disease characterized by recurrent episodes of leukocyte infiltration in the lung parenchyma causing progressive pulmonary tissue damage and loss of function. Recruitment of neutrophils and CD8+ T cells is linked to disease progression and is under control of chemotactic mediators produced in the inflamed COPD lung. Recent progress in elucidation of the molecular mechanisms that regulate migration of inflammatory cells into the lung has revealed interesting novel targets for therapeutic intervention in this disease. Chemokine receptors CXCR1 and CXCR2 expressed on neutrophils and CXCR3 expressed on CD8+ T cells have been identified as potential therapeutic targets to prevent recruitment of pathogenic cells into the inflamed lung. However, the observation that chemokine receptors are also expressed and functional on various types of lung resident cells including epithelial and smooth muscle cells has raised new questions on the role played by chemokine receptors in COPD. These new findings suggest that chemokine receptor signalling could contribute to the adaptive response of lung tissue resident cells to the microenvironmental changes induced by inflammation. Thus, investigation of the role played by chemokine receptors in development of COPD remains a fertile area of research. Nevertheless, validation of chemokine receptor targets in COPD has proven a difficult challenge given the lack of predictive animal models of the disease and the still poorly defined etiology and pathogenesis.  相似文献   

4.
目的 应用网络药理学与分子对接的方法阐明异钩藤碱抗肺纤维化的作用机制。方法 使用Swiss Target Prediction、DisGeNET等数据库预测异钩藤碱和肺纤维化的潜在靶点。通过拓扑分析筛选核心靶点,并对其进行基因本体论(GO)功能和京都基因和基因组百科全书(KEGG)通路富集分析。对筛选出的关键靶点进行分子对接实验验证结合活性。结果 靶点预测得到100个异钩藤碱和肺纤维化共同作用靶点,GO功能分析表明调节炎症反应、正向调节成纤维细胞增殖等多种生物过程参与肺损伤后的纤维化进程;得到了MAPK1、MAPK3、EGFR、VEGFA、PI3KCA、PI3KCD、AKT1、TNF等8个异钩藤碱治疗肺纤维化的预测靶点和以PI3K-Akt信号通路为主的潜在作用途径。分子对接结果表明异钩藤碱可以与选定的8个靶点进行结合。结论 异钩藤碱可以通过调节肺纤维化的某些生物过程,介导以PI3K-Akt信号通路为主的途径发挥肺损伤后的保护作用,为后续开展异钩藤碱抗肺纤维化的实验研究提供理论依据。  相似文献   

5.
Previous studies in rats have suggested a causal relationship between progressive pulmonary inflammation and lung fibrosis induced by crystalline silica particles. We report here that, in NMRI mice, the lung response to silica particles is accompanied by a mild and non progressive pulmonary inflammation which is dispensable for the development of lung fibrosis. We found that glucocorticoid (dexamethasone) dramatically reduced lung injury, cellular inflammation and pro-inflammatory cytokine expression (TNF-α, IL-1β and KC) but had no significant effect on silica-induced lung fibrosis and expression of the fibrogenic and suppressive cytokines TGF-β and IL-10 in mice. Other anti-inflammatory molecules such as the COX inhibitor piroxicam or the phosphodiesterase 5 inhibitor sildenafil also reduced lung inflammation without modifying collagen, TGF-β or IL-10 lung content. Our findings indicate that the development of lung fibrosis in silica-treated NMRI mice is not driven by inflammatory lung responses and suggest that suppressive cytokines may represent critical fibrotic factors and potential therapeutic targets in silicosis.  相似文献   

6.
《Inhalation toxicology》2013,25(8):363-377
Abstract

Crystalline forms of silica have been proposed as positive control material for the toxicity test of inhaled particulate/fibrous matter, although mechanism of silica-induced inhalation toxicity has not yet been established. Inhalation exposure of α-quartz to rodents induces severe lung inflammation and fibrosis only after a certain period of latency, despite strong surface reactivity. The delayed occurrence of inhalation toxicity by α-quartz may be largely attributed to the sequestration of α-quartz particles by alternatively activated (M2) macrophages that express abundant levels of scavenger receptors but are relatively insensitive to inflammatory stimuli. When exposure to α-quartz continues, lung dust burden reaches a particle overload level, at which M2 macrophages cannot accommodate further quartz particles. Free quartz particles distributed in the interstitium interact with another subtype of macrophages, classically activated/inflammatory (M1) macrophages, which secrete various inflammatory cytokines, but silica-laden M1 macrophages initiate granuloma formation, which sequesters silica particles, too. Furthermore, the ability of M2 macrophages to clear foreign matter, particularly bacterial endotoxins [lipopolysaccharides (LPS)], may decrease due to α-quartz cytotoxicity. When LPS concentration in the lung reaches a certain level, LPS primes M1 macrophages to prepare for interleukin-1β production in response to α-quartz and also stimulates M1 macrophages and plasmacytoid dendritic cells (pDCs) to produce tumor necrosis factor (TNF)-α and interferon (IFN)-β, respectively. Besides, IFN-β may enhance TNF-α production in LPS-stimulated M1 macrophages. The elevated levels of inflammatory cytokines produce progressive lung inflammation and fibrosis.  相似文献   

7.
1. Pravastatin is best known for its antilipidemic action. Recent studies have shown that statins have immunomodulatory and anti‐inflammatory effects. The present study aimed to determine whether or not pravastatin can attenuate acute lung injury and fibrosis in a mouse model. 2. Bleomycin was given to C57BL6 mice through intratracheal instillation. Pravastatin was given through intraperitoneal injection. To study the effect of pravastatin on the early inflammatory phase and the late fibrotic phase, mice were killed on days 3, 7, 14 and 21. 3. Pravastatin attenuated the histopathological change of bleomycin‐induced lung injury and fibrosis. The accumulation of neutrophils and increased production of tumor necrosis factor‐α in bronchoalveolar lavage fluid were inhibited in the early inflammatory phase. Pravastatin effectively inhibited the increase of lung hydroxyproline content induced by bleomycin. Furthermore, pravastatin reduced the increased expression of transforming growth factor (TGF)‐β1, connective tissue growth factor (CTGF), RhoA and cyclin D1. The increased levels of TGF‐β1 and CTGF mRNA expression were also significantly inhibited by pravastatin. 4. Pravastatin effectively attenuated bleomycin‐induced lung injury and pulmonary fibrosis in mice. Our results provide evidence for the therapeutic potential of pravastatin in the treatment of acute lung injury and pulmonary fibrosis.  相似文献   

8.
1. This study examines the activity of the antioxidant N-acetylcysteine on bleomycin-induced pulmonary fibrosis in rats with emphasis on the early inflammatory phase. 2. Rats receiving N-acetylcysteine (300 mg kg(-1) day(-1), intraperitoneal) had less augmented lung wet weight, and lower levels of proteins, lactate dehydrogenase, neutrophil and macrophage counts in bronchoalveolar lavage fluid and lung myeloperoxidase activity with a betterment of histological score at 3 days postbleomycin. 3. A diminished lung GSH/GSSG ratio and augmented lipid hydroperoxides were observed 3 days postbleomycin. These changes were attenuated by N-acetylcysteine. Alveolar macrophages from bleomycin-exposed rats released augmented amounts of superoxide anion and nitric oxide. N-Acetylcysteine did not modify superoxide anion generation but reduced the increased production of nitric oxide. 4. N-Acetylcysteine suppressed the bleomycin-induced increased activation of lung NF-kappaB (shift assay and immunohistochemistry), and decreased the augmented levels of the early inflammatory cytokines, tumour necrosis factor-alpha, interleukin-beta, interleukin-6 and macrophage inflammatory protein-2 observed in bronchoalveolar lavage fluid at 1 and 3 days postbleomycin exposure. 5. At 15 days postbleomycin, N-acetylcysteine decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content: 6351+/-669 and 4626+/-288 micro g per lung in drug vehicle- and N-acetylcysteine-treated rats, respectively; P<0.05). Semiquantitative histological assessment at this stage showed less collagen deposition in N-acetylcysteine-treated rats compared to those receiving bleomycin alone. 6. These results indicate that N-acetylcysteine reduces the primary inflammatory events, thus preventing cellular damage and the subsequent development of pulmonary fibrosis in the bleomycin rat model.  相似文献   

9.
Pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease. The pathogenesis of PF has not been clearly elucidated, and there is no obvious effective treatment to arrest the progression of PF to date. A long-term chronic inflammatory response and inappropriate repair process after lung injury are important causes and pathological processes of PF. As an influential type of the body's immune cells, regulatory T cells (Tregs) play an irreplaceable role in inhibiting the inflammatory response and promoting the repair of lung tissue. However, the exact roles of Tregs in the process of PF have not been clearly established, and the available literature concerning the roles of Tregs in PF are contradictory. First, Tregs can advance the progression of pulmonary fibrosis by secreting platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β) and other related factors, promoting epithelial-mesenchymal transition (EMT) and affecting the Th1 and Th2 balance, etc. Second, Tregs can inhibit PF by promoting the repair of epithelial cell damage, inhibiting the accumulation of fibroblasts, and strongly inhibiting the production and function of other related pro-inflammatory factors and pro-inflammatory cells. Accordingly, in this review, we focus on the multiple roles of Tregs in different models and different pulmonary fibrosis phases, thereby providing theoretical support for a better understanding of the multiple roles of these cells in PF and a theoretical basis for identifying targets for PF therapy.  相似文献   

10.
ObjectiveAbnormal angiogenesis is a central hallmark for the development and progression of idiopathic pulmonary fibrosis. It has been shown that vascular endothelial growth factor (VEGF) is one of the critical angiogenic factors in angiogenesis. The aim of the present study was to assess whether disruption of VEGF pathway would attenuate bleomycin-induced pulmonary fibrosis.MethodsBleomycin-induced pulmonary fibrosis mice were treated intraperitoneally with VEGF receptor tyrosine kinase inhibitor SU5416 at different phases after bleomycin infusion. We measured angiogenesis and inflammatory response in both bleomycin-treated and control mice, and correlated these levels with pulmonary fibrosis.ResultsThe increased expressions of VEGF/VEGFR (Flk-1) were correlated to a larger number of microvessels and a higher score of pulmonary fibrosis. Early administration of SU5416 inhibited pulmonary collagen deposition, histopathologic fibroplasias and the activation of TGF-β1/Smad3 signaling pathway in bleomycin-stimulated lung. These were also paralleled by a reduction of VEGF/VEGFR-2 (Flk-1) expression and microvessel numbers in lung. Furthermore, SU5416 inhibited inflammatory cell numbers and LDH activity in BALF and IL-13 expression in lung tissue at early inflammatory phase of bleomycin-induced pulmonary fibrosis.ConclusionThese results suggest that the VEGFR-2 inhibitor, SU5416, attenuates histopathologic fibroplasias and collagen deposition by regulating angiogenesis and inflammation in the lung.  相似文献   

11.
The extracellular signal-regulated kinase (ERK) cascade has long been known to be central to the activation of cellular processes such as proliferation, differentiation, and oncogenic transformation. The mitogen-activated protein (MAP) serine/threonine family of protein kinases, of which ERK is a member, is activated by a mechanism that includes protein kinase cascades. Mitogen-activated protein kinases (MAPKs) are well-conserved enzymes connecting cell surface receptors to intracellular regulatory targets; they are activated in response to a wide variety of stimuli. The aim of this study was to investigate the effects of PD98059, a highly selective inhibitor of MAP/ERK kinase1 (MEK1) activation, on the development of lung inflammation and fibrosis. Lung injury was induced by intratracheal instillation of bleomycin (1 mg/kg), and PD98059 (10 mg/kg, 10% dimethyl sulfoxide, i.p.) was administrated 1 h after bleomycin instillation and daily for 7 days. PD98059 treatment shows therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters, such as (1) cytokine production; (2) IkBα degradation and NF-kB nuclear translocation; (3) iNOS expression; (4) nitrotyrosine and PAR localization; and (5) the degree of apoptosis, as evaluated by Bax and Bcl-2 balance, FAS ligand expression, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. In particular, to assess whether PD98059 treatment influences MAPKs pathway, we have also investigated the expression of activated ERK and JNK after bleomycin-induced pulmonary fibrosis, showing that the inhibition of the cascade reduces the inflammatory processes that lead to the appearance of the fibrosis. Taken together, all our results clearly show that PD98059 reduces the lung injury and inflammation due to the intratracheal bleomycin administration in mice.  相似文献   

12.
Receptor tyrosine kinases (RTKs) have been implicated as therapeutic targets for the treatment of human diseases including cancers, inflammatory diseases, cardiovascular diseases including arterial restenosis, and fibrotic diseases of the lung, liver, and kidney. Three classes of 3-substituted indolin-2-ones containing propionic acid functionality attached to the pyrrole ring at the C-3 position of the core have been identified as catalytic inhibitors of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) RTKs. Some of the compounds were found to inhibit the tyrosine kinase activity associated with isolated vascular endothelial growth factor receptor 2 (VEGF-R2) [fetal liver tyrosine kinase 1 (Flk-1)/kinase insert domain-containing receptor (KDR)], fibroblast growth factor receptor (FGF-R), and platelet-derived growth factor receptor (PDGF-R) tyrosine kinase with IC(50) values at nanomolar level. Thus, compound 1 showed inhibition against VEGF-R2 (Flk-1/KDR) and FGF-R1 tyrosine kinase activity with IC(50) values of 20 and 30 nM, respectively, while compound 16f inhibited the PDGF-R tyrosine kinase activity with IC(50) value of 10 nM. Structural models and structure-activity relationship analysis of these compounds for the target receptors are discussed. The cellular activities of these compounds were profiled using cellular proliferation assays as measured by bromodeoxyuridine (BrdU) incorporation. Specific and potent inhibition of cell growth was observed for some of these compounds. These data provide evidence that these compounds can be used to inhibit the function of these target receptors.  相似文献   

13.
Pulmonary toxicity, including fibrosis, is a serious adverse effect associated with the antidysrhythmic drug amiodarone (AM). We tested the potential usefulness of pirfenidone against AM-induced pulmonary toxicity in the hamster model. Intratracheal AM administration resulted in pulmonary fibrosis 21 days posttreatment, as evidenced by an increased hydroxyproline content and histological damage. Dietary pirfenidone administration (0.5% w/w in chow), for 3 days prior to and continuously after AM, prevented fibrosis and suppressed elevation of pulmonary transforming growth factor (TGF)-beta1 mRNA content at 7 and 21 days post-AM. Protection against AM-induced lung damage was not observed when supplementation with pirfenidone was delayed until 7 days following AM administration, suggesting that alteration of early events in AM lung toxicity is necessary for the protective effect of pirfenidone. Both AM and bleomycin, another pulmonary fibrogen, caused inflammation 24 h after intratracheal dosing, measured as increased lactate dehydrogenase activity, protein content, and cellular alterations in bronchoalveolar lavage fluid, with the response to AM markedly greater than that to bleomycin. Administration of AM, but not bleomycin, also caused whole lung mitochondrial dysfunction, alveolar macrophage death, and an influx of eosinophils into the lung, of which pirfenidone was able to decrease only the latter. We conclude that: (1) AM induces alveolar macrophage death and severe, acute pulmonary inflammation with associated eosinophilia following intratracheal administration; (2) mitochondrial dysfunction may play an early role in AM pulmonary injury; and (3) pirfenidone decreases AM-induced pulmonary fibrosis in the hamster, probably through suppression of TGF-beta1 gene expression.  相似文献   

14.
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. It is characterized by injury with loss of lung epithelial cells and abnormal tissue repair, resulting in replacement of normal functional tissue, abnormal accumulation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which results in respiratory failure. Despite improvements in the diagnostic approach to IPF and active research in recent years, the molecular mechanisms of the disease remain poorly understood. This highly lethal lung disorder continues to pose major clinical challenges since an effective therapeutic regimen has yet to be identified and developed. For example, a treatment modality has been based on the assumption that IPF is a chronic inflammatory disease, yet most available anti-inflammatory drugs are not effective in treating it. Hence researchers are now focusing on understanding alternative underlying mechanisms involved in the pathogenesis of IPF in the hope of discovering potentially new pharmaceutical targets. This paper will focus on lung tissue repair, regeneration, remodeling, and cell types that may be important to consider in therapeutic interventions and includes a more detailed discussion of the potential targets of current therapeutic attack in pulmonary fibrosis. The discovery that adult bone marrow stem cells can contribute to the formation of differentiated cell types in other tissues, especially after injury, implies that they have the potential to participate in tissue remodeling, and perhaps regeneration. The current promise of the use of adult stem cells for tissue regeneration, and the belief that once irreversibly damaged tissue could be restored to a normal functional capacity using stem cell-based therapy, suggests a novel approach for treatment of diverse chronic diseases. However this optimism is tempered by current evidence that the pathogenesis of pulmonary fibrosis may involve the recruitment of bone marrow-derived fibroblasts, which are the key contributors to the pathogenesis of this chronic progressive disorder. Nevertheless, stem cell-related therapies are widely viewed as promising treatment options for patients suffering from various types of pulmonary diseases. Gender mismatched bone marrow or lung transplant recipients serve as natural populations in which to study the role of bone marrow-derived stem cells in recovery from pulmonary diseases. Understanding the mechanism of recruitment of stem cells to sites of injury, and their involvement in tissue repair, regeneration, and remodeling may offer a novel therapeutic target for developing more effective treatments against this fatal disorder. This article reviews the new concepts in the pathogenesis, current and future treatment options of pulmonary fibrosis, and the recent advances regarding the roles of stem cells in lung tissue repair, regeneration, and remodeling.  相似文献   

15.
Idiopathic pulmonary fibrosis (IPF) involves infiltration of leucocytes, pulmonary injury, fibrosis and resulting pulmonary dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 have been suggested to play a major role in the pathology and the myofibroblasts are derived from both lung epithelial cells through epithelial-mesenchymal transition (EMT) and activation of lung fibroblasts. Heat shock protein 70 (HSP70) confers protection against various stressors and has the anti-inflammatory activity. In this study, we examined the effect of expression of HSP70 on bleomycin-induced pulmonary fibrosis in mice, a tentative animal model of IPF. Bleomycin-induced pulmonary injury and inflammatory response were ameliorated in transgenic mice overexpressing HSP70 compared to wild-type mice, even though bleomycin-induced pulmonary fibrosis and dysfunction were also suppressed in the transgenic mice. The production of TGF-β1 and expression of pro-inflammatory cytokines was lower in cells from the transgenic mice than wild-type mice after the administration of bleomycin. In vitro, the suppression of HSP70 expression stimulated TGF-β1-induced EMT-like phenotypes of epithelial cells but did not affect the TGF-β1-dependent activation of fibroblasts. Orally administered geranylgeranylacetone (GGA), a clinically used drug with HSP-inducing activity, conferred protection against bleomycin-induced pulmonary injury, as well as against the inflammatory response, fibrosis and dysfunction. These results suggest that HSP70 plays a protective role against bleomycin-induced pulmonary injury, inflammation, fibrosis and dysfunction through cytoprotective effects and by inhibiting the production of TGF-β1, TGF-β1-dependent EMT of epithelial cells and expression of pro-inflammatory cytokines. Results also suggest that HSP70-inducing drugs, such as GGA, could be beneficial in the prophylaxis of IPF.  相似文献   

16.
Pulmonary fibrosis is characterized by lung inflammation and abnormal tissue repair, resulting in the replacement of normal functional tissue with an abnormal accumulation of fibroblasts and deposition of collagen in the lung. This process involves cellular interactions via a complex cytokine-signaling mechanism and heightened collagen gene expression, ultimately resulting in its abnormal collagen deposition in the lung. Our current understanding of the pathogenesis of pulmonary fibrosis suggests that in addition to inflammatory cells, the fibroblast and signaling events that mediate fibroblast proliferation and myofibroblasts, play important roles in the diverse processes that constitute fibrosis. Increasing knowledge of cytokine biology, cytokine-signaling and cell matrix interactions have shed some light on the genesis of pulmonary fibrosis; however, the importance of inflammation in pulmonary fibrosis remains controversial. This remains true because the inflammatory component is variable at the time of diagnosis, and the most potent anti-inflammatory drugs that have been widely used in the treatment of pulmonary fibrosis do not seem to interfere with the fibrotic disease progression. Pulmonary fibrosis is a highly lethal disorder, which continues to pose major clinical challenges because an effective therapeutic regimen is yet to be determined. This review summarizes recent progress in understanding the molecular mechanisms of pulmonary fibrosis, and includes a more detailed discussion of the potential points of therapeutic attack in pulmonary fibrosis. In addition, a detailed discussion is presented regarding each of the potential therapies which have emerged from the animal models of pulmonary fibrosis, and which have been developed through advances in cellular and molecular biology.  相似文献   

17.
肺部炎症性疾病如急性肺损伤、支气管哮喘、慢性阻塞性肺病和肺纤维化是全球性的主要健康问题。目前已有多种治疗药物,如抗胆碱药、茶碱类、糖皮质激素、β2-肾上腺素受体激动剂及抗细胞因子疗法等。但糖皮质激素等药物长期应用却有明显的毒副作用,且急性肺损伤和慢性阻塞性肺病对糖皮质激素反应较差。迫切需要发现新的治疗靶点及开发新的治疗药物。过氧化物酶体增殖物激活受体(peroxi-some proliferators activated receptors,PPARs)具有广泛的抗炎、免疫调节及抑制多种细胞增殖的作用,提示PPARs激动剂具有治疗上述疾病的潜在价值。本文就各种亚型PPARs在上述肺部疾病中的保护作用做一综述,以期为上述疾病的治疗提供新的理论依据。  相似文献   

18.
Over the past year, human studies have confirmed and expanded the involvement of macrophage migration inhibitory factor (MIF) in a number of diseases that had originally been studied in animals. In addition to sepsis, rheumatoid arthritis, glomerulonephritis and inflammatory lung disease, elevated MIF levels have been described in patients suffering from ulcerative colitis, inflammatory neurological diseases and cancer. Cellular studies indicate that in addition to macrophages, MIF affects the activities of CD4+ and CD8+ T cells, natural killer cells, fibroblasts and endothelial cells, actions that may explain the contribution of MIF to inflammatory diseases and cancer. Molecular studies have identified direct interactions between MIF and several intracellular regulatory proteins (Jab1, PAG and p53) that control cellular growth and proliferation; however, how interactions with these proteins fit into a general scheme to explain MIF's biological activity has not been elucidated. The three-dimensional structure of MIF has offered some surprising clues and if the potential enzymatic sites identified are involved with MIF-associated diseases, they may provide good targets for therapeutic intervention.  相似文献   

19.
Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.  相似文献   

20.
Sepsis is a systemic inflammatory response syndrome caused by severe infections. Astilbin is a dihydroflavonol derivative found in many medicinal and food plants with multiple pharmacological functions. To investigate the effects of astilbin on sepsis-induced acute lung injury (ALI), cecal ligation and puncture was performed on rats to establish a sepsis-induced ALI model; these rats were then treated with astilbin at different concentrations. Lung injury scores, including lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration were determined to evaluate the effects of astilbin on sepsis-induced ALI. We found that astilbin treatment significantly attenuates sepsis-induced lung injury and improves survival rate, lung injury scores, lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration. Astilbin treatment also dramatically decreased the production of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid. Further, astilbin treatment inhibited the expression and production of macrophage inhibitory factor (MIF), which inhibits the inflammatory response. Collectively, these data suggest that astilbin has a protective effect against sepsis-induced ALI by inhibiting MIF-mediated inflammatory responses. This study provides a molecular basis for astilbin as a new medical treatment for sepsis-induced ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号