首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The heterocyclic amines, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl- 6-phenylimidazo[4,5-b]pyridine (PhIP) are pyrolysis products formed when meat is cooked and are rodent mammary carcinogens. They are thought to be metabolically activated by N-hydroxylation, catalysed by cytochrome P450 (CYP), followed by O-acetylation catalysed by N- acetyltransferases. Primary cultures of human mammary epithelial cells (HMECs) prepared from up to 26 individuals for each compound, were treated with IQ, MeIQ, or PhIP (500 microM) or with N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) or N-hydroxy-2-amino- 3-methylimidazo[4,5-f]quinoline (N-OH-IQ) (20 microM) and the levels of adduct formation in their DNA analysed by 32P-post-labelling. In order to investigate whether pharmacogenetic polymorphisms influence DNA adduct formation, the NAT2 genotype of each individual was determined by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that distinguishes between the wild-type and four variant alleles. Presence of two variant alleles designates a slow NAT2 acetylator, whereas individuals with one or two wild-type alleles are designated fast NAT2 acetylators. Interindividual variations in total DNA adduct levels ranged for IQ from 0.64-63.1 DNA adducts per 10(8) nucleotides (mean 7.80), for MeIQ from 1.99-17.8 (mean 6.63), for PhIP from 0.13-4.0 (mean 0.96), for N-OH-PhIP from 6.32-497 (mean 176) and for N-OH-IQ from 0.92-30.6 (mean 9.24). The higher adduct levels observed in cells treated with the N-OH metabolites suggests that N- hydroxylation is the rate-limiting step in HMECs and this may be due to low CYP levels. In contrast, the Phase II reaction catalysed by N- acetyltransferases is probably the major step in the metabolic activation of heterocyclic amines that occurs in the breast. Higher mean levels of heterocyclic amine-DNA adduct formation were detected in the cells of NAT2 fast acetylators compared with slow acetylators, with mean adduct levels per 10(8) nucleotides following IQ treatment, of 12.74 and 3.57 respectively, following PhIP treatment, of 1.20 and 0.74, respectively, following MeIQ treatment, of 7.90 and 5.08, respectively and following N-OH-PhIP-treatment, of 243.1 and 130.0, respectively. However, due to the large variations in adduct levels, these differences in mean values were not statistically significant with the limited number of individuals studied. This appears to be the first pilot study to demonstrate interindividual variations in the metabolic activation of heterocyclic amines and their metabolic intermediates in primary cultures of HMECs in vitro.   相似文献   

2.
3.
4.
5.
Heterocyclic amine carcinogens such as 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) are present in diet and cigarette smoke. Bioactivation in humans includes N-hydroxylation catalyzed by cytochrome P4501A2 possibly followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A2 and NAT2 catalytic activities were undetectable in untransfected CHO cell lines. CYP1A2 catalytic activity levels did not differ significantly (P > 0.05) among the CYP1A2-transfected cell lines. Cells transfected with NAT2*4 had significantly higher levels of N-acetyltransferase (P = 0.0001) and N-hydroxy-PhIP O-acetyltransferase (P = 0.0170) catalytic activity than cells transfected with NAT2*5B. PhIP caused dose-dependent decreases in cell survival and significant (P < 0.001) increases in mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in all the CYP1A2-transfected cell lines. Transfection with NAT2*4 or NAT2*5B did not further increase hprt mutagenesis. PhIP-induced hprt mutant cDNAs were sequenced, and 80% of the mutations were single base substitutions at G:C base pairs. dG-C8-PhIP DNA adduct levels were dose-dependent in the order: untransfected < transfected with CYP1A2 < transfected with CYP1A2 and NAT2*5B < transfected with CYP1A2 and NAT2*4. Following incubation with 1.2 microM PhIP, DNA adduct levels were significantly (P < 0.05) higher in CHO cells transfected with CYP1A2/NAT2*4 versus CYP1A2/NAT2*5B. These results strongly support an activation role for CYP1A2 in PhIP-induced mutagenesis and DNA damage and suggest a modest effect of human NAT2 and its genetic polymorphism on PhIP DNA adduct levels.  相似文献   

6.
In order to elucidate whether mixed exposure to environmental carcinogens and caffeine increases the risk of cancer induction, we investigated the relationship between preneoplastic lesion development in the liver and colon and drug metabolizing enzyme induction and DNA adduct formation, in rats treated with a mixture of heterocyclic amines (HCAs) and caffeine. In Experiment 1, male F344 rats were administered 3 different HCAs, the food carcinogens, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in combinations of 2 or 3 at 50 ppm in the diet for 16 weeks. The numbers of hepatic glutathione-S-transferase P form positive (GST-P+) foci and colonic aberrant crypt foci (ACF) were greater in the IQ + MeIQx group than expected from simple summation and increased levels of HCA-DNA adducts were noted. However, no summation was obtained when combined with PhIP, which rather caused inhibition. In Experiment 2, the effects of concurrent caffeine administration on the PhIP carcinogenicity were assessed. Caffeine at 1000 and 500 ppm in the drinking water for 2 weeks significantly increased levels of CYP1A2. Ten weeks concurrent administration of caffeine (1000 ppm) and PhIP (400 ppm) resulted in significant increase of colon ACFs and CYP1A2 expression. Thus, concurrent administration of IQ and MeIQx caused elevation of their carcinogenicity but other mixtures with PhIP did not enhance carcinogenicity. However, a non-carcinogen, caffeine, enhanced PhIP colon carcinogenesis, possibly due to induction of CYP1A2.  相似文献   

7.
The heterocyclic amines 2-amino-3-methylimidazo[4,5-f]quinoline(IQ) and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP)are carcinogens that form DNA adducts. In the present study,we used the 32P-postlabeling method to measure the levels ofIQ and PhIP adducts in hepatic nuclear and mitochondrial DNAof Fischer-344 rats given a single dose (100 mg/kg, p.o.) or10 doses of either carcinogen. After a single dose of IQ, adductlevels were > 2-fold higher in hepatic nuclear than in mitochondrialDNA; however, after repeated IQ exposure, the levels of adductsin nuclear and mitochondrial DNA were not significantly different.In contrast, after a single dose of PhIP, there were no significantdifferences in adduct levels in nuclear and mitochondrial DNA;however, after multiple doses of PhIP, adduct levels were significantlyhigher in mitochondrial DNA than in nuclear DNA. The percentagesof individual IQ or PhIP adducts were different between nuclearDNA and mitochondrial DNA, particularly after 10 doses. WithIQ, the C8-guanine adduct accounted for 72% of the total IQadduct levels in nuclear DNA but only 40% of total adduct levelsin mitochondrial DNA. After 10 doses of PhIP, the C8-guanineadduct accounted for 48% and 15% of total adduct levels in nuclearDNA and mitochondrial DNA respectively. In addition, the percentageof an uncharacterized PhIP adduct was 14% In nuclear DNA but< 1% in mitochondrial DNA. The percentages of individualadducts were approximately the same 3, 24, 120 and 240 h aftera single dose of either compound, though total IQ and PhIP adductlevels appeared to decline over time In both organelles. Thesignificance of IQ and PhIP mitochondrial DNA adduction andthe influence of distinct heterocyclic amine adducts on cardnogenesismerit further investigation.  相似文献   

8.
2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), the most abundant heterocyclic amine (HCA) in cooked food, is a mammary carcinogen in female rats. In humans, consumption of well-done meat and PhIP intake have been associated with an increased risk of breast cancer, but PhIP-DNA adducts have not been analyzed in breast tissues from women having unknown exposure to HCAs. Using an immunohistochemistry (IHC) method, we measured PhIP-DNA adducts in normal breast tissues of 106 women having newly diagnosed breast cancer in comparison with those of 49 women undergoing reduction mammoplasty. The IHC method was first validated in MCF-7 cells treated with different doses of N-hydroxy-PhIP. We detected significant dose-response relationship and correlation (r=0.94) between the levels of PhIP-DNA adducts detected by IHC and 32P-postlabeling. Using IHC, PhIP-DNA adducts were detected in 82 and 71% of the normal breast tissue sections from the cancer and control patients respectively. The median (range) absorbance was 0.18 (0-0.57) and 0.08 (0-0.38) in the cancer and control patients, respectively (P<0.001). Using the median in the controls as a cutoff point, 71% of the cancer patients and 47% of the controls were distributed in the higher range (chi2=8.17; P=0.004). Logistic regression analysis demonstrated an OR of 4.03 (95% CI, 1.41-11.53) after adjusting for age and ethnicity (P=0.009). Stratified analyses did not find any significant effect of age, ethnicity, smoking, well-done meat consumption, dietary intake of PhIP, or polymorphisms of CYP1A1, CYP1B1, NAT2, and GSTM1 genes on the level of PhIP-DNA adducts. However, a potential interactive effect of well-done meat consumption and NAT2 genotype on the level of PhIP-DNA adducts was observed (P=0.047). This is the first study of detection of PhIP-DNA adducts in breast tissue samples obtained from women having unknown exposure to HCAs. These data strongly support the hypothesis that HCA exposure contributes to human breast cancer among genetically susceptible individuals.  相似文献   

9.
When mutagens extracted from the urine of two smokers of black tobacco were reacted with DNA in vitro in the presence of a metabolic activation system, several DNA adducts were detected by 32P-postlabelling analysis. Some of these adducts were also visible, but only faintly, on the autoradiogram for a non-smoker's urine. DNA adducts produced in vitro by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline or 2-amino-1-methyl-6-phenylimidazo[3,5-b]pyridine could not account for the adduct pattern produced by the urinary mutagens. However, three or four 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-related DNA adducts were present among the five or six adducts observed for smokers in the autoradiograms of urinary mutagen-adducted nucleotides. Mutagenicity testing combined with HPLC fractionation of urinary extracts also supported the postlabelling data which implicates PhIP as a mutagen in the urine of smokers of black tobacco.  相似文献   

10.
Epidemiology studies have indicated that certain dietary components, including well-cooked meat, are risk determinants for colon cancer. Cooked meat can contain significant quantities of heterocyclic aromatic amines (HCAs), which have been established as carcinogens in laboratory animals. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is usually the most mass-abundant HCA, with concentrations up to 480 ppb. We used accelerator mass spectrometry to establish whether DNA and protein adducts can be detected in humans exposed to a quantity of PhIP comparable with levels of exposure that occur in the diet. Five human volunteers were administered a dietary-relevant dose of [14C]PhIP (70-84 microg) 48-72 h before surgery for removal of colon tumors. Blood samples were collected at various time points, and albumin, hemoglobin, and WBC DNA were extracted for analysis by accelerator mass spectrometry. Tissue samples were collected during surgery and used to assess either tissue available doses of [14C]PhIP or adduct levels. The results of this study show: (a) PhIP is activated to a form that will bind to albumin, hemoglobin, and WBC DNA in peripheral blood. WBC DNA adducts were unstable and declined substantially over 24 h; (b) PhIP is bioavailable to the colon, with levels in normal tissue in the range 42-122 pg PhIP/g tissue; and (c) PhIP binds to both protein and DNA in the colon. DNA adduct levels in the normal tissue were 35-135 adducts/10(12) nucleotides, which was significantly lower than tumor tissue. The results of this study demonstrate that PhIP is bioavailable to the human colon following defined dietary-relevant doses and forms DNA and protein adducts.  相似文献   

11.
Heterocyclic aromatic amines (HAAs), formed during the cooking of foods, are known to induce tumours in rodent bioassays and may thus contribute to human cancer risk. We tested six HAAs in a morphological transformation assay and in three in vitro genotoxicity assays. The morphological transforming abilities of HAAs were tested, in the presence of rat-liver S9, in the C3H/M2 fibroblast cell line. Concentration levels of 50 microM 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 100 microM 2-amino-3,4,8-trimethylimidazo-[4,5-f]quinoxaline (4,8-DiMeIQx), 50 microM 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 100 microM 2-amino-9H-pyrido[2,3-b]indole (AalphaC), 100 microM 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and 15 microM 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced maximum transformation potencies of 5.5, 6.6, 6.3, 5.2, 7.3 and 9.2 transformed foci per 10(4) surviving cells, respectively. Bacterial mutagenic activity was determined in the presence of rat-liver S9 using the Salmonella typhimurium reverse-mutation assay employing strain YG1019. Mutagenic potencies of 3800 revertants (revs)/ng with 8-MeIQx, 2900 revs/ng with 4,8-DiMeIQx, 3480 revs/ng with IQ, 1.6 revs/ng with AalphaC, 2.9 revs/ng with MeAalphaC and 5 revs/ng with PhIP were observed. Clastogenic activity in vitro was analysed by the micronucleus assay in metabolically competent MCL-5 cells. Dose-dependent induction of micronuclei was observed for all HAAs tested with 1-5.4% of cells containing micronuclei at 10 ng/ml. Micronucleus induction was in the order 4,8-DiMeIQx > 8-MeIQx > IQ > MeAalphaC > PhIP > AalphaC. DNA strand-breaking activity in MCL-5 cells was measured by the alkaline single cell-gel (comet) assay. The lowest effect doses for significant increases (P < or = 0.0007, Mann-Whitney test) in comet tail length (microm) were 45.5 microg/ml (200 microM) for PhIP, 90.9 microg/ml (410-510 microM) for 4,8-DiMeIQx, IQ, MeAalphaC and AalphaC, and 454.5 microg/ml (2130 microM) for 8-MeIQx. It is not yet clear which of these assays most accurately reflects the genotoxic potential to humans of compounds of this class of environmental carcinogens.  相似文献   

12.
Epidemiologic evidence indicates that exposure to heterocyclic amines in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of heterocyclic amines, which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of heterocyclic amine bioactivation in humans, the most mass abundant heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers where administered a dietary relevant dose of [(14)C]PhIP 48 to 72 hours before surgery to remove colon tumors. Urine was collected for 24 hours after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All 10 subjects were phenotyped for cytochrome P4501A2 (CYP1A2), N-acetyltransferase 2, and sulfotransferase 1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N(2)-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N(2)-glucuronide had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N(2)-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.  相似文献   

13.
In humans, genetic variation and dietary factors may alter the biological effects of exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the major heterocyclic amines generated from cooking meats at high temperatures that has carcinogenic potential through the formation of DNA adducts. Previously, we reported grilled red meat consumption associated with PhIP-DNA adduct levels in human prostate. In this study, we expanded our investigation to estimate the associations between beverage consumption and PhIP-DNA adduct levels in prostate for 391 prostate cancer cases. Of the 15 beverages analyzed, red wine consumption had the strongest association with PhIP-DNA adduct levels showing an inverse correlation in both tumor (P = 0.006) and nontumor (P = 0.002) prostate cells. Red wine consumption was significantly lower in African American compared with white cases, but PhIP-DNA adduct levels in prostate did not vary by race. In African Americans compared with whites, however, associations between red wine consumption and PhIP-DNA adduct levels were not as strong as associations with specific (e.g., SULT1A1 and UGT1A10 genotypes) and nonspecific (e.g., African ancestry) genetic variation. In a multivariable model, the covariate for red wine consumption explained a comparable percentage (13%-16%) of the variation in PhIP-DNA adduct levels in prostate across the two racial groups, but the aforementioned genetic factors explained 33% of the PhIP-DNA adduct variation in African American cases, whereas only 19% of the PhIP-DNA adduct variation in whites. We conclude that red wine consumption may counteract biological effects of PhIP exposure in human prostate, but genetic factors may play an even larger role, particularly in African Americans.  相似文献   

14.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the major heterocyclic amine generated from cooking meats at high temperatures, and dietary exposures have been shown to induce prostate cancer in rats. PhIP derives its carcinogenic potential through the formation of PhIP-DNA adducts. The purpose of this study was to examine whether self-reported consumption and preparation doneness of grilled meats were associated with PhIP-DNA adduct levels in prostate epithelial cells. The study population consisted of 268 African-American and Caucasian men who underwent radical prostatectomy for prostate cancer. PhIP-DNA adducts in tumor and adjacent nontumor cells were measured using immunohistochemical methods, and dietary meat intake information was based on food frequency questionnaires. Data were analyzed using multivariate linear regression models. After adjusting for age at prostatectomy and race, grilled meat consumption (P = 0.002) was significantly associated with higher adduct levels in tumor cells, but this association seemed to be primarily due to consumption of grilled red meats (P = 0.001) as opposed to grilled white meat consumption (P = 0.15). Among the specific food items, grilled hamburger consumption had the most significant association with adduct level in tumor cells (P = 0.002). Similar trends in positive associations with grilled meat consumption and adduct levels were observed in nontumor cells, but none of these associations reached statistical significance. Our results suggest that dietary interventions targeted at lower consumption of grilled red meats may reduce prostate cancer risk via the PhIP prostate carcinogenic pathway.  相似文献   

15.
The formation of DNA adducts in human HepG2 cells and human hepatocytes exposed to 14C-labelled 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was examined using Accelerator Mass Spectrometry (AMS). PhIP generated DNA adducts in a linear dose-dependent manner between 100 pM and 20 micro M. Co-treatment with the dietary isothiocyanate, sulforaphane (SFN, 1-10 micro M), or the flavonoid, quercetin (5-20 micro M), significantly reduced the level of PhIP-DNA adducts in a dose-dependent manner. The degree of protection was dependent on PhIP concentration, i.e. after 100 pM PhIP exposure, SFN or quercetin reduced adduct levels to below the limit of detection (0.15 amol PhIP/ micro g DNA) but at higher PhIP exposure (10 nM and 1 micro M), the protection was 60 and 10%, respectively. The involvement of phase I, phase II and DNA repair enzymes in this protection against PhIP-DNA adduct formation was investigated using real-time RT-PCR and enzyme activity assays. In intact HepG2 cells, quercetin inhibited cytochrome P450 (CYP)1A2, the main phase I enzyme responsible for PhIP bioactivation. In contrast, SFN induced phase II detoxification enzymes, UDP-glucuronosyltransferase 1A1 and glutathione S-transferase A1 mRNA expression. SFN and quercetin showed no effect on DNA repair, neither in terms of the level of PhIP-DNA adducts, when cells were treated with phytochemicals after the carcinogen exposure, nor the regulation of mRNA expression of two DNA repair enzymes, apurinic endonuclease and DNA polymerase beta. This study indicates that dietary isothiocyanates and flavonoids modulate phase I and phase II enzyme expression, hence increasing the rate of detoxification of the dietary carcinogen PhIP in human HepG2 cells but do not affect the rate of PhIP-DNA adduct repair. The formation of PhIP-DNA adducts in human hepatocytes was also dose-dependent with PhIP-concentration and the levels of protection by SFN or quercetin were up to 60% after 10 nM PhIP treatment, but showed large inter-individual variation with no observed protection in some individuals.  相似文献   

16.
17.
Some epidemiological investigations have revealed that frequent consumption of well-done cooked meats and tobacco smoking are risk factors for breast cancer in women. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic aromatic amine that is formed in well-done cooked meat, and 4-aminobiphenyl (4-ABP) is an aromatic amine that arises in tobacco smoke and occurs as a contaminant in the atmosphere. Both compounds are rodent mammary carcinogens, and putative DNA adducts of PhIP and 4-ABP have been frequently detected, by immunohistochemistry (IHC) or (32)P-post-labeling methods, in mammary tissue of USA women. Because of these findings, PhIP and 4-ABP have been implicated as causal agents of human breast cancer. However, the biomarker data are controversial: both IHC and (32)P-post-labeling are non-selective screening methods and fail to provide confirmatory spectral data. Consequently, the identities of the lesions are equivocal. We employed a specific and sensitive liquid chromatography/mass spectrometry (MS) method, to screen tumor-adjacent normal mammary tissue for DNA adducts of PhIP and 4-ABP. Only 1 of 70 biopsy samples obtained from Minneapolis, Minnesota breast cancer patients contained a PhIP-DNA adduct. The level was three adducts per 10(9) nucleotides, a level that is 100-fold lower than the mean level of PhIP adducts reported by IHC or (32)P-post-labeling methods. The occurrence of 4-ABP-DNA adducts was nil in those same breast tissues. Our findings, derived from a specific mass spectrometry method, signify that PhIP and 4-ABP are not major DNA-damaging agents in mammary tissue of USA women and raise questions about the roles of these chemicals in breast cancer.  相似文献   

18.
The food-derived, heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is genotoxic and is carcinogenic in experimental animals. Studies on the role of PhIP in human diet-related cancer would be aided considerably by the availability of a readily applicable biomarker of the internal dose of the ultimate genotoxic species. PhIP has been shown to adduct primarily at C-8 of deoxyguanosine in DNA and so the DNA repair product N(2)-(2'-deoxyguanosin-8-yl)PhIP is a potential biomarker of DNA adduction and repair after exposure to PhIP. An assay for N(2)-(2'-deoxyguanosin-8-yl)PhIP in urine has been developed based on liquid chromatography mass spectrometry, using a deuterated analogue of the nucleoside as an internal standard and an antibody-mediated extraction procedure. Polyclonal antibodies were raised against the PhIP-nucleotide, PhIP-nucleoside and PhIP-guanine base adducts conjugated to keyhole limpet haemocyanin. Following their evaluation, the immobilized PhIP nucleotide antibody was used for the extraction of N(2)-(2'-deoxyguanosin-8-yl)PhIP from urine. The limit of detection of the assay was 125 pg and the limit of quantification 200 pg for a 50 ml human urine sample. Following oral administration of PhIP (20 mg/kg body wt/day) to rats for 6 days, N(2)-(2'-deoxyguanosin-8-yl) PhIP was readily detected in the urine, reaching steady state over 3 days. This is the first direct demonstration of the urinary elimination of this adduct following exposure to parent amine. The half-life of the adduct with DNA was estimated to be approximately 20 h. The total amount of PhIP recovered in the urine as adduct was <0.5 x 10(-3)% of the dose administered. Levels of the PhIP adduct in urine collections from human subjects ingesting the amine (4.9 micro g) in cooked meat were below the limits of detection, indicating that humans are exposed to a bioactive dose of <3 x 10(-4) of that associated with a non-carcinogenic level in rats.  相似文献   

19.
Heterocyclic amines (HCAs) are formed when meat products such as beef, chicken, pork and fish are cooked at high temperatures. The most abundant HCA found in the human diet is 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP). PhIP causes mammary carcinomas in female rats and mice, and is associated with an increased risk of developing colon, breast, and prostate cancer in humans. PhIP is metabolized by cytochrome P-450s producing N-OH-PhIP. The N-OH-PhIP can be esterified by phase II enzymes forming an arylnitrenium ion that binds to DNA causing adducts. Furthermore, N-OH-PhIP may be reduced by cytochrome b5 reductase producing superoxide anions and hydroxyl radicals causing DNA strand breaks. Diallyl sulfide (DAS) has been shown to prevent cancer in several animal models, presumably by metabolic modulation. We hypothesize that PhIP produces reactive oxygen species causing DNA strand breaks and that DAS will inhibit the formation of PhIP induced DNA strand breaks. To test this hypothesis we treated normal breast epithelial (MCF-10A) cells with PhIP, DAS and a combination of PhIP and DAS. The detection of lipid peroxides was used as a surrogate for ROS. Lipid peroxides were detected using a PeroxiDetect kit (Sigma). PhIP increased the production of lipid peroxides and DAS decreased the PhIP-induced peroxidation by 47%. To determine if PhIP causes DNA strand breaks in MCF-10A cells, cells were treated for 3, 6, 9, and 24 h with PhIP (100 microM), DAS (100 microM) and a combination of PhIP (100 microM) and DAS (100 microM). DNA strand breaks were evaluated using the Comet assay. PhIP produced DNA strand breaks in a dose- and time-dependent fashion. We have shown that DAS inhibits PhIP-induced DNA strand breaks by inhibiting the production of reactive oxygen species. Therefore, we propose that DAS can prevent PhIP-induced breast cancer.  相似文献   

20.
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most abundant heterocyclic amine derived from food, possibly involved in human carcinogenesis. We evaluated the formation of PhIP-DNA adducts in lymphocytes from 76 incident colorectal cancer patients likely to be exposed to dietary PhIP. To address the role of the metabolic polymorphisms relevant to PhIP-DNA adduct formation, the patients were genotyped for common polymorphisms in the N-acetyltransferase (NAT1 and NAT2), sulfotransferase (SULT1A1) and glutathione S-transferase (GSTM1 and GSTA1) genes. PhIP released from adducted DNA after hydrolysis was quantitated by liquid chromatography-tandem mass spectrometry. Overall, adducts were 3.24 +/- 3.58/10(8) nucleotides (mean +/- SD); they were not related to sex, smoking habits or age, though levels were not significantly higher in smokers, young subjects and high meat consumers. High vegetable intake significantly reduced PhIP-DNA adducts (Mann-Whitney U, p = 0.044). Individuals with the GSTM1 null genotype showed colon cancer onset at earlier age (58.8 +/- 1.8 vs. 63.5 +/- 1.6 years; Mann-Whitney U, p = 0.047). None of the genetic polymorphisms studied significantly affected PhIP-DNA adducts. However, individuals carrying 2 mutated GSTA1 alleles and younger than the median age had higher adduct levels than homozygous wild-type and heterozygous ones (Kruskal-Wallis p = 0.0008). In conclusion, these preliminary data indicate that PhIP-DNA adducts are formed in people likely to be exposed to this carcinogen through the diet, suggesting this biomarker may be useful to detect human exposure and DNA damage. Overall, the genetic polymorphisms considered had limited effect on PhIP-DNA levels, but young people with lower detoxification capacity may form a subgroup particularly susceptible to dietary carcinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号