首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiple myeloma (MM) is a B-cell malignancy characterized by accumulation of monoclonal plasma cells in the bone marrow (BM). Despite recent advances in the treatment, MM represents an incurable disease for which development of new therapies is required. We report the antimyeloma effect of NVP-AEW541, a small molecule that belongs to the pyrrolo[2,3-d]pyrimidine class, identified as a selective inhibitor of the insulin-like growth factor-I receptor (IGF-IR) in vitro kinase activity. NVP-AEW541 had a potent cytotoxic effect on fresh cells and in a murine MM model. NVP-AEW541 partially abrogated the proliferative advantage conferred by the coculture with BM stromal cells and the presence of growth factors produced by the BM microenvironment. In addition, NVP-AEW541 potentiated the action of drugs, such as bortezomib, lenalidomide, dexamethasone or melphalan. Moreover the triple combination of NVP-AEW541, dexamethasone and bortezomib resulted in a significant increase in growth inhibition. Mechanistic studies indicated that NVP-AEW541 provoked a marked cell cycle blockade accompanied by pRb downregulation. Interestingly, NVP-AEW541 increased the levels of p27 associated with a reduction in the CDK2 activity. Finally, NVP-AEW541 induced cell death through caspase-dependent and -independent mechanisms. All these data, suggest the potential effect of IGF-IR kinase inhibitors as therapeutic agents for MM patients.  相似文献   

2.
Previous studies have shown that the multiple myeloma (MM) cell line and MM patient cells express high-affinity vascular endothelial growth factor (VEGF) receptor-1 or Fms-like tyrosine kinase-1 (Flt-1) but not VEGF receptor-2 or Flk-1/kinase insert domain-containing receptor (Flk-1/KDR) and that VEGF triggers MM cell proliferation through a mitogen-activated protein kinase (MAPK)-dependent pathway and migration through a protein kinase C (PKC)-dependent pathway. The present study evaluates the efficacy of the small molecule tyrosine-kinase inhibitor GW654652, which inhibits all 3 VEGF receptors with similar potency. We show that GW654652 acts directly on MM cells and in the bone marrow microenvironment. Specifically, GW654652 (1-10 microg/mL) inhibits, in a dose-dependent fashion, VEGF-triggered migrational activity and cell proliferation of MM cell lines that are sensitive and resistant to conventional therapy. As expected from our previous studies of VEGF-induced signaling and sequelae in MM cells, GW654652 blocked VEGF-induced Flt-1 phosphorylation and downstream activation of AKT-1 and MAPK-signaling cascades. Importantly, GW654652 also inhibits interleukin-6 and VEGF secretion and proliferation of MM cells induced by tumor cell binding to bone marrow (BM) stromal cells. The activity of a pan-VEGF receptor inhibitor against MM cells in the BM milieu, coupled with its lack of major toxicity in preclinical mouse models, provides the framework for clinical trials of this drug class to improve patient outcome in MM.  相似文献   

3.
4.
The AKT kinase is activated in multiple myeloma tumor cells.   总被引:13,自引:4,他引:9       下载免费PDF全文
Immunohistochemistry (IHC) was performed on archived bone marrow (BM) with a phosphospecific anti-AKT antibody. IHC on 26 BM biopsies from patients with multiple myeloma (MM) demonstrated phospho-AKT staining of malignant plasma cells in a cell membrane-specific pattern, whereas nonmalignant hematopoietic cells did not stain. Preabsorption of the antibody with phosphorylated AKT peptide, but not nonphosphorylated peptide, abrogated staining. Frequency of plasma cell staining in BMs of patients with stage I or smoldering MM was significantly less than that of stage III MM marrows. Plasma cells in 10 patients with monoclonal gammopathy of undetermined significance were not stained by the antibody. To investigate the significance of AKT activation, 2 cell lines initiated from cultures of primary MM cells were also studied. Both demonstrated constitutive AKT activation. Interruption of AKT activation and activity, achieved by either exposure to wortmannin or by ectopic expression of a dominant negative AKT mutant, resulted in inhibition of MM cell growth in vitro. These results indicate that activation of the AKT kinase is a characteristic of MM cells and suggest that AKT activity is important for MM cell expansion.  相似文献   

5.
Myeloma cells express the idiotype (Id)-specific antigen that may be targeted by Id vaccination. Six patients with stage I IgG myeloma were immunized with the autologous purified M component together with the adjuvant cytokines interleukin 12 (IL-12) alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF). The effect of Id vaccination on circulating clonal tumor B cells was monitored by a real-time allele-specific oligonucleotide polymerase chain reaction method. No other treatment was given. Reduction of blood tumor mass was observed in 4 of 6 patients, with one patient achieving a complete molecular remission in blood. In 3 of these 4 patients an Id-specific T-cell response was induced. In the remaining 2 patients with an unchanged level of blood tumor cells, one patient mounted a T-cell response, whereas the other did not. No significant change in the serum M protein level was noted. Id vaccination may target clonal B cells, suggesting that this strategy might be conducive to achieving tumor control. The clinical significance of these findings remains to be established.  相似文献   

6.
Inhibition of histone deacetylase (HDAC) is a promising mechanism for novel, anti‐myeloma agents. We investigated the effects of the novel HDAC inhibitor resminostat on multiple myeloma (MM) cells in vitro. Resminostat is a potent inhibitor of HDACs 1, 3 and 6 [50% inhibitory concentration (IC50) = 43–72 nmol/l] representing HDAC classes I and II and induces hyperacetylation of histone H4 in MM cells. Low micromolar concentrations of resminostat abrogated cell growth and strongly induced apoptosis (IC50 = 2·5–3 μmol/l in 3 out of 4 MM cell lines) in MM cell lines as well as primary MM cells. At 1 μmol/l, resminostat inhibited proliferation and induced G0/G1 cell cycle arrest in 3 out of 4 MM cell lines accompanied with decreased levels of cyclin D1, cdc25a, Cdk4 and pRb as well as upregulation of p21. Resminostat decreased phosphorylation of 4E‐BP1 and p70S6k indicating an interference with Akt pathway signalling. Treatment with resminostat resulted in increased protein levels of Bim and Bax and decreased levels of Bcl‐xL. Caspases 3, 8 and 9 were activated by resminostat. Furthermore, synergistic effects were observed for combinations of resminostat with melphalan and the proteasome inhibitors bortezomib and S‐2209. In conclusion, we have identified potent anti‐myeloma activity for this novel HDAC inhibitor.  相似文献   

7.
Angiogenesis governs the progression of multiple myeloma (MM). Circulating endothelial cells (CECs) contribute to angiogenesis and comprise mature ECs and endothelial progenitor cells (EPCs). The present study sought to characterize CECs and their relation to disease activity and therapeutic response in 31 consecutive patients with MM. CECs, identified as CD34(+)/CD146(+)/CD105(+)/CD11b(-) cells, were 6-fold higher in patients compared to controls and correlated positively with serum M protein and beta(2)-microglobulin. Circulating EPCs displayed late colony formation/outgrowth and capillary-like network formation on matrigel; these processes were inhibited after effective thalidomide treatment. Co-expression of vascular endothelial growth factor receptor-2 (KDR) and CD133 characterized EPCs in MM, and KDR mRNA elevations correlated with M protein levels. In vitro exposure of ECs to thalidomide or its derivative CC-5013 inhibited gene expression of the receptors for transforming growth factor-beta and thrombin. Thus, elevated levels of CECs and EPCs covary with disease activity and response to thalidomide, underscoring the angiogenic aspect of MM and suggesting that angioblastlike EPCs are a pathogenic biomarker and a rational treatment target in MM. The results also highlight the anti-angiogenic properties of thalidomide and CC-5013 and further elucidate possible mechanisms of their effectiveness against MM. (Blood. 2005;105:3286-3294).  相似文献   

8.
Circulating post-switch B cells have been proposed as proliferative and disseminating progenitors in multiple myeloma. It is unclear whether the class-switched antigen receptor expressed at the surface of these cells plays a role in their expansion. In this work, the signaling status of IgG B cell receptor (BCR) isolated from the lysates of peripheral blood lymphocytes of 32 patients with IgG multiple myeloma, at the time of diagnosis, was investigated by examining whether phosphorylation of BCR Igalpha and Igbeta signal transducer factors (co-receptors) or other signaling molecules was abnormal in these cells when compared with healthy controls. In IgG BCR of normal controls, weak phosphorylation of 56 and 61 kDa Src kinase-related proteins and unphosphorylated co-receptors were found. In myeloma, p56 and p61 kDa proteins, co-receptors, and other IgG BCR-associated proteins from the signal cascade were phosphorylated. Myeloma patients can be classified into subgroups by IgG BCR phosphorylation profiles which characteristically coordinated with the level of IgG paraprotein in serum and the stage of disease. There was a correlative trend between the extent of phosphorylation reduction and advanced stage of disease. Reduced phosphorylation was more pronounced with advanced stages of multiple myeloma.  相似文献   

9.
10.
A promising approach to the treatment of multiple myeloma (MM) involves agents that target not only the myeloma cells directly, but also the tumor microenvironment which promotes tumor cell growth, angiogenesis, and MM bone disease. Here we investigate the orally available multikinase inhibitor, regorafenib (BAY 73-4506), for its therapeutic efficacy in MM. Regorafenib is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b) as well as oncogenic (c-KIT, RET, FGFR, Raf) kinases. We show that regorafenib induces apoptosis in all MM cell lines at below clinically achievable concentrations. Regorafenib overcomes the growth advantage conferred by a stroma cell MM and an endothelial cell MM, co-culture systems, and abrogates growth factor-stimulated MEK, ERK, and AKT phosphorylation at nanomolar to micromolar concentrations. Moreover, it inhibits endothelial cell growth and tubule formation, abrogates both VEGF secretion and VEGF-induced MM cell migration, inhibits osteoclastogenesis, and shows synergistic cytotoxicity with dexamethasone, the immunomodulatory drug pomalidomide, and the p110δ inhibitor idelalisib. Most importantly, regorafenib significantly delays tumor growth in a xenograft mouse model of human MM. These results provide the rationale for further clinical evaluation of regorafenib, alone and in combination, in the treatment of MM.  相似文献   

11.
Interleukin-6 (IL-6) triggers multiple myeloma (MM) cell proliferation and protects against apoptosis by up-regulating myeloid cell leukemia 1 (Mcl-1). Vascular endothelial growth factor (VEGF) induces modest proliferation of MM cells and induces IL-6 secretion in a paracrine loop involving MM cells and bone marrow stromal cells. Using murine embryonic fibroblast cell lines as a model (Mcl-1(wt/wt) and Mcl-1(Delta/null) MEFs), we here demonstrate that deletion of Mcl-1 reduces fetal bovine serum (FBS)-, VEGF-, and IL-6-induced proliferation. We also show that VEGF up-regulates Mcl-1 expression in a time- and dose-dependent manner in 3 human MM cell lines and MM patient cells. Importantly, we demonstrate that the pan-VEGF inhibitor, GW654652, inhibits VEGF-induced up-regulation of Mcl-1 and, as with Mcl-1 siRNA, is associated with decreased proliferation and induction of apoptosis. Finally, we show that VEGF protects MM patient cells against FBS starvation-induced apoptosis. Our studies therefore demonstrate that VEGF-induced MM cell proliferation and survival are mediated via Mcl-1, providing the preclinical framework for novel therapeutics targeting Mcl-1 and/or VEGF to improve patient outcome in MM.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.  相似文献   

13.
The biologic mechanisms involved in the pathogenesis of multiple myeloma (MM) bone disease are not completely understood. Recent evidence suggests that T cells may regulate bone resorption through the cross-talk between the critical osteoclastogenetic factor, receptor activator of nuclear factor-kappaB ligand (RANKL), and interferon gamma (IFN-gamma) that strongly suppresses osteoclastogenesis. Using a coculture transwell system we found that human myeloma cell lines (HMCLs) increased the expression and secretion of RANKL in activated T lymphocytes and similarly purified MM cells stimulated RANKL production in autologous T lymphocytes. In addition, either anti-interleukin 6 (anti-IL-6) or anti-IL-7 antibody inhibited HMCL-induced RANKL overexpression. Consistently, we demonstrated that HMCLs and fresh MM cells express IL-7 mRNA and secrete IL-7 in the presence of IL-6 and that bone marrow (BM) IL-7 levels were significantly higher in patients with MM. Moreover, we found that the release of IFN-gamma by T lymphocytes was reduced in presence of both HMCLs and purified MM cells. Furthermore, in a stromal cell-free system, osteoclastogenesis was stimulated by conditioned medium of T cells cocultured with HMCLs and inhibited by recombinant human osteoprotegerin (OPG; 100 ng/mL to 1 microg/mL). Finally, RANKL mRNA was up-regulated in BM T lymphocytes of MM patients with severe osteolytic lesions, suggesting that T cells could be involved at least in part in MM-induced osteolysis through the RANKL overexpression.  相似文献   

14.
The vascular endothelial growth factor (VEGF) family has recently expanded by the identification and cloning of three additional members, namely VEGF-B, VEGF-C, and VEGF-D. In this study we demonstrate that VEGF-B binds selectively to VEGF receptor-1/Flt-1. This binding can be blocked by excess VEGF, indicating that the interaction sites on the receptor are at least partially overlapping. Mutating the putative VEGF receptor-1/Flt-1 binding determinants Asp63, Asp64, and Glu67 to alanine residues in VEGF-B reduced the affinity to VEGF receptor-1 but did not abolish binding. Mutational analysis of conserved cysteines contributing to VEGF-B dimer formation suggest a structural conservation with VEGF and platelet-derived growth factor. Proteolytic processing of the 60-kDa VEGF-B186 dimer results in a 34-kDa dimer containing the receptor-binding epitopes. The binding of VEGF-B to its receptor on endothelial cells leads to increased expression and activity of urokinase type plasminogen activator and plasminogen activator inhibitor 1, suggesting a role for VEGF-B in the regulation of extracellular matrix degradation, cell adhesion, and migration.  相似文献   

15.
In this study, we investigated the in vitro and in vivo efficacy of patupilone (epothilone B, EPO906), a novel nontaxane microtubule stabilizing agent, in treatment of multiple myeloma (MM). Patupilone directly inhibited growth and survival of MM cells, including those resistant to conventional chemotherapies, such as the taxane paclitaxel. Patupilone induced G2M arrest of MM cells, with subsequent apoptosis. Interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), 2 known growth and survival factors for MM, did not protect MM.1S cells against patupilone-induced cell death. Proliferation of MM cells induced by adherence to bone marrow stromal cells (BMSCs) was also inhibited by patupilone and was paralleled by down-regulation of vascular endothelial growth factor (VEGF) secretion. Importantly, stimulation of cells from patients with MM, either with IL-6 or by adherence to BMSCs, enhanced the anti-proliferative and proapoptotic effects of patupilone. Moreover, patupilone was effective against MM cell lines that overexpress the MDR1/P-glycoprotein multidrug efflux pump. In addition, patupilone was effective in slowing tumor growth and prolonging median survival of mice that received orthotopical transplants with MM tumor cells. Taken together, these preclinical findings suggest that patupilone may be a safe and effective drug in the treatment of MM, providing the framework for clinical studies to improve patient outcome in MM.  相似文献   

16.
Multiple myeloma (MM) is a haematologic malignancy with significant improvements in the overall survival over the last decade. However, patients still relapse and die due to a lack of treatment options. Ultimately, novel therapies with the potential for long term remissions are needed for patients with advanced MM. Research efforts for such immune therapies were not successful until recently when the first immunotherapies for MM were approved in 2015 and many more are under development. In this review, we focus on adoptive cell therapies including CAR T-cell and CAR NK-cell therapies for patients with MM. We will provide an update on clinical and translational advances with a focus on results from ongoing clinical trials with BCMA targeted cellular therapies and the development of other novel targets, changes in the manufacturing process, trials focusing on earlier lines of therapy and combinations with other therapies as well as off the shelf products.  相似文献   

17.
In multiple myeloma (MM) protein kinase C (PKC) signaling pathways have been implicated in cell proliferation, survival, and migration. Here we investigated the novel, orally available PKC-inhibitor enzastaurin for its anti-MM activity. Enzastaurin specifically inhibits phorbol ester-induced activation of PKC isoforms, as well as phosphorylation of downstream signaling molecules MARCKS and PKCmu. Importantly, it also inhibits PKC activation triggered by growth factors and cytokines secreted by bone marrow stromal cells (BMSCs), costimulation with fibronectin, vascular endothelial growth factor (VEGF), or interleukin-6 (IL-6), as well as MM patient serum. Consequently, enzastaurin inhibits proliferation, survival, and migration of MM cell lines and MM cells isolated from multidrug-resistant patients and overcomes MM-cell growth triggered by binding to BMSCs and endothelial cells. Importantly, strong synergistic cytotoxicity is observed when enzastaurin is combined with bortezomib and moderate synergistic or additive effects when combined with melphalan or lenalidomide. Finally, tumor growth, survival, and angiogenesis are abrogated by enzastaurin in an in vivo xenograft model of human MM. Our results therefore demonstrate in vitro and in vivo efficacy of the orally available PKC inhibitor enzastaurin in MM and strongly support its clinical evaluation, alone or in combination therapies, to improve outcome in patients with MM.  相似文献   

18.
19.
Bortezomib (PS-341), a selective inhibitor of proteasomes, induces apoptosis in multiple myeloma (MM) cells; however, prolonged drug exposure may result in cumulative toxicity and the development of chemoresistance. Here we show that combining PK-11195 (PK), an antagonist to mitochondrial peripheral benzodiazepine receptors (PBRs), with bortezomib triggers synergistic anti-MM activity even in doxorubicin-, melphalan-, thalidomide-, dexamethasone-, and bortezomib-resistant MM cells. No significant cytotoxicity was noted in normal lymphocytes. Low-dose combined PK and bortezomib treatment overcomes the growth, survival, and drug resistance conferred by interleukin-6 or insulin growth factor within the MM bone marrow milieu. The mechanism of PK + bortezomib-induced apoptosis includes: loss of mitochondrial membrane potential; superoxide generation; release of mitochondrial proteins cytochrome-c (cyto-c) and Smac; and activation of caspases-8/-9/-3. Furthermore, PK + bortezomib activates c-Jun NH2 terminal kinase (JNK), which translocates to mitochondria, thereby facilitating release of cyto-c and Smac from mitochondria to cytosol. Blocking JNK, by either dominant-negative mutant (DN-JNK) or cotreatment with a specific JNK inhibitor SP600125, abrogates both PK + bortezomib-induced release of cyto-c/Smac and induction of apoptosis. Together, these preclinical studies suggest that combining bortezomib with PK may enhance its clinical efficacy, reduce attendant toxicity, and overcome conventional and bortezomib resistance in patients with relapsed refractory MM.  相似文献   

20.
The new members of the tumour necrosis factor (TNF) receptor-ligand family, receptor activator of nuclear factor-kappaB ligand (RANKL) and its receptor RANK, play a crucial role in osteoclast differentiation and activation. An increased expression of RANKL and/or RANK may be involved in the excessive bone resorption observed in multiple myeloma (MM). We used immunohistochemistry to study RANK and RANKL expression in bone marrow (BM) biopsies obtained at diagnosis in 15 MM patients, six patients with monoclonal gammopathy of undetermined significance (MGUS) and 10 normal BM biopsies. Plasma cells were not labelled with anti-RANKL or anti-RANK antibodies. In all biopsies, RANKL was expressed in endosteal bone surface, around vessels and in cells characterized by cytoplasmic expansions. These last cells did not express CD45 and were vimentin positive, corresponding to bone marrow stromal cells. Numerous stromal cells expressed RANKL in MM and MGUS specimens, with a greater expression in MM than in MGUS. Very few cells were stained with anti-RANKL in normal BM specimens. With the anti-RANK antibody, small mononuclear cells in the bone microenvironment were positive and were identified as erythroblast cells. In conclusion, we showed that RANKL was expressed in reticular stromal cells, with a greater intensity in myeloma specimens. These results suggest that RANKL overexpressed by bone marrow stromal cells may contribute to the high rate of bone resorption observed in MM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号