首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite its prevalence, the etiopathogenesis of craniosynostosis is poorly understood. To better understand the biomolecular events that occur when normal craniofacial growth development goes awry, we must first investigate the mechanisms of normal suture fusion. Murine models in which the posterior frontal (PF) suture undergoes programmed sutural fusion shortly after birth provide an ideal model to study these mechanisms. In previous studies, our group and others have shown that sutural fate (i.e., fusion vs. patency) is regulated by the dura mater (DM) directly underlying a cranial suture. These studies have led to the hypothesis that calvarial DM is regionally differentiated and that this differentiation guides the development of the overlying suture. To test this hypothesis, we evaluated the messenger RNA (mRNA) expression of osteogenic cytokines (transforming growth factor beta1 [TGF-beta1] and TGF-beta3) and bone-associated extracellular matrix (ECM) molecules (collagen I, collagen III, osteocalcin, and alkaline phosphatase) in freshly isolated, rat dural tissues associated with the PF (programmed to fuse) or sagittal (SAG; remains patent) sutures before histological evidence of sutural fusion (postnatal day 6 [N6]). In addition, osteocalcin protein expression and cellular proliferation were localized using immunohistochemical staining and 5-bromo-2'deoxyuridine (BrdU) incorporation, respectively. We showed that the expression of osteogenic cytokines and bone-associated ECM molecules is potently up-regulated in the DM associated with the PF suture. In addition, we showed that cellular proliferation in the DM associated with the fusing PF suture is significantly less than that found in the patent SAG suture just before the initiation of sutural fusion N6. Interestingly, no differences in cellular proliferation rates were noted in younger animals (embryonic day 18 [E18] and N2). To further analyze regional differentiation of cranial suture-associated dural cells, we established dural cell cultures from fusing and patent rat cranial sutures in N6 rats and evaluated the expression of osteogenic cytokines (TGF-beta1 and fibroblast growth factor 2 [FGF-2]) and collagen I. In addition, we analyzed cellular production of proliferating cell nuclear antigen (PCNA). These studies confirmed our in vivo findings and showed that dural cell cultures derived from the fusing PF suture expressed significantly greater amounts of TGF-beta1, FGF-2, and collagen I. In addition, similar to our in vivo findings, we showed that PF suture-derived dural cells produced significantly less PCNA than SAG suture-derived dural cells. Finally, coculture of dural cells with fetal rat calvarial osteoblastic cells (FRCs) revealed a statistically significant increase in proliferation (*p < 0.001) in FRCs cocultured with SAG suture-derived dural cells as compared with FRCs cocultured alone or with PF suture-derived dural cells. Taken together, these data strongly support the hypothesis that the calvarial DM is regionally differentiated resulting in the up-regulation of osteogenic cytokines and bone ECM molecules in the dural tissues underlying fusing but not patent cranial sutures. Alterations in cytokine expression may govern osteoblastic differentiation and ECM molecule deposition, thus regulating sutural fate. Elucidation of the biomolecular events that occur before normal cranial suture fusion in the rat may increase our understanding of the events that lead to premature cranial suture fusion.  相似文献   

2.
Skull growth after premature fusion of a single suture was described by Virchow in 1851. He observed that growth was restricted in a plane perpendicular to a fused suture. However, he failed to predict the compensatory growth patterns that produce many of the deformities recognized as features of individual craniosynostosis syndromes. The deformities resulting from premature closure of a coronal, sagittal, metopic, or lambdoid suture can be predicted by the following observations: (1) cranial vault bones that are prematurely fused act as a single bone plate with decreased growth potential; (2) asymmetrical bone deposition occurs mainly at perimeter sutures, with increased bone deposition directed away from the bone plate; (3) sutures adjacent to the stenotic suture compensate in growth more than those sutures not contiguous with the closed suture; and (4) enhanced bone deposition occurs along both sides of a nonperimeter suture that is a continuation of the prematurely closed suture. These four rules were derived by critically examining the clinical deformities observed with each form of craniosynostosis. These rules assume that cranial sutures have the capacity to compensate by depositing bone asymmetrically along their edges. Unequal growth patterns have been demonstrated in the frontonasal suture of rabbits by Selman and Sarnat. In addition, unequal bone deposition has also been demonstrated along the parieto-interparietal suture in albino rats by Baer. Human studies to determine if asymmetrical bone deposition actively occurs along cranial vault sutures in response to a stenotic suture have not been performed, however. It is also unclear whether these four guidelines apply to cranial base abnormalities observed with craniosynostosis. As new radiologic techniques develop to define the configuration of the skull in intricate detail, a skull pattern of growth explaining the pathogenesis of all deformities created by premature fusion of a cranial vault suture may become apparent.  相似文献   

3.
Craniosynostosis, the premature fusion of the skull bones at the sutures, represents a disruption to the coordinated growth and development of the expanding brain and calvarial vault and is the second most common birth defect that affects the craniofacial complex. Mutations in the human homeobox-containing gene, Msx2, have been shown to cause Boston type craniosynostosis, and we have shown that overexpression of Msx2 leads to craniosynostosis in mice. Activating mutations in fibroblast growth factor (FGF) receptors are thought to cause craniosynostosis in Crouzon, Apert, Jackson-Weiss, Beare-Stevenson, and Muenke syndromes. To mimic activated signaling by mutated FGF receptors, we used heparin acrylic beads to deliver FGF ligands to mouse calvaria and demonstrated increased Msx2, Runx2, Bsp, and Osteocalcin gene expression, decreased cell proliferation, and suture obliteration and fusion. FGF2 elicited the greatest increase in Msx2 expression, and FGF1 was most likely to cause suture obliteration and fusion. Of the three sutures studied, the coronal suture exhibited the greatest increase in Msx2 expression and was the most likely to undergo obliteration and fusion. These results are intriguing because the coronal suture is the most commonly affected suture in syndromic craniosynostosis. These results suggest that Msx2 is a downstream target of FGF receptor signaling and that increased FGF signaling leads to osteogenic differentiation by sutural mesenchyme in mouse calvaria. These results are consistent with the hypotheses that increased Msx2 expression and activated signaling by mutated FGF receptors lead to craniosynostosis.  相似文献   

4.
IntroductionSome metabolic bone disorders may result in the premature closure of one or more calvarial sutures during childhood, potentially leading to a cranioencephalic disproportion. The aim of this paper is to review the characteristics and consequences of craniosynostosis associated with metabolic disorder.Material and methodsA review of the literature on metabolic forms of craniosynostosis was performed.ResultsThe most common forms of craniosynostosis associated with metabolic bone disorder were isolated sagittal suture fusion with or without scaphocephaly, and sagittal suture fusion associated with coronal suture fusion (oxycephaly) or also with lambdoid suture fusion (pansynostosis). Synostosis may be well-tolerated, but in some subjects results in neurodevelopmental and functional impairment that is sometimes severe.ConclusionThe impact of metabolic synostosis is very variable, depending on the specific underlying metabolic disease, with a large spectrum of morphological and functional consequences. Diagnosis should be early and management should be carried out by a multidisciplinary team with expertise in both rare skeletal disorders and craniosynostosis. The impact of emergent medical therapies recently developed for some of these diseases will be assessed by systematic coherent follow-up of international registries.  相似文献   

5.
《BONE》2013,56(2):367-376
From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis.  相似文献   

6.
Skull growth after single suture closure was described in 1851 by Virchow, who noted that growth in the plane perpendicular to a fused suture was restricted. However, this observation failed to predict compensatory growth patterns that produce many of the deformities recognized as features of individual syndromes. The deformities resulting from premature closure of a coronal, sagittal, metopic, or lambdoid suture can be predicted on the basis of the following observations: 1) cranial vault bones that are prematurely fused secondary to single suture closure act as a single bone plate with decreased growth potential; 2) asymmetrical bone deposition occurs mainly at perimeter sutures, with increased bone deposition directed away from the bone plate; 3) sutures adjacent to the prematurely fused suture compensate in growth more than those sutures not contiguous with the closed suture; and 4) enhanced symmetrical bone deposition occurs along both sides of a non-perimeter suture that is a continuation of the prematurely closed suture. These observations regarding growth in craniosynostosis are illustrated with clinical material in this report.  相似文献   

7.
8.
9.
Yin L  Du X  Li C  Xu X  Chen Z  Su N  Zhao L  Qi H  Li F  Xue J  Yang J  Jin M  Deng C  Chen L 《BONE》2008,42(4):631-643
Apert syndrome is one of the most severe craniosynostosis that is mainly caused by either a Ser252Trp(S252W) or Pro253Arg(P253R) mutation in fibroblast growth factor receptor 2 (FGFR2). As an autosomal dominant disorder, Apert syndrome is mainly characterized by skull malformation resulting from premature fusion of craniofacial sutures, as well as syndactyly, etc. A P253R mutation of FGFR2 results in nearly one-thirds of the cases of Apert syndrome. The pathogenesis of Apert syndrome resulting from P253R mutation of FGFR2 is still not fully understood. Here we reported a knock-in mouse model carrying P253R mutation in Fgfr2. The mutant mice exhibit smaller body size and brachycephaly. Analysis of the mutant skulls and long bones revealed premature fusion of coronal suture, shortened cranial base and growth plates of long bones. In vitro organ culture studies further revealed that, compared with wild-type littermates, the mutant mice have prematurely fused coronal sutures and retarded long bone growth. Treatment of the cultured calvaria and femur with PD98059, an Erk1/2 inhibitor, resulted in partially alleviated coronal suture fusion and growth retardation of femur respectively. Our data indicated that the P253R mutation in Fgfr2 directly affect intramembranous and endochondral ossification, which resulted in the premature closure of coronal sutures and growth retardation of long bones and cranial base. And the Erk1/2 signaling pathway partially mediated the effects of P253R mutation of Fgfr2 on cranial sutures and long bones.  相似文献   

10.
We studied the cellular function of Nell-1, a craniosynostosis-related gene, in craniofacial development. Nell-1 modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure. INTRODUCTION: Craniosynostosis (CS), one of the most common congenital craniofacial deformities, is the premature closure of cranial sutures. Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with CS. Nell-1 overexpression induced calvarial overgrowth and resulted in premature suture closure in a rodent model. On a cellular level, Nell-1 is suggested to promote osteoblast differentiation. MATERIALS AND METHODS: Different levels of Nell-1 were introduced into osteoblastic cells by viral infection and recombinant protein. Apoptosis and gene expression assays were performed. Mice overexpressing Nell-1 were examined for apoptosis. RESULTS: In this report, we further showed that overexpression of Nell-1 induced apoptosis along with modulation of apoptosis-related genes. The induction of apoptosis by Nell-1 was observed only in osteoblastic cells and not in NIH3T3 or primary fibroblasts. The CS mouse model overexpressing Nell-1 showed increased levels of apoptosis in the calvaria. CONCLUSION: We show that Nell-1 expression modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure.  相似文献   

11.
Craniosynostosis, premature fusion of the skull bones at the sutures, is the second most common human birth defect in the skull. Raman microspectroscopy was used to examine the composition, relative amounts, and locations of the mineral and matrix produced in mouse skulls undergoing force-induced craniosynostosis. Raman imaging revealed decreased relative mineral content in skulls undergoing craniosynostosis compared with unloaded specimens. INTRODUCTION: Raman microspectroscopy, a nondestructive vibrational spectroscopic technique, was used to examine the composition, relative amounts, and locations of the mineral and matrix produced in mouse skulls undergoing force-induced craniosynostosis. Craniosynostosis, premature fusion of the skull bones at the sutures, is the second most common birth defect in the face and skull. The calvaria, or flat bones that comprise the top of the skull, are most often affected, and craniosynostosis is a feature of over 100 human syndromes and conditions. MATERIALS AND METHODS: Raman images of the suture, the tips immediately adjacent to the suture (osteogenic fronts), and mature parietal bones of loaded and unloaded calvaria were acquired. Images were acquired at 2.6 x 2.6 microm spatial resolution and ranged in a field of view from 180 x 210 microm to 180 x 325 microm. RESULTS AND CONCLUSIONS: This study found that osteogenic fronts subjected to uniaxial compression had decreased relative mineral content compared with unloaded osteogenic fronts, presumably because of new and incomplete mineral deposition. Increased matrix production in osteogenic fronts undergoing craniosynostosis was observed. Understanding how force affects the composition, relative amounts, and location of the mineral and matrix provides insight into musculoskeletal disease in general and craniosynostosis in particular. This is the first report in which Raman microspectroscopy was used to study musculoskeletal disease. These data show how Raman microspectroscopy can be used to study subtle changes that occur in disease.  相似文献   

12.
Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN‐193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad‐dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.  相似文献   

13.
Inhibition of bone formation after surgery to correct craniosynostosis would alleviate the need for secondary surgeries and decrease morbidity and mortality. This study used a single dose of Noggin protein to prevent resynostosis and improve postoperative outcomes in a rabbit model of craniosynostosis. INTRODUCTION: Craniosynostosis is defined as the premature fusion of one or more of the cranial sutures, which causes secondary deformations of the cranial vault, cranial base, and brain. Current surgical intervention involves extirpation of the fused suture to allow unrestricted brain growth. However, resynostosis of the extirpated regions often occurs. Several bone morphogenetic proteins (BMPs), well-described inducers of ossification, are involved in bone healing. This study tested the hypothesis that a postoperative treatment with Noggin, an extracellular BMP inhibitor, can inhibit resynostosis in a rabbit model of human familial nonsyndromic craniosynostosis. MATERIALS AND METHODS: Thirty-one New Zealand white rabbits with bilateral coronal suture synostosis were divided into three groups: (1) suturectomy controls (n = 13); (2) suturectomy with BSA in a slow-resorbing collagen vehicle, (n = 8); and (3) suturectomy with Noggin in a slow-resorbing collagen vehicle (n = 10). At 10 days of age, a 3 x 15-mm coronal suturectomy was performed. The sites in groups 2 and 3 were immediately filled with BSA-loaded gel or Noggin-loaded gel, respectively. Serial 3D-CT scan reconstructions of the defects and standard radiographs were obtained at 10, 25, 42, and 84 days of age, and the sutures were harvested for histological analysis. RESULTS: Radiographic analysis revealed that Noggin-treated animals had significantly greater coronal suture marker separation by 25 days and significantly greater craniofacial length at 84 days of age compared with controls. 3D-CT analysis revealed that Noggin treatment led to significantly greater defect areas through 84 days and to increased intracranial volumes at 84 days of age compared with other groups. Histological analysis supported CT data, showing that the untreated and BSA-treated groups had significant healing of the suturectomy site, whereas the Noggin-treated group had incomplete wound healing. CONCLUSIONS: These data support our hypothesis that inhibition of BMP activity using Noggin may prevent postoperative resynostosis in this rabbit model. These findings also suggest that Noggin therapy may have potential clinical use to prevent postoperative resynostosis in infants with craniosynostosis.  相似文献   

14.
The interrelationships among suture fusion, basicranial development, and subsequent resynostosis in syndromic craniosynostosis have yet to be examined. The objectives of this study were to determine the potential relationship between suture fusion and cranial base development in a model of syndromic craniosynostosis and to assess the effects of the syndrome on resynostosis following suturectomy. To do this, posterior frontal and coronal suture fusion, postnatal development of sphenooccipital synchondrosis, and resynostosis in Twist1(+/+) (WT) and Twist1(+/-) litter-matched mice (a model for Saethre-Chotzen syndrome) were quantified by evaluating μCT images with advanced image-processing algorithms. The coronal suture in Twist(+/-) mice developed, fused, and mineralized at a faster rate than that in normal littermates at postnatal days 6-30. Moreover, premature fusion of the coronal suture in Twist1(+/-) mice preceded alterations in cranial base development. Analysis of synchondrosis showed faster mineralization in Twist(+/-) mice at postnatal days 25-30. In a rapid resynostosis model, there was an inability to fuse both the midline posterior frontal suture and craniotomy defects in 21-day-old Twist(+/-) mice, despite having accelerated mineralization in the posterior frontal suture and defects. This study showed that dissimilarities between Twist1(+/+) and Twist1(+/-) mice are not limited to a fused coronal suture but include differences in fusion of other sutures, the regenerative capacity of the cranial vault, and the development of the cranial base.  相似文献   

15.
The flat bones of the skull (calvaria) develop by balanced cell proliferation and differentiation in the calvarial sutures and the bone tips. As the brain grows and the calvaria expand, cells within the sutures must remain undifferentiated to maintain suture patency, but osteoprogenitors also need to be recruited into the osteogenic fronts. The exact identity of calvarial osteoprogenitors is currently not known. We used immunomagnetic cell sorting to isolate Sca-1+ and Sca-1 cells from fetal mouse calvaria and determined their differentiation potential in in vitro differentiation asssays and in vivo subcutaneous transplantations. Cells within the Sca-1+ cell fraction have a higher adipogenic potential, whereas cells within the Sca-1 cell fraction have a higher osteogenic and chondrogenic potential. The Sca-1 fraction retains its chondrogenic potential after in vitro expansion but not its osteogenic potential. The Sca-1+ fraction does not retain its adipogenic potential after in vitro expansion. Subcutaneous transplantation resulted in islands of bone and cartilage in implants that had been seeded with Sca-1 cells. In conclusion, immunomagnetic cell sorting with Sca-1 antibodies can be used to separate a Sca-1+ cell fraction with adipogenic potential from a Sca-1 cell fraction with osteogenic and chondrogenic potential. Isolation of pure populations of calvarial adipoprogenitors, osteoprogenitors, and chondroprogenitors will be beneficial for cellular studies of calvarial development, adipogenesis, osteogenesis, and chondrogenesis. Calvaria-derived osteogenic cell populations may be useful in craniofacial tissue regeneration and repair.  相似文献   

16.
To understand early mineralization events, we studied living murine calvarial tissue by Raman spectroscopy using fibroblast growth factor 2 (FGF2)-soaked porous beads. We detected increased levels of a transient phase resembling octacalcium phosphate in sutures undergoing premature suture closure. INTRODUCTION: Several calcium phosphates have been postulated as the earliest inorganic precursors to bone mineral. They are unstable and have not been previously detected in tissue specimens. Whether the same intermediates are formed in sutures undergoing premature closure is also unknown. METHODS: Six coronal suture tissue specimens from fetal day 18.5 B6CBA F1/J wild-type mice were studied. Three sutures specimens were treated with FGF2-soaked heparin acrylic beads to induce accelerated mineralization and premature suture closure. Three control specimens were treated with empty heparin acrylic beads. All sutures were maintained as organ cultures to permit repeated spectral analyses at 12-24 h intervals over a 72-h period. RESULTS: During the first 24 h, the spectra contained bands of octacalcium phosphate (OCP) or an OCP-like mineral. The main phosphorus-oxygen stretch was at 955 cm(-1), instead of the 957-959 cm(-1) seen in bone mineral, and there was an additional band at 1010-1014 cm(-1), as expected for OCP. A broad band was found at 945 cm(-1), characteristic of a highly disordered or amorphous calcium phosphate. An increased amount of mineral was observed in FGF2-treated sutures, but no qualitative differences in Raman spectra were observed between experimental and control specimens. CONCLUSIONS: Inorganic mineral deposition proceeds through transient intermediates, including an OCP-like phase. Although this transient phase has been observed in purely inorganic model systems, this study is the first to report OCP or an OCP-like intermediate in living tissue. Raman microspectroscopy allows observation of this transient mineral and may allow observation of other precursors as well.  相似文献   

17.
为从骨生长量和生长方向两个方面探讨兔双侧冠状缝早闭后对颅骨骨生长发育的影响,用牙科釉质和剂固定2周龄幼兔双侧冠状缝,于冠状缝,鼻额缝和人字缝前后置入金属标记物,观察双侧冠状缝早闭后各骨缝及颅面长度,颅穹窿高度,长度和鼻骨长度变化情况,结果表明兔颅骨缝扩张性生长高峰期在2~8周龄,双侧冠状缝固定后,骨缝生长停止,鼻额缝补偿生长加快,4周解除固定带后,冠状缝在8周前出现补偿性生长高峰期,8周解除固定带  相似文献   

18.
为从骨生长量和生长方向两个方面探讨兔双侧冠状缝早闭后对颅面骨生长发育的影响,用牙科釉质粘和剂固定2周龄幼兔双侧冠状缝,于冠状缝、鼻额缝和人字缝前后置入金属标记物,观察双侧冠状缝早闭后各骨缝及颅面长度、颅穹窿高度、长度和鼻骨长度变化情况。结果表明兔颅骨缝扩张性生长高峰期在2~8周龄。双侧冠状缝固定后,骨缝生长停止,鼻额缝补偿性生长加快。4周解除固定带后,冠状缝在8周前出现补偿性生长高峰期,8周解除固定带无补偿性生长高峰出现。另外鼻骨长度增加并向下移位,颅穹隆长度和颅面长度缩短。提示临床手术矫正颅骨畸形时,除考虑到手术年龄的安全性外,必须强调早期手术的必要性。  相似文献   

19.
Hunenko O  Karmacharya J  Ong G  Kirschner RE 《Annals of plastic surgery》2001,46(5):546-53; discussion 553-4
Although the etiology of nonsyndromic forms of craniosynostosis remains uncertain, recent experiments from our laboratory have demonstrated that fetal head constraint induces cranial suture fusion in mice through a process associated with altered patterns of transforming growth factor beta (TGF-beta) isoform expression. Other recent studies have highlighted the role of secreted signaling molecules, including members of the TGF-beta superfamily and the fibroblast growth factors (FGFs), as well as their receptors, in regulating suture development and fusion. The purpose of these experiments was to examine the potential role of TGF-beta receptors and FGF receptor 2 (FGFR2) in nonsyndromic craniosynostosis by determining their temporospatial patterns of expression during development complicated by intrauterine head constraint. This study consisted of two groups of C57BI/6J mice: an experimental group subjected to intrauterine constraint and a control unconstrained group. Fetal head constraint was induced by performing uterine cerclage on day 17.5 of gestation and allowing intrauterine fetal growth to continue 24 and 48 hours beyond the normal gestational period. Control animals underwent hysterotomy on day 17.5 and the nonconstrained pups were allowed to continue intra-abdominal fetal growth 48 hours beyond normal gestation. Expression of TGF-beta receptor types I and II, and FGFR2 in the calvarial tissue was determined by immunohistochemical analysis. In the unconstrained control animals, there was minimal immunoreactivity for both TGF-beta receptors and FGFR2 within the coronal suture. After 24 hours of constraint, however, there was a marked increase in immunoreactivity of TGF-beta receptors and FGFR2 in the osteoblasts along the osteogenic fronts and in the dural cells. After 48 hours, there was continued expression of both type I and type II receptors and FGFR2 within the midsutural mesenchyme of the coronal suture, in the osteoblasts, and in the dura. The authors demonstrated substantial upregulation of TGF-beta receptor types I and II and FGFR2 in coronal sutures subjected to in utero constraint. These results suggest an important role for TGF-beta/TGF-beta receptor, and FGF/FGFR signaling in the pathogenesis of constraint-induced craniosynostosis.  相似文献   

20.
Hypophosphatasia (HPP) is an inborn-error-of-metabolism disorder characterized by deficient bone and tooth mineralization due to loss-of function mutations in the gene (Alpl) encoding tissue-nonspecific alkaline phosphatase (TNAP). Alpl−/− mice exhibit many characteristics seen in infantile HPP including long bone and tooth defects, vitamin B6 responsive seizures and craniosynostosis. Previous reports demonstrated that a mineral-targeted form of TNAP rescues long bone, vertebral and tooth mineralization defects in Alpl−/− mice. Here we report that enzyme replacement with mineral-targeted TNAP (asfotase-alfa) also prevents craniosynostosis (the premature fusion of cranial bones) and additional craniofacial skeletal abnormalities in Alpl−/− mice. Craniosynostosis, cranial bone volume and density, and craniofacial shape abnormalities were assessed by microscopy, histology, digital caliper measurements and micro CT. We found that craniofacial shape defects, cranial bone mineralization and craniosynostosis were corrected in Alpl−/− mice injected daily subcutaneously starting at birth with recombinant enzyme. Analysis of Alpl−/− calvarial cells indicates that TNAP deficiency leads to aberrant osteoblastic gene expression and diminished proliferation. Some but not all of these cellular abnormalities were rescued by treatment with inorganic phosphate. These results confirm an essential role for TNAP in craniofacial skeletal development and demonstrate the efficacy of early postnatal mineral-targeted enzyme replacement for preventing craniofacial abnormalities including craniosynostosis in murine infantile HPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号