首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate their detailed relations after ischemia, the three steps were comprehensively evaluated, in the subventricular zone (SVZ) through the rostral migratory stream (RMS) to the olfactory bulb (OB), in adult gerbil brain after 5 minutes of transient forebrain ischemia. Bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP) were used as markers for proliferation, migration, and differentiation, respectively. The number of BrdU-labeled cells that coexpressed PSA-NCAM and the size of PSA-NCAM-positive cell colony increased in the SVZ with a peak at 10 d after transient ischemia. In the RMS, the number of BrdU-labeled cells that coexpressed PSA-NCAM increased, with a delayed peak at 30 d, when the size of RMS itself became larger and the number of surrounding GFAP-positive cells increased. In the OB, BrdU + NeuN double positive cells were detected at 30 and 60 d. NeuN staining and terminal deoxynucleotidyl dUTP nick-end labeling staining showed no neuronal cell loss around the SVZ, and in the RMS and the OB after transient ischemia. These findings indicate that transient forebrain ischemia enhances neural stem cell proliferation in the SVZ without evident neuronal cell loss, and has potential neuronal precursor migration with activation of GFAP-positive cells through the RMS to the OB.  相似文献   

2.
Evidence of newly generated neurons in the human olfactory bulb   总被引:15,自引:0,他引:15  
The subventricular zone (SVZ) is known to be the major source of neural stem cells in the adult brain. In rodents and nonhuman primates, many neuroblasts generated in the SVZ migrate in chains along the rostral migratory stream (RMS) to populate the olfactory bulb (OB) with new granular and periglomerular interneurons. In order to know if such a phenomenon exists in the adult human brain, we applied single and double immunostaining procedures to olfactory bulbs obtained following brain necropsy in normal adult human subjects. Double immunofluorescence labelling with a confocal microscope served to visualize cells that express markers of proliferation and immature neuronal state as well as markers that are specific to olfactory interneurons. Newborn cells that express cell cycle proteins [Ki-67, proliferating cell nuclear antigen (PCNA)] were detected in the granular and glomerular layers (GLs) of the human olfactory bulb; these cells coexpressed markers of immature neuronal state, such as Doublecortin (DCX), NeuroD and Nestin. Numerous differentiating cells expressed molecular markers of early committed neurons [beta-tubulin class III (TuJ1)] and were also immunoreactive for glutamic acid decarboxylase (GAD), a marker of GABAergic neurons, or tyrosine hydroxylase (TH), a marker of dopaminergic neurons. Other early committed neurons expressed the calcium-binding proteins calretinin (CR) or parvalbumin (PV). These results provide strong evidence for the existence of adult neurogenesis in the human olfactory system. Despite its relatively small size compared to that in rodents and nonhuman primates, the olfactory bulb in humans appears to be populated, throughout life, by new granular and periglomerular neurons that express a wide variety of chemical phenotypes.  相似文献   

3.
4.
The postnatal subventricular zone (SVZ) is a niche for continuous neurogenesis in the adult brain and likely plays a fundamental role in self-repair responses in neurodegenerative conditions. Maintenance of the pool of neural stem cells within this area depends on cell-cell communication such as that provided by the Notch signaling pathway. Notch1 receptor mRNA has been found distributed in different areas of the postnatal brain including the SVZ. Although the identity of Notch1-expressing cells has been established in the majority of these areas, it is still unclear what cell types within the SVZ are expressing components of this pathway. Here we demonstrate that most of expression of Notch1 in the adult SVZ occurs in polysialylated neural cell adhesion molecule (PSA-NCAM)-positive neural precursors and in glial fibrillary acidic protein-positive SVZ astrocytes. Notch1 was also found in PSA-NCAM-positive neuroblasts located within the rostral migratory stream (RMS) but much less in those that have reached the olfactory bulb. We show that two of the naturally occurring Notch1 activators, Jagged1 and Delta1, are also expressed in the SVZ and within the RMS in the adult mouse brain. Finally, using a model of cortical stab wound, we show that the astrogliogenic response of the SVZ to injury is accompanied by activation of the Notch pathway.  相似文献   

5.
Morphological bases for a role of nitric oxide in adult neurogenesis   总被引:9,自引:0,他引:9  
The subventricular zone (SVZ) of the adult mouse brain retains the capacity to generate new neurons from stem cells. The neuronal precursors migrate tangentially along the rostral migratory stream (RMS) towards the olfactory bulb, where they differentiate as periglomerular and granular interneurons. In this study, we have investigated whether nitric oxide (NO), a signaling molecule in the nervous system with a role in embryonic neurogenesis, may be produced in the proximity of the progenitor cells in the adult brain, as a prerequisite to proposing a functional role for NO in adult neurogenesis. Proliferating and immature precursor cells were identified by immunohistochemistry for bromo-deoxyuridine (BrdU) and PSA-NCAM, respectively, and nitrergic neurons by either NADPH-diaphorase staining or immunohistochemical detection of neuronal NO synthase (NOS I). Nitrergic neurons with long varicose processes were found in the SVZ, intermingled with chains of cells expressing PSA-NCAM or containing BrdU. Neurons with similar characteristics surrounded the RMS all along its caudo-rostral extension as far as the core of the olfactory bulb. No expression of NOS I by precursor cells was detected either in the proliferation or in the migration zones. Within the olfactory bulb, many small cells in the granular layer and around the glomeruli expressed either PSA-NCAM or NOS I and, in some cases, both markers. Colocalization was also found in a few isolated cells at a certain distance from the neurogenesis areas. The anatomical disposition shown indicates that NO may be released close enough to the neuronal progenitors to allow a functional influence of this messenger in adult neurogenesis.  相似文献   

6.
Platel JC  Gordon V  Heintz T  Bordey A 《Glia》2009,57(1):66-78
Study of the different stages of postnatal neurogenesis relies on using antigenic markers and transgenic mice. In particular, neural stem cells that express GFAP are studied using mice expressing GFP under the human GFAP promoter (GFAP-GFP). However, it remains unclear whether GFP and the commonly used progenitor markers label different cell populations in the neurogenic subventricular zone (SVZ) and its rostral extension into the olfactory bulb (i.e. rostral migratory stream, RMS). Here, we found that all GFP-fluorescent cells express GFAP, the radial glia marker brain lipid-binding protein (BLBP), Lewis X (LeX), and the astrocytic marker GLAST. Faint GFP fluorescence could be detected in a few cells expressing EGF receptors (EGFRs), Olig2, or S100, suggesting that GFAP-GFP cells generate these diverse cell types. GFP-fluorescent cells were slowly cycling, as shown by their long-term retention of BrdU, and less than 10% expressed the proliferative markers Ki67 and Mcm2. The majority of EGFR-expressing cells and Olig2-expressing cells were cycling. NG2 and EGFR identified distinct progenitor populations while Olig2 labeled a subset of EGFR-expressing cells. The entire neurogenic zone contained a mosaic of different cell types and was ensheathed by processes of GFAP-expressing cells and NG2 cells. Finally, using time-lapse imaging in acute slices, we show that GFP-fluorescent cells are stationary within the SVZ. Our findings collectively highlight the cellular mosaic of the neurogenic niche, show that the slowly-cycling GFAP-expressing cells are stationary and generate distinct intermediate progenitors.  相似文献   

7.
Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult‐born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin‐tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ‐olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult‐born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin‐tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics. J. Comp. Neurol. 514:567–582, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2(+) nestin(+) neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and gamma-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases.  相似文献   

11.
In the brain of adult rodents, young neurons arising from the subventricular zone (SVZ) of the lateral ventricle migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb. The aim of this study was to determine whether surgical lesions placed through the RMS could affect the rostral migration of these newly formed neurons. Confocal and electron microscopy were used to characterize their anatomical organization within the intact and lesioned forebrains. As soon as 7 days and up to 45 days after placing a surgical lesion through the proximal portions of the RMS, numerous cells immunostained for polysialylated neural cell adhesion molecule (PSA-NCAM) were detected both (1) throughout the lesional cavity extending from the cortex to the anterior commissura, and (2) within the tissue located caudal to the lesion. In both regions, these PSA-NCAM-immunostained cells were labeled for neuronal markers but were negative for glial fibrillary acidic protein (GFAP). After administration of the proliferation marker bromodeoxyuridine (BrdU), nuclear labeling was associated with cells immunostained for PSA-NCAM but GFAP-negative, that accumulated within the lesional cavity and in the tissue caudal to the lesion. For the longest postlesional delays, a number of the PSA-NCAM-immunostained neurons located in various portions of the lesional cavity exhibited intense immunostaining for gamma-aminobutyric acid, whereas only a few of them exhibited faint immunostaining for tyrosine hydroxylase. These data indicate that surgical lesions placed through the RMS of adult rats impede the migration toward the olfactory bulb of the neuroblasts arising from the SVZ, inducing their accumulation and their partial differentiation in forebrain regions caudal to the lesion.  相似文献   

12.
The fetal development of the anterior subventricular zone (SVZ) involves the transformation of radial glia into neural stem cells, in addition to the migration of neuroblasts from the SVZ towards different regions in the brain. In adult rodents this migration from the anterior SVZ is restricted to the olfactory bulb following a rostral migratory stream (RMS) formed by chains of migratory neuroblasts. Similar to rodents, an RMS has been suggested in the adult human brain, where the SVZ remains as an active proliferative region. Nevertheless, a human fetal RMS has not been described and the presence of migratory neuroblasts in the adult remains controversial. Here we describe the cytoarchitecture of the human SVZ at the lateral ganglionic eminence late in the second trimester of development (23-24 weeks postconception). Cell organization in this region is heterogeneous along the ventricular wall, with GFAP-positive cells aligned to the ventricle. These cells coexpress markers for radial glia like GFAPδ, nestin, and vimentin. We also show the presence of abundant migratory neuroblasts in the anterior horn SVZ forming structures here denominated cell throngs. Interestingly, a ventral extension of the lateral ventricle suggests the presence of a putative RMS. Nevertheless, in the olfactory bulb neuroblast throngs or chain-like structures were not observed. The lack of these structures closer to the olfactory bulb could indicate a destination for the migratory neuroblasts outside the olfactory bulb in the human brain.  相似文献   

13.
We report a considerable number of cells in the ventricular and the subventricular zones (SVZ) of newborn mice to stain positive for the PDGF beta-receptor (PDGFRB). Many of them also stained for nestin and/or GFAP but less frequently for the neuroblast marker doublecortin and for the mitotic marker Ki-67. The SVZ of mice with nestin-Cre conditional deletion of PDGFRB expressed the receptor only on blood vessels and was devoid of any morphological abnormality. PDGFRB(-/-) neurospheres showed a higher rate of apoptosis without any significant decrease in proliferation. They demonstrated reduced capacities of migration and neuronal differentiation in response to not only PDGF-BB but also bFGF. Furthermore, the PDGFR kinase inhibitor STI571 blocked the effects of bFGF in control neurosphere cultures. bFGF increased the activity of the PDGFRB promoter as well as the expression and phosphorylation of PDGFRB. These results suggest the presence of the signaling convergence between PDGF and FGF. PDGFRB is needed for survival, and the effects of bFGF in migration and neural differentiation of the cells may be potentiated by induction of PDGFRB.  相似文献   

14.
There is a disagreement in the literature concerning the degree of proliferation of cells in the walls of the third ventricle (3rdV) under normal conditions in the adult mammalian brain. To address this issue, we mapped the cells expressing the neural stem/progenitor cell marker nestin along the entire rostrocaudal extent of the 3rdV in adult male rats and observed a complex distribution. Abundant nestin was present in tanycyte cell bodies and processes and also was observed in patches of ependymal cells as well as in isolated ependymal cells throughout the walls of the 3rdV. However, we observed very limited ependymal cell or tanycyte proliferation in normal adult rats as determined by bromodeoxyuridine (BrdU) incorporation or the expression of Ki‐67. Moreover, fewer than 13% of the cells that were BrdU‐positive (BrdU+) or Ki‐67‐positive (Ki‐67+) expressed nestin. These observations stand in contrast to those made in the subventricular zone of the lateral ventricle (SVZ) and subgranular zone of the hippocampal formation (SGZ), where cell proliferation measured by BrdU incorporation or Ki‐67 expression is observed frequently in cells that also express nestin. Thus, while ependymal cell or tanycyte cell proliferation can be promoted by the addition of mitogens, dietary modifications or other in vivo manipulations, the proliferation of ependymal cells and tanycytes in the walls of the 3rdV is very limited in the normal adult male rat brain.  相似文献   

15.
Nestin is a protein that is thought to be expressed in neural stem cells; however, there is a paucity of data on nestin expression in vivo, and little is known of the relationship between nestin and mitotically active cell populations in the subventricular zones (SVZ). In this study, the subventricular zone of the third ventricle contained a high proportion of cells that expressed nestin, while there were significantly fewer cells that expressed nestin in the SVZ of the lateral ventricles. In contrast, bromodeoxyuridine (BrdU) immunoreactivity was the diametric opposite, being higher in the SVZ of the lateral ventricle than in the SVZ of the third ventricle. Morphological and anatomical evidence suggests that nestin-expressing cells in these two areas may be different cell types. In a separate set of experiments, an acute localized lesion was induced adjacent to one of the ventricles. While the number of BrdU cells and Ki-67 cells in the SVZs increased with this manipulation, the number of nestin-expressing cells did not change significantly. These data indicate that the expression of nestin does not correlate with mitotic activity in cells of the SVZs under either normal or inflammatory conditions. It is hypothesized that nestin-expressing cells in the SVZs may give way to transit amplifying cells that in turn give way to immature neurons or glia. These transit-amplifying cells may have a much higher rate of mitosis than nestin-positive cells and may react to neural damage by increasing their rate of proliferation.  相似文献   

16.
In the adult rodent forebrain, astrocyte‐like neural stem cells reside within the subventricular zone (SVZ) and give rise to progenitors and neuroblasts, which then undergo chain migration along the rostral migratory stream (RMS) to the olfactory bulb, where they mature into fully functional interneurons. Neurogenesis also occurs in the adult human SVZ, where neural precursors similar to the rodent astrocyte‐like stem cell and neuroblast have been identified. A migratory pathway equivalent to the rodent RMS has also recently been described for the human forebrain. In the embryo, the guidance receptor neogenin and its ligands netrin‐1 and RGMa regulate important neurogenic processes, including differentiation and migration. We show in this study that neogenin is expressed on neural stem cells (B cells), progenitor cells (C cells), and neuroblasts (A cells) in the adult mouse SVZ and RMS. We also show that netrin‐1 and RGMa are ideally placed within the neurogenic niche to activate neogenin function. Moreover, we find that neogenin and RGMa are also present in the neurogenic regions of the human adult forebrain. We show that neogenin is localized to cells displaying stem cell (B cell)‐like characteristics within the adult human SVZ and RMS and that RGMa is expressed by the same or a closely apposed cell population. This study supports the hypothesis that, as in the embryo, neogenin regulates fundamental signalling pathways important for neurogenesis in the adult mouse and human forebrain. J. Comp. Neurol. 518:3237–3253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
A member of the tumor necrosis factor receptor superfamily (TNFRSF), TROY/TNFRSF19/TAJ, is highly expressed in the brain of adult mice. Northern blot analysis using mRNA taken from regions of the adult CNS showed the expression of TROY in all regions examined, including the olfactory bulb, cerebral cortex, striatum, and hippocampus. In situ hybridization and immunohistochemistry revealed that TROY mRNA and protein were strongly expressed in the rostral migratory stream (RMS) and subventricular zone (SVZ) of adult mice. In the adult SVZ, some glial fibrillary acidic protein (GFAP)-positive cells (type B cells) are thought to be multipotent neural stem cells. These type B cells divide slowly and generate epidermal growth factor receptor (EGFR)-positive transit-amplifying precursor cells (type C cells) in the presence of epidermal growth factor (EGF). Type C cells give rise to neuron-specific class III beta-tubulin (TuJ1)-positive neuroblasts (type A cells) that migrate to the olfactory bulb along the RMS. TROY-expressing cells were GFAP-positive, EGFR-positive, and TuJ1-negative in the adult SVZ. From these findings, TROY appears to be expressed in type B and type C cells, but not in type A cells, which was supported by immunoelectron microscopy. In addition, TROY was expressed in GFAP-positive astrocytes of the various regions, such as the cerebral cortex, striatum, and hippocampus. Thus, TROY was expressed in uncommitted precursor cells and astroglial lineage cells, suggesting that TROY plays some roles in the regulation of gliogenesis in the adult CNS.  相似文献   

18.
The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo . Taking advantage of the recombination characteristics of a nestin::CreER T2 allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER T2 -expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER T2 -expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER T2 -targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.  相似文献   

19.
Neurogenesis persists throughout life under normal and degenerative conditions. The adult subventricular zone (SVZ) generates neural stem cells capable of differentiating to neuroblasts and migrating to the site of injury in response to brain insults. In the present study, we investigated whether estradiol increases neurogenesis in the SVZ in an animal model of stroke to potentially promote the ability of the brain to undergo repair. Ovariectomized C57BL/6J mice were implanted with capsules containing either vehicle or 17beta-estradiol, and 1 week later they underwent experimental ischemia. We utilized double-label immunocytochemistry to identify the phenotype of newborn cells (5-bromo-2'-deoxyuridine-labeled) with various cellular markers; doublecortin and PSA-NCAM as the early neuronal marker, NeuN to identify mature neurons, and glial fibrillary acidic protein to identify astrocytes. We report that low physiological levels of estradiol treatment, which exert no effect in the uninjured state, significantly increase the number of newborn neurons in the SVZ following stroke injury. This effect of estradiol is limited to the dorsal region of the SVZ and is absent from the ventral SVZ. The proliferative actions of estradiol are confined to neuronal precursors and do not influence gliosis. Furthermore, we show that both estrogen receptors alpha and beta play pivotal functional roles, insofar as knocking out either of these receptors blocks the ability of estradiol to increase neurogenesis. These findings clearly demonstrate that estradiol stimulates neurogenesis in the adult SVZ, thus potentially facilitating the brain to remodel and repair after injury.  相似文献   

20.
Neural cell migration and differentiation may participate in neural repair after adult brain injury; however, the survival and differentiation of newly born cells after different brain lesions are poorly understood. We have examined the migration and fate of bromodeoxyuridine (BrdU)-labeled cells after a highly reproducible focal ischemic lesion restricted to the frontoparietal cortex in adult rats. Thermocoagulation of pial blood vessels induces a circumscribed degeneration of all cortical layers while sparing the corpus callosum and striatum and increases cell proliferation in the subventricular zone (SVZ) and rostral migratory stream (RMS) within 7 days. We now show that, although the rostral migration of the newly born SVZ cells and their differentiation into neurons in the olfactory bulb were not affected by the lesion, numerous cells expressing the neuroblast marker doublecortin migrated laterally in the striatum and corpus callosum 5 days postinjury. In addition to the SVZ, BrdU-labeled cells were seen in the striatum, in the corpus callosum, and around the lesion. One month later, BrdU-labeled cells in the corpus callosum expressed transferrin and the pi isoform of glutathione-S-transferase (GST-pi), markers of oligodendrocytes. Other BrdU+ cells expressed a marker of astrocytes, but none expressed neuronal markers, suggesting that new neurons do not form or survive under these conditions. Numerous BrdU-labeled cells were still observed in the SVZ and RMS. The data show that focal cortical ischemia does not lead to the long-term survival of new neurons in the striatum or cortex but induces long-term alterations in the SVZ and the production of new oligodendrocytes that may contribute to neural repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号