首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer stem cells (CSCs) have been identified as rare cell populations in many cancers, including leukemia and solid tumors. Accumulating evidence has suggested that CSCs are capable of self-renewal and differentiation into various types of cancer cells. Aberrant regulation of gene expression and some signaling pathways has been observed in CSCs compared to other tumor cells. CSCs are thought to be responsible for cancer initiation, progression, metastasis, recurrence and drug resistance. The CSC hypothesis has recently attracted much attention due to the potential for discovery and development of CSC-related therapies and the identification of key molecules involved in controlling the unique properties of CSC populations. Over the past several years, a tremendous amount of effort has been invested in the development of new drugs, such as nanomedicines, that can take advantage of the “Achilles'' heel” of CSCs by targeting cell-surface molecular markers or various signaling pathways. Novel compounds and therapeutic strategies that selectively target CSCs have been identified, some of which have been evaluated in preclinical and clinical studies. In this article, we review new findings related to the investigation of the CSC hypothesis, and discuss the crucial pathways involved in regulating the development of CSC populations and the advances in studies of drug resistance. In addition, we review new CSC-targeted therapeutic strategies aiming to eradicate malignancies.  相似文献   

2.
肿瘤干细胞靶向治疗   总被引:1,自引:1,他引:0  
多种肿瘤中都存在肿瘤干细胞(cancer stem cell,CSC),这部分细胞具有自我更新能力和分化潜能,是肿瘤生长、增殖和转移的根源。此外,肿瘤干细胞具有正常干细胞的自我保护特性,如有效的DNA修复、高表达多药耐药型膜转运蛋白以及处于相对静止状态及拥有特定的微环境,使其能够逃逸现有的肿瘤治疗手段,导致肿瘤复发。针对这些保护机制,并利用肿瘤干细胞与正常干细胞的之间的差异进行靶向治疗,可能达到根治肿瘤的疗效。  相似文献   

3.
Increasing evidence sustains that the establishment and maintenance of many, if not all, human cancers are due to cancer stem cells (CSCs), tumor cells with stem cell properties, such as the capacity to self-renew or generate progenitor and differentiated cells. CSCs seem to play a major role in tumor metastasis and drug resistance, but albeit the potential clinical importance, their regulation at the molecular level is not clear. Recent studies have highlighted several miRNAs to be differentially expressed in normal and cancer stem cells and established their role in targeting genes and pathways supporting cancer stemness properties. This review focuses on the last advances on the role of microRNAs in the regulation of stem cell properties and cancer stem cells in different tumors.  相似文献   

4.
ABSTRACT

Introduction: Several reports have suggested that a population of undifferentiated cells known as cancer stem cells (CSCs), is responsible for cancer formation and maintenance. In the last decade, the presence of CSCs in solid cancers have been reported.

Areas covered: This review summarizes the main approaches for targeting CSCs drug resistance. It is indeed known that CSCs may contribute to resistance to conventional chemotherapy, radiotherapy and targeted agents. Among the mechanisms by which CSCs escape anticancer therapies, removal of therapeutic agents by drug efflux pumps, enhanced DNA damage repair, activation of mitogenic/anti-apoptotic pathways; the main features of CSCs, stemness and EMT, are involved, as well as the capability to evade immune response.

Expert opinion: Different approaches are suitable to target CSCs mediated drug resistance. Some of them are currently under clinical evaluation in different cancer types. A better understanding of CSC biology, as well as more accurate study design, may maximize the therapeutic effects of these agents. In this respect, it is important to establish: (i) which molecules should be targeted; (ii) what drug combinations may be suitable; (iii) which patient settings will CSC targeting offer the highest clinical benefit; and (iv) how to integrate therapeutic approaches targeting CSCs with standard cancer therapy.  相似文献   

5.
肿瘤干细胞(CSCs)理论为肿瘤的研究开辟了一个新的方向,CSCs学说认为肿瘤细胞具有异质性,肿瘤中存在干细胞样细胞,该群细胞是一种增殖失控、可形成肿瘤的细胞,只占肿瘤细胞很少部分,具有干细胞特性,是形成不同分化程度肿瘤细胞和肿瘤增长、复发及转移的根源。微小核糖核酸(miRNA)是广泛存在的非编码小RNA,调节着人类1/3的基因,越来越多的证据显示miRNA在肿瘤的发生发展中起着重要的作用,作为重要的转录后调控因子,广泛参与肿瘤相关基因调控的生物程序,使不同类型的肿瘤表现出特异的miRNA表达谱。近年来,CSCs的miRNA研究日益成为热点,已经发现多种CSCs中存在特异性表达的miRNA,对CSCs的生物学行为有了更进一步的认识。有研究发现肿瘤患者血浆中表达某些特异的miRNA,这些miRNA可以作为肿瘤的标志物对患者的病情及预后进行预测和判断。本文就近来CSCs中miRNA研究进展及miRNA作为肿瘤标志物研究进展进行综述。  相似文献   

6.
Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed.  相似文献   

7.
INTRODUCTION: Hedgehog (Hh) signaling pathway plays key roles in embryonic development, formation and maintenance of cancer stem cells (CSCs) and acquisition of epithelial-to-mesenchymal transition (EMT). Since CSCs and EMT are important biological factors responsible for cancer cell invasion, metastasis, drug resistance and tumor recurrence, the Hh signaling pathway is believed to be an important target for cancer therapy. AREAS COVERED: In recent years, small-molecule inhibitors of Hh signaling have been synthesized for cancer treatment. Clinical trials using these inhibitors are being conducted to determine their toxicity profiles and efficacies. In addition, nutraceuticals (such as isoflavones, curcumin, vitamin D, etc) have been shown to inhibit cancer growth through downregulation of Hh signaling. EXPERT OPINION: Inhibition of Hh signaling is important for suppression of cancer growth, invasion, metastasis and recurrence in cancer therapy. However, targeting only one molecule in Hh signaling may not be sufficient to kill cancer cells because cancers show deregulation of multiple signals. Therefore, utilizing new technologies to determine alterations in Hh and other signals for individuals and designing combination strategies with small-molecule Hh inhibitors, nutraceuticals and other chemotherapeutics in targeted personalized therapy could have a significant effect on improving the overall survival of patients with cancers.  相似文献   

8.
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.  相似文献   

9.
Dysregulation of microRNAs (miRNAs) has been widely shown to be associated with the development and progression of cancer. Recent studies discovered a handful of miRNAs with great potential to act as therapeutic targets in various human cancers. Inhibition or overexpression of these oncomirs may regulate the expressions of their associated genes, which in turn represses the proliferation or metastasis of different cancers. Some miRNAs can reverse the phenotype of epithelial–mesenchymal transition, while others can be utilized to sensitize cells to DNA-damaging drugs. Most of their anticancer abilities have been validated in preclinical animal models. A merit of miRNA-based therapy is that it can target plenty of genes in different signaling pathways, but this also comes with the drawback of many unknown off-target effects. In addition, successful delivery is also a major obstacle to effective miRNA-based therapeutics. Nevertheless, new findings from recent studies and the rapid advances in systemic drug delivery systems provide an optimistic perspective on the evolution of the field.  相似文献   

10.
Dysregulation of microRNAs (miRNAs) has been widely shown to be associated with the development and progression of cancer. Recent studies discovered a handful of miRNAs with great potential to act as therapeutic targets in various human cancers. Inhibition or overexpression of these oncomirs may regulate the expressions of their associated genes, which in turn represses the proliferation or metastasis of different cancers. Some miRNAs can reverse the phenotype of epithelial-mesenchymal transition, while others can be utilized to sensitize cells to DNA-damaging drugs. Most of their anticancer abilities have been validated in preclinical animal models. A merit of miRNA-based therapy is that it can target plenty of genes in different signaling pathways, but this also comes with the drawback of many unknown off-target effects. In addition, successful delivery is also a major obstacle to effective miRNA-based therapeutics. Nevertheless, new findings from recent studies and the rapid advances in systemic drug delivery systems provide an optimistic perspective on the evolution of the field.  相似文献   

11.
Pharmacogenomics in oncology holds the promise to personalize cancer therapy. However, its clinical application is still limited to a few genes, and, in the large majority of cancers, the correlation between genotype and clinical outcome has been disappointing. One possible explanation is that current pharmacogenomic studies do not take into account the emerging role of cancer stem cells (CSCs) in drug sensitivity and resistance. CSCs are a subpopulation of cells driven by specific signal-transduction pathways, but genetic variants affecting their activity are generally neglected in current pharmacogenomic studies. Moreover, in several malignancies, CSCs represent a rare sub-population; therefore, whole tumor profiling might mask CSC gene expression patterns. This article reviews current evidence on CSC chemoresistance and shows how common genetic variations in CSC-related genes may predict individual response to anti-cancer agents. Furthermore, we provide insights into the design of pharmacogenomic studies to address the clinical usefulness of CSC genetic profiling.  相似文献   

12.
The urokinase receptor as a potential target in cancer therapy   总被引:8,自引:0,他引:8  
The glycolipid-anchored receptor for urokinase-type plasminogen activator (uPAR) is essential for cell-surface associated plasminogen activation and is overexpressed at the invasive tumor-stromal microenvironment in many human cancers. In line with this, uPAR and uPA levels in both resected tumor tissue and plasma are of independent prognostic significance for patient survival in several types of human cancer. As the expression of both uPAR and its cognate protease ligand thus appears to be correlated with tumor malignancy, the uPA-uPAR interaction represents an attractive target for the development of either antagonists with possible anti-invasive effects or cytotoxic agents with anti-tumor effects. In this review we discuss recent achievements in the development of protein and peptide based drug candidates targeting uPAR. The majority of these compounds has been optimized for human uPAR and exhibits a pronounced species-specificity showing little or no reactivity with murine uPAR. This evidently complicates their application in preclinical intervention studies, since an intimate interplay between the tumor and its associated stroma is a distinct feature of the invasive phenotype of many human cancers. The virtues and drawbacks of various mouse tumor models as surrogates for human cancer are also discussed in relation to uPAR targeting.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered as a possible therapeutic agent for cancer treatment. This is because of its selective cytotoxicity against various cancer cells without a detrimental effect on normal cells. However, recent studies have reported that the potential application of TRAIL in cancer therapy is limited, as many cancer cells have been found to be resistant to TRAIL. Therefore, small molecule compounds that potentiate the cytotoxicity of TRAIL would be strategic candidates for therapeutic applications in combination with TRAIL. Here we found that a combined treatment of inostamycin and TRAIL synergistically induced caspase-dependent apoptosis in HCT116 cells. Inostamycin upregulated DR5, and a knockdown of DR5 suppressed the apoptosis that was synergistically induced by co-treatment with inostamycin and TRAIL. Moreover, inostamycin increased the expression of DR5 on the cell surface. Therefore, inostamycin-increased cell surface expression of DR5 may have contributed to the enhancement of TRAIL-induced apoptosis. Our study suggests that combined treatment with inostamycin and TRAIL may offer a strategy to overcome TRAIL resistance in tumor cells.  相似文献   

14.
COX-2 inhibitors in cancer treatment and prevention, a recent development   总被引:44,自引:0,他引:44  
Xu XC 《Anti-cancer drugs》2002,13(2):127-137
Epidemiological and experimental studies have demonstrated the effect of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention of human cancers. NSAIDs block endogenous prostaglandin synthesis through inhibition of cyclooxygenase (COX) enzymatic activity. COX-2, a key isoenzyme in conversion of arachidonic acid to prostaglandins, is inducible by various agents such as growth factors and tumor promoters, and is frequently overexpressed in various tumors. The contribution of COX-2 to carcinogenesis and the malignant phenotype of tumor cells has been thought to be related to its abilities to (i) increase production of prostaglandins, (ii) convert procarcinogens to carcinogens, (iii) inhibit apoptosis, (iv) promote angiogenesis, (v) modulate inflammation and immune function, and (vi) increase tumor cell invasiveness, although some studies indicated that NSAIDs have COX-2-independent effects. A number of clinical trials using COX-2 inhibitors are in progress, and the results from these studies will increase our understanding of COX-2 inhibition in both cancer treatment and prevention. The combination of COX-2 inhibitors with radiation or other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Recent progress in the treatment and prevention of cancers of the colon, esophagus, lung, bladder, breast and prostate with NSAIDs, especially COX-2 inhibitors, is also discussed.  相似文献   

15.
Cancer metastasis is the major cause of cancer-related death despite significant improvements in multimodal cancer therapy. Epithelial-mesenchymal transition (EMT), a major mechanism of cancer metastasis, is a process that generates cells with stem cell-like properties (cancer stemness). Cancer stemness is a concept that describes a minor population of cells (cancer stem cells) residing within a tumour that are able to self-renew and are resistant to conventional therapy. The mechanisms delineating the generation of cancer stemness and its connection to cancer metastasis remain largely unknown. Twist1 is an EMT regulator and increased Twist1 expression, which has prognostic significance in various human cancers, has been widely reported. Bmi1 is a critical component of polycomb repressive complex (PRC) 1, which maintains self-renewal and stemness. Bmi1 is frequently overexpressed in different types of human cancers and can induce drug resistance (Table 2). Recent studies have shown that Twist1 directly activates Bmi1 expression and that these two molecules function together to mediate cancer stemness and EMT. These results present a unique mechanism of EMT-induced cancer metastasis and stemness. Further investigation of the mechanisms of EMT-mediated cancer metastasis and stemness will contribute to the management and treatment of metastatic cancers.  相似文献   

16.
Introduction: Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies.

Areas covered: This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics.

Expert opinion: The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.  相似文献   

17.
18.
Introduction: Epithelial-to-mesenchymal transition (EMT) is a pathological phenomenon of cancer that confers tumor cells with increased cell motility, invasive and metastatic abilities with the acquisition of ‘cancer stem-like cell’ (CSC) phenotype. EMT endows tumor cells with intrinsic/acquired resistant phenotype at achievable doses of anticancer drugs and leads to tumor recurrence and progression. Besides the complex network of signaling pathways, microRNAs (miRNAs) are being evolved as a new player in the induction and regulation of EMT.

Areas covered: In this review article, the author has searched the PubMed and Google Scholar electronic databases for original research and review articles to gather current information on the association of EMT-induced CSCs with therapeutic resistance, tumor growth and metastasis, which are believed to be regulated by certain miRNAs.

Expert opinion: This review outlines not only the perspective on selective targeting of EMT-induced CSCs through altered expression of novel miRNAs and/or the use of conventional drugs that affect the levels of critical miRNAs but also the strategies on overcoming the drug resistance by interfering with EMT and modulating its associated pathways in CSCs that can be considered as potential therapeutic approaches toward eradicating the tumor recurrence and metastasis.  相似文献   

19.
Activation of cell surface death receptors by their cognate ligands triggers apoptosis. Several human death receptors (Fas, TNF-R1, TRAMP, DR4, DR5, DR6, EDA-R and NGF-R) have been identified. The most promising cytokine for anticancer therapy is TRAIL/APO-2L, which induces apoptosis in cancer cells by binding to death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. The cytotoxic activity of TRAIL is relatively selective to cancer cells compared to normal cells. Signaling by TRAIL and its receptors is tightly regulated process essential for key physiological functions in a variety of organs, as well as the maintenance of immune homeostasis. Despite early promising results, recent studies have identified several TRAIL-resistant cancer cells of various origins. Based on molecular analysis of death-receptor signaling pathways several new approaches have been developed to increase the efficacy of TRAIL. Resistance of cancer cells to TRAIL appears to occur through the modulation of various molecular targets. They may include differential expression of death receptors, constitutively active Akt and NFkappaB, overexpression of cFLIP and IAPs, mutations in Bax and Bak genes, and defects in the release of mitochondrial proteins in resistant cells. Conventional chemotherapeutic and chemopreventive drugs, and irradiation can sensitize TRAIL-resistant cells to undergo apoptosis. Thus, these agents enhance the therapeutic potential of TRAIL in TRAIL-sensitive cells and sensitize TRAIL-resistant cells. TRAIL and TRAIL-receptor antibodies may prove to be useful for cancer therapy, either alone or in association with conventional approaches such as chemotherapy or radiation therapy. This review discusses intracellular mechanisms of TRAIL resistance and various approaches that can be taken to sensitize TRAIL-resistant cancer cells.  相似文献   

20.
INTRODUCTION: Pancreatic cancer has the worst survival rate of all cancers. The current standard care for metastatic pancreatic cancer is gemcitabine, however, the success of this treatment is poor and overall survival has not improved for decades. Drug resistance (both intrinsic and acquired) is thought to be a major reason for the limited benefit of most pancreatic cancer therapies. AREAS COVERED: Previous studies have indicated various mechanisms of drug resistance in pancreatic cancer, including changes in individual genes or signaling pathways, the influence of the tumor microenvironment, and the presence of highly resistant stem cells. This review summarizes recent advances in the mechanisms of drug resistance in pancreatic cancer and potential strategies to overcome this. EXPERT OPINION: Increasing drug delivery efficiency and decreasing drug resistance is the current aim in pancreatic cancer treatment, and will also benefit the treatment of other cancers. Understanding the molecular and cellular basis of drug resistance in pancreatic cancer will lead to the development of novel therapeutic strategies with the potential to sensitize pancreatic cancer to chemotherapy, and to increase the efficacy of current treatments in a wide variety of human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号