首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stimulation of the insulin and insulin-like growth factor I (IGF-I) receptor activates the phosphoinositide-3-kinase/Akt/mTOR pathway causing pleiotropic cellular effects including an mTOR-dependent loss in insulin receptor substrate-1 expression leading to feedback down-regulation of signaling through the pathway. In model systems, tumors exhibiting mutational activation of phosphoinositide-3-kinase/Akt kinase, a common event in cancers, are hypersensitive to mTOR inhibitors, including rapamycin. Despite the activity in model systems, in patients, mTOR inhibitors exhibit more modest antitumor activity. We now show that mTOR inhibition induces insulin receptor substrate-1 expression and abrogates feedback inhibition of the pathway, resulting in Akt activation both in cancer cell lines and in patient tumors treated with the rapamycin derivative, RAD001. IGF-I receptor inhibition prevents rapamycin-induced Akt activation and sensitizes tumor cells to inhibition of mTOR. In contrast, IGF-I reverses the antiproliferative effects of rapamycin in serum-free medium. The data suggest that feedback down-regulation of receptor tyrosine kinase signaling is a frequent event in tumor cells with constitutive mTOR activation. Reversal of this feedback loop by rapamycin may attenuate its therapeutic effects, whereas combination therapy that ablates mTOR function and prevents Akt activation may have improved antitumor activity.  相似文献   

3.
Estrogen receptor (ER) is a major therapeutic target for the treatment of breast cancer, because of the crucial role of estrogen signaling deregulation in the development and progression of breast cancer. In this study, we report the identification of a novel ERα binding compound, cryptotanshinone (CPT), by screening the CADD database. We also show that CPT effectively inhibits estrogen-induced ER transactivation and gene expression of ER target genes. Furthermore, we showed that CPT suppressed breast cancer cell growth mainly in an ERα dependent manner. Finally, we confirmed the potential therapeutic efficiency of CPT using xenograft experiments in vivo. Taken together, our results describe a novel mechanism for the anticancer activity of CPT and provide supporting evidence for its use as a potential therapeutic agent to treat patients with ERα positive breast cancer.  相似文献   

4.

Background:

In this report we investigated the combination of epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) pathway inhibition as a possible new therapeutic strategy for small cell lung cancer (SCLC).

Methods:

EGFR, p-AKT, p-ERK, p-mTOR and p-p70s6K protein expressions were studied by immunohistochemistry in 107 small cell lung carcinomas and correlated with clinicopathological parameters. Cells of SCLC were treated with erlotinib±RAD001 and analysed for cell viability, proliferation, autophagy, and pathway regulation.

Results:

Epidermal growth factor receptor, p-AKT, p-ERK, p-mTOR, and p-p70s6K were expressed in 37, 24, 13, 55 and 91% of the tumour specimens of all SCLC patients, respectively, and were not associated with disease-free or overall survival. The expression of EGFR was lower in neoadjuvant-treated patients (P=0.038); mTOR pathway activation was higher in the early stages of disease (P=0.048). Coexpression of EGFR/p-mTOR/p-p70s6K was observed in 28% of all patients . EGFR immunoreactivity was associated with p-ERK and p-mTOR expression (P=0.02 and P=0.0001); p-mTOR immunoreactivity was associated with p-p70s6K expression (P=0.001). Tumour cells comprised a functional EGFR, no activating mutations in exons 18–21, and resistance to RAD001 monotherapy. We found synergistic effects of erlotinib and RAD001 combination therapy on the molecular level, cell viability, proliferation and autophagy.

Conclusions:

The combined inhibition of EGFR/mTOR pathways could be a promising approach to treat SCLC.  相似文献   

5.
In order to understand how microRNAs (miRNAs) regulate breast cancer tumorigenesis, a miRNA expression microarray screening was performed using RNA from formalin-fixed paraffin-embedded (FFPE) breast tissues, which included benign (n = 13), ductal carcinoma in situ (DCIS) (n = 16), and invasive ductal carcinoma (IDC) (n = 15). Twenty-five differentially expressed miRNAs (P < 0.01) were identified, of which let-7 family miRNAs were down-regulated in human breast cancer tissues at stages of DCIS and IDC compared to benign stage. We further found that there was an inverse correlation between ER-α expression and several members of let-7 family in the FFPE tissues. Next, we performed bioinformatics analysis and found that let-7 miRNA sequences match sequence in the 3′-UTR of estrogen receptor alpha (ER-α), suggesting ER-α may be a target of let-7, which was further confirmed by a number of experimental assays, including luciferase assay, protein expression, and mRNA expression. Overexpression of let-7 miRNAs in ER-positive breast cancer MCF7 cell line negatively affected ER-α activity. As expected, dampening of the ER-α signaling by let-7 miRNAs inhibited cell proliferation, and subsequently triggered the cell apoptotic process in MCF7 cells. In conclusion, our findings indicate a new regulatory mechanism of let-7 miRNAs in ER-α mediated cellular malignant growth of breast cancer.  相似文献   

6.
RC-RNase exerts anti-cancer effects on many tumors. However, the mechanisms by which RC-RNase induces cytotoxicity in different tumor cells are unclear. Currently, estrogen receptor (ER)-positive and negative breast tumors are treated with RC-RNase. Our data demonstrate that RC-RNase induces cell death on ER-positive but not on ER-negative breast tumors. This study also shows that down-regulation of ER and Bcl-2 is found on RC-RNase-treated ER-positive breast tumors. Additionally, Bcl-2 overxpression can prevent ER-positive breast tumors from cell death treated with RC-RNase. In summary, this study demonstrates that RC-RNase-induced cell death of ER-positive breast tumors is through regulation of ER and Bcl-2.  相似文献   

7.
Liu GY  Shen KW  Shao ZM  Shen ZZ 《中华肿瘤杂志》2004,26(11):664-668
目的 探讨乳腺癌组织中雌激素受体α(ER α)的异质性表达与多种缺氧标志的关系。方法  5 1例经配体结合法证实ER阳性的乳腺癌患者 ,采用免疫组织化学染色的方法观察其ER α的异质性表达与多种缺氧标志的关系 ,同时观察体外缺氧环境对乳腺癌细胞系ER α表达的影响及其特异性。结果  4 9例乳腺癌为ER α阳性。无论乳腺导管内癌 (2 9例 )还是浸润性癌 (2 0例 ) ,ER α蛋白在邻近坏死灶的区域均下调 (P值分别≤ 0 .0 0 0 1) ;ER α的区域性下调还与缺氧诱导基因CA IX和Glut 1的表达有关 (P <0 .0 0 0 1)。缺氧可以直接诱导乳腺癌细胞系ER α蛋白和mRNA水平的下降 ,但其他一些应激因素 ,如低pH值、低糖及缺氧细胞的培养液等却无此作用。长时间、间歇性缺氧可以导致MCF 7细胞ER α表达的持久抑制。结论 乳腺癌ER α区域性的表达下降与缺氧有关 ,长时间、间歇性的缺氧可以持续性抑制ER α的表达。缺氧可能促使乳腺癌在进展过程中向ER α阴性的表型演变 ,并可能导致对内分泌治疗的耐药。  相似文献   

8.
Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy.  相似文献   

9.
10.
11.
Breast cancer presents as either estrogen receptor alpha (ERalpha) positive or negative, with ERalpha+ tumors responding to antiestrogen therapy and having a better prognosis. By themselves, mRNA expression signatures of estrogen regulation in ERalpha+ breast cancer cells do not account for the vast molecular differences observed between ERalpha+ and ERalpha- cancers. In ERalpha- tumors, overexpression of epidermal growth factor receptor (EGFR) or c-erbB-2, leading to increased growth factor signaling, is observed such that mitogen-activated protein (MAP) kinase (MAPK) is significantly hyperactivated compared with ERalpha+ breast cancer. In ERalpha+/progesterone receptor-positive, estrogen-dependent MCF-7 breast cancer cells, we stably overexpressed EGFR or constitutively active erbB-2, Raf, or MAP/extracellular signal-regulated kinase kinase, resulting in cell lines exhibiting hyperactivation of MAPK, estrogen-independent growth, and the reversible down-regulation of ERalpha expression. By global mRNA profiling, we found a "MAPK signature" of approximately 400 genes consistently up-regulated or down-regulated in each of the MAPK+ cell lines. In several independent profile data sets of human breast tumors, the in vitro MAPK signature was able to accurately distinguish ER+ from ER- tumors. In addition, our in vitro mRNA profile data revealed distinct mRNA signatures specific to either erbB-2 or EGFR activation. A subset of breast tumor profiles was found to share extensive similarities with either the erbB-2-specific or the EGFR-specific signatures. Our results confirm that increased MAPK activation causes loss of ERalpha expression and suggest that hyperactivation of MAPK plays a role in the generation of the ERalpha- phenotype in breast cancer. These MAPK+ cell lines are excellent models for investigating the underlying mechanisms behind the ERalpha- phenotype.  相似文献   

12.
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is a multifunctional transmembrane tyrosine kinase that has been implicated in neoplastic transformation. The tumorigenic potential of IGF-IR relies on its strong anti-apoptotic and mitogenic activity. The growth and survival signals of IGF-IR are mediated through multiple intracellular pathways, many of which emanate from insulin receptor substrate 1 (IRS-1). In hormone-dependent breast cancer cells, IGF-IR and IRS-1 are often co-expressed with the estrogen receptor alpha (ERalpha), and IGF-I and ER systems are engaged in a powerful functional cross-talk. Most notably, activation of ERalpha upregulates the expression of IRS-1, IGF-IR, and IGF-1, which results in amplification of IGF-I responses. Reciprocally, stimulation of IGF-IR increases the phosphorylation and activity of ERalpha. In contrast, in ERalpha-negative breast cancer cells and tumors, the levels of IGF-IR and IRS-1 are often decreased and IGF-I is non-mitogenic. Our data suggest that defective IGF-IR signaling in ERalpha-negative cells is related, at least in part, to improper activation of the IRS-1/PI-3K/Akt/GSK-3 pathway and lack of Rb1 phosphorylation. These defects are partially reversed by re-expression of ERalpha. Interestingly, some non-mitogenic IGF-I responses, such as migration and invasion are retained in the absence of ERalpha, suggesting that IGF-IR function in breast cancer cells might depend on the ERalpha status. The understanding of how ERalpha may dictate IGF-I responses will help in devising rational anti-IGF-IR strategies for breast cancer treatment.  相似文献   

13.
Obesity is considered a risk factor for many cancers, including breast cancer. Our laboratory has previously shown that leptin is mitogenic in many cancer cell lines, including breast. Information regarding the effects of high leptin levels on leptin receptor expression and signaling is lacking. The purpose of this study was to characterize leptin receptor expression in response to leptin in breast cancer cells. In addition, SOCS-3 expression (a leptin inducible inhibitor of leptin signaling), plus MAPK and PI3K signaling, were examined to determine their role in leptin-induced cell proliferation. Breast cancer cell lines, ZR75-1 and HTB-26, were treated with 0, 4, 40 or 80 ng/ml of leptin. Multiplex RT-PCR was performed to determine relative mRNA expression levels of the human short (huOB-Ra) or long (huOB-Rb) leptin receptor isoforms, or SOCS-3. MAPK and PI3K signaling was analyzed by phosphorylation of ERK and Akt, respectively, via Western blotting. Cell proliferation and inhibitor studies were analyzed by MTT assay. HTB-26 and ZR75-1 both expressed huOB-Ra, huOB-Rb and SOCS-3 mRNA; however, mRNA expression levels generally remained unchanged over time with leptin treatment. MAPK and PI3K pathways were activated in the presence of leptin over time. MAPK and PI3K inhibitors significantly blocked leptin-induced proliferation. Higher levels of circulating leptin contribute to breast cancer proliferation by activation of the MAPK and PI3K signaling pathways involved in cell growth and survival. The mitogenic effects of leptin are not a consequence of altered leptin receptor or SOCS-3 mRNA expression.  相似文献   

14.
Increased activity of SRC family kinases promotes tumor invasion and metastasis, and overexpression of the mitotic regulator Aurora kinase A (AURKA) drives tumor aneuploidy and chromosomal instability. These functions nominate SRC and AURKA as valuable therapeutic targets for cancer, and inhibitors for SRC and Aurora kinases are now being used in the clinic. In this study, we demonstrate potent synergy between multiple inhibitors of Aurora and SRC kinases in ovarian and colorectal cancer cell lines, but not in normal ovarian epithelial cell lines. Combination of Aurora and SRC inhibitors selectively killed cells that have undergone a preceding aberrant mitosis, and was associated with a postmitotic reattachment defect, and selective removal of aneuploid cell populations. Combined inhibition of Aurora kinase and SRC potentiated dasatinib-dependent loss of activated (Y(416)-phosphorylated) SRC. SRC and AURKA share a common interaction partner, NEDD9, which serves as a scaffolding protein with activities in cell attachment and mitotic control, suggesting SRC and AURKA might interact directly. In vitro, we observed physical interaction and mutual cross-phosphorylation between SRC and AURKA that enhanced SRC kinase activity. Together, these findings suggest that combination of SRC and Aurora-targeting inhibitors in the clinic may be a productive strategy.  相似文献   

15.
Sui M  Huang Y  Park BH  Davidson NE  Fan W 《Cancer research》2007,67(11):5337-5344
Estrogen receptors (ER) are expressed in approximately 65% of human breast cancer. Cumulative data from clinical trials and retrospective analyses suggest that some chemotherapeutic agents may be less effective in patients with ER-positive (ER+) tumors than those with ER-negative (ER-) tumors. Paclitaxel is an active agent used in breast cancer chemotherapy. To investigate the possible influence of ER on the therapeutic efficacy of paclitaxel and its underlying mechanism, we established several isogenic ER+ cell lines by stable transfection of ERalpha expression vectors into ER- breast cancer BCap37 cells. We showed that 17-beta estradiol significantly reduces the overall cytotoxicity of paclitaxel in BCap37-expressing ERalpha but has no influence on the ER- parental cells. Further analyses indicate that expression of ERalpha in BCap37 cells mainly interferes with paclitaxel-induced apoptotic cell death, without affecting paclitaxel-induced microtubule bundling and mitotic arrest. Moreover, we found that the addition of ICI 182,780 (Fulvestrant), a selective ER down-regulator, could completely reverse the resistance of ER+ BCap37 cells to paclitaxel. These findings showed that ERalpha-mediated breast tumor cell resistance to paclitaxel was through selective inhibition of paclitaxel-induced tumor cell apoptosis. Additionally, the combination of ICI 182,780 also sensitizes MCF-7 and T47D cell lines to the treatment of paclitaxel, which further confirmed the correlation between ERalpha and drug resistance in ER+ tumor cells. The results obtained from this study provide useful information for understanding ER-mediated resistance to paclitaxel and possibly other antineoplastic agents.  相似文献   

16.
17.
18.

Purpose

The histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) enhances taxol-induced antitumor effects against some human cancer cells. The aim of this study is to investigate whether SAHA can enhance taxol-induced cell death against human breast cancer cells and to illustrate the mechanism in detail.

Methods

A panel of eight human breast cancer cell lines and an immortalized human breast epithelial cell line were used to determine the inhibitory effects of SAHA, taxol, or their combination by MTT assay. The effects of SAHA with or without taxol on cell cycle distributions, apoptosis, and protein expressions were also examined. The inhibitory effects on tumor growth were characterized in vivo in BALB/c nude mice bearing a breast cancer xenograft model.

Results

Taxol-resistant and multi-resistant breast cancer cells were as sensitive to SAHA as taxol-sensitive breast cancer cells. A dose-dependent synergistic growth inhibition was found in all the tested breast cancer cell lines treated with the SAHA/taxol combinations. The synergetic effect was also observed in the in vivo xenograft tumor model. The cell cycle analysis and apoptosis assay showed that the synergistic effects resulted from enhanced G2/M arrest and apoptosis.

Conclusions

SAHA increased the anti-tumor effects of taxol in breast cancer in vitro and in vivo. The combination of SAHA and taxol may have therapeutic potential in the treatment of breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号