首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In the available in vivo experimental models for cochlear neuronal degeneration, the peripheral (hair cell side) process of the cochlear nerve has been injured in order to induce neuronal degeneration. However, there has been no dependable experimental model in which cochlear neuronal degeneration begins from the central (brain stem side) process. This lack of a central process injury model has probably been due to the experimental difficulties that had to be overcome in order to reproducibly and selectively injure the central process of the cochlear neurons while maintaining the patency of the internal auditory artery in small experimental animals such as rats. Using rats, we first developed a central process injury model in which the reduction of the spiral ganglion cells due to retrograde degeneration of cochlear neurons can be quantitatively evaluated. In our experimental model, the cochlear nerve was compressed and injured by a compression-recording (CR) electrode placed at the internal auditory meatus. First, the cochlear nerve was compressed until the compound action potentials of the cochlear nerve became flat, and then the CR electrode was advanced by various compression speeds (5, 10, or 200 micrometer/s) to reach the same depth (400 micrometer). In our model, therefore, the reduction of the spiral ganglion cells was caused compression speed dependently. This method made it possible to produce compression injury to the cochlear nerve without evidence of damage to the blood supply to the cochlea via the internal auditory artery. This model gives us the means to obtain knowledge that was previously impossible to derive from the peripheral process injury models.  相似文献   

2.
Post-traumatic invasion of macrophages into the cochlear nerve of the rat and measurement of how their invasion was modified by the administration of methylprednisolone were investigated for the first time by using a reproducible and quantifiable experimental model of cochlear nerve injury. Two weeks after precise cochlear nerve compression, a massive invasion of ED1 immunostained macrophages was observed at the compressed portion of the cochlear nerve, and this invasion of macrophages was markedly reduced in the rats to which methylprednisolone had been administered during the pre- and post-compression period. Concomitantly, the residual number of spiral ganglion cells was found to be greater in the compression+methylprednisolone group than in the control compression group. The tissue loss observed in the lesion epicenter was also significantly less in the compression+methylprednisolone group than in the control compression group. The results of our present study demonstrated the effectiveness of methylprednisolone treatment to ameliorate trauma induced cochlear nerve degeneration in the acute phase. However, these results may reflect the sum effects of methylprednisolone on macrophages, including both its beneficial effect by inhibiting the negative aspects of macrophages through attenuating macrophage recruitment to the lesion site, and at the same time an undesirable effect by sacrificing the positive aspects of macrophage function. Moreover, one reservation should be added that the protective effects of steroid to injured cochlear nerve may have operated via a pathway not related to macrophage function. Besides macrophages, various cells and factors participate in the process of CNS injury, and their effects may potentially work either positively or negatively with respect to CNS protection and regeneration at each particular time during the on-going process of CNS injury. Therefore, future investigation in CNS injury should be directed toward understanding such complex mechanisms involved in this process.  相似文献   

3.
The morphological organization of the central projections of the cat cochlear spiral ganglion into the cochlear nucleus has been investigated by creating restricted lesions in the anteroventral cochlear nucleus (AVCN) in order to ablate selectively either the lateral or the medial aspect of isofrequency projection laminae. Such lesions induced highly selective retrograde degeneration of spiral ganglion cells. Ablation of the lateral part of the AVCN resulted in degeneration of cells within the scala tympani portion of the ganglion, whereas medial lesions within the AVCN induced degeneration of the scala vestibuli portion of the ganglion. Since most, if not all, of the primary afferent axons of the cochlear nerve bifurcate into ascending and descending branches as they enter the brainstem, it is noteworthy that selective damage to the ascending branch in the AVCN was sufficient to induce retrograde degeneration of the spiral ganglion cell somata. The peripheral and central axons also degenerated, and the losses of both the radial nerve fibers in the osseous spiral lamina and the central axons passing into the modiolus displayed selective topographies that paralleled the cell loss within the spiral ganglion. The results of this study support our previous hypothesis, based upon earlier horseradish peroxidase labeling experiments, that there is a topographic organization to the projection of the spiral ganglion within the isofrequency laminae that is orthogonal to the frequency representation within the ventral cochlear nuclei (VCN). That is, in addition to the spiral frequency organization of the ganglion, represented by the dorsal-to-ventral frequency map in the VCN, there is also an orderly and sequential distribution of inputs from the vertical (scala tympani-to-scala vestibuli) dimension of the spiral ganglion across the lateral-to-medial axis of the VCN. The interaction of these two topographic representations, distributed across the three dimensions of the VCN, must partly define the selective and/or integrative neuronal response properties at this first level of central nervous system processing of auditory signals within the cochlear nuclei.  相似文献   

4.
The auditory pathway of a 17-year-old deaf patient with Cockayne's syndrome was examined histologically. The cochlea showed marked atrophy of the spiral ganglion and attenuation of the cochlear division of the eighth cranial nerve. By means of the Computer Image Analyzer, the total number of neurons in the ventral cochlear nucleus was found to be reduced from 30,440 to 18,821. The mean diameter of the neurons in the ventral cochlear nucleus, medial dorsal olivary nucleus, and inferior colliculus was smaller than in a control patient, whereas in the medial geniculate nucleus and anterior transverse gyrus of Heschl, the neuronal size approximated the norm. The changes in the first three auditory relay nuclei were considered to represent transsynaptic atrophy caused by degeneration of the spiral ganglion and, possibly, the cochlear neuroepithelium. This histological report verifies that deafness in Cockayne's syndrome is largely sensorineural and that degeneration of spiral ganglion in humans can lead to a chain of trans-synaptic degeneration in the ventral cochlear nucleus, medial dorsal olivary nucleus, and inferior colliculus.  相似文献   

5.
Although apoptotic changes in auditory neurons induced by injury to peripheral processes (dendrites) have been intensively studied, apoptotic changes in auditory neurons induced by injury to central processes (axons of spiral ganglion cells, SGCs) have not been reported previously, probably due to lack of an experimental model. The present study reports for the first time the appearance, extent, and time course of SGC apoptosis following injury to the central processes. Apoptosis was studied in a rat model that consisted of compression of the auditory nerve in the cerebellopontine (CP) angle cistern with intraoperative recordings of auditory nerve compound action potentials (CAPs) to ensure highly reproducible results. Rats were killed between day 0 and day 14 after compression and apoptosis of SGCs was evaluated quantitatively as well as qualitatively by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, anti-activated caspase-3 immunostaining, Hoechst 33342 staining, and electron microscopy. The average number of TUNEL-positive apoptotic SGCs in each cochlear turn increased from day 1 to day 5 and then decreased gradually to an undetectable level on day 14 after compression. The average proportion of apoptotic SGCs identified in any cochlear turn on any day was always lower than 10%. The results of our present study should be useful in determining the therapeutic time window for rescuing auditory neurons undergoing apoptosis due to injury during surgery in the CP angle.  相似文献   

6.
Cochlear hair cells are vulnerable to a variety of insults like acoustic trauma and ototoxic drugs. Such injury can also lead to degeneration of spiral ganglion neurons (SGNs), but this occurs over a period of months to years. Neuronal survival is necessary for the proper function of cochlear prosthetics, therefore, it is of great interest to understand the mechanisms that regulate neuronal survival in deaf ears. We have recently demonstrated that selective hair cell ablation is sufficient to attract leukocytes into the spiral ganglion, and that fractalkine signaling plays a role in macrophage recruitment and in the survival of auditory neurons. Fractalkine (CX3CL1), a chemokine that regulates adhesion and migration of leukocytes is expressed by SGNs and signals to leukocytes via its receptor CX3CR1. The present study has extended the previous findings to more clinically relevant conditions of sensorineural hearing loss by examining the role of fractalkine signaling after aminoglycoside ototoxicity or acoustic trauma. Both aminoglycoside treatment and acoustic overstimulation led to the loss of hair cells as well as prolonged increase in the numbers of cochlear leukocytes. Lack of CX3CR1 did not affect macrophage recruitment after injury, but resulted in increased loss of SGNs and enhanced expression of the inflammatory cytokine interleukin‐1β, when compared to mice with intact CX3CR1. These data indicate that the dysregulation of macrophage response caused by the absence of CX3CR1 may contribute to inflammation‐mediated neuronal loss in the deafened ear, suggesting a key role for inflammation in the long‐term survival of target‐deprived afferent neurons.  相似文献   

7.
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.  相似文献   

8.
The architecture of the efferent auditory system enables prioritization of strongly overlapping spatiotemporal cochlear activation patterns elicited by relevant and irrelevant inputs. So far, attempts at finding such attentional modulations of cochlear activity delivered indirect insights in humans or required direct recordings in animals. The extent to which spiral ganglion cells forming the human auditory nerve are sensitive to selective attention remains largely unknown. We investigated this question by testing the effects of attending to either the auditory or visual modality in human cochlear implant (CI) users (3 female, 13 male). Auditory nerve activity was directly recorded with standard CIs during a silent (anticipatory) cue-target interval. When attending the upcoming auditory input, ongoing auditory nerve activity within the theta range (5-8 Hz) was enhanced. Crucially, using the broadband signal (4-25 Hz), a classifier was even able to decode the attended modality from single-trial data. Follow-up analysis showed that the effect was not driven by a narrow frequency in particular. Using direct cochlear recordings from deaf individuals, our findings suggest that cochlear spiral ganglion cells are sensitive to top-down attentional modulations. Given the putatively broad hair-cell degeneration of these individuals, the effects are likely mediated by alternative efferent pathways compared with previous studies using otoacoustic emissions. Successful classification of single-trial data could additionally have a significant impact on future closed-loop CI developments that incorporate real-time optimization of CI parameters based on the current mental state of the user.SIGNIFICANCE STATEMENT The efferent auditory system in principle allows top-down modulation of auditory nerve activity; however, evidence for this is lacking in humans. Using cochlear recordings in participants performing an audiovisual attention task, we show that ongoing auditory nerve activity in the silent cue-target period is directly modulated by selective attention. Specifically, ongoing auditory nerve activity is enhanced within the theta range when attending upcoming auditory input. Furthermore, over a broader frequency range, the attended modality can be decoded from single-trial data. Demonstrating this direct top-down influence on auditory nerve activity substantially extends previous works that focus on outer hair cell activity. Generally, our work could promote the use of standard cochlear implant electrodes to study cognitive neuroscientific questions.  相似文献   

9.
The effect of acoustic overstimulation on the neuronal number of the cochlear nucleus (CN) was investigated by using unbiased stereological methods in rats. We found that, after 9 weeks of recovery, neurons in the anteroventral cochlear nucleus (AVCN) degenerated, whereas those in the posteroventral and dorsal cochlear nuclei (PVCN and DCN) were preserved. The noise trauma induced near complete loss of the outer hair cells throughout the cochlea, and the inner hair cells were preserved only in the more apical regions. This pattern of selective loss of AVCN neurons in this study was different from trauma induced by auditory deafferentation by mechanical compression of auditory neurons. In contrast to noise trauma, mechanical compression caused loss of neurons in the PVCN and DCN. After 5 weeks of recovery from mechanical compression, there was no loss of inner or outer hair cells. These findings indicate that auditory deprivation, induced by different experimental manipulations, can have strikingly different consequences for the central auditory system. We hypothesized that AVCN neuronal death was induced by excitotoxic mechanisms via AMPA‐type glutamate receptors and that excitatory neuronal circuits developed after acoustic overstimulation protected the PVCN and DCN against neuronal death. The results of the present study demonstrate that hearing loss from different etiologies will cause different patterns of neuronal degeneration in the CN. These findings are important for enhancing the performance of cochlear implants and auditory brainstem implants, because diverse types of hearing loss can selectively affect neuronal degeneration of the CN. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
It is well established that the cochlear nucleus (CN) of developing species is susceptible to loss of synaptic connections from the auditory periphery. Less information is known about how de-afferentation affects the adult auditory system. We investigated the effects of de-afferentation to the adult CN by mechanical compression. This experimental model is quantifiable and highly reproducible. Five weeks after mechanical compression to the axons of the auditory neurons, the total number of neurons in the CN was evaluated using un-biased stereological methods. A region-specific degeneration of neurons in the dorsal cochlear nucleus (DCN) and posteroventral cochlear nucleus (PVCN) by 50% was found. Degeneration of neurons in the anteroventral cochlear nucleus (AVCN) was not found. An imbalance between excitatory and inhibitory synaptic transmission after de-afferentation may have played a crucial role in the development of neuronal cell demise in the CN. The occurrence of a region-specific loss of adult CN neurons illustrates the importance of evaluating all regions of the CN to investigate the effects of de-afferentation. Thus, this experimental model may be promising to obtain not only the basic knowledge on auditory nerve/CN degeneration but also the information relevant to the application of cochlear or auditory brainstem implants.  相似文献   

11.
Excessive entry of Ca2+ into injured cochlear neurons activates various Ca(2+)-activated enzymes and subsequent spiral ganglion cell death. Therefore, preventing intracellular calcium overload by using Ca2+ channel antagonists may become an important countermeasure to spiral ganglion cell death. We experimentally investigated whether an L-type Ca2+ channel blocker (nimodipine) can rescue traumatized cochlear neurons from degeneration. A group of rats (n = 6) was pre-operatively treated with nimodipine for one week and compression injury was applied to the cerebellopontine angle portion of the cochlear nerve in a highly quantitative fashion. The rats from the compression with nimodipine treatment groups were post-operatively treated with nimodipine for 10 days and killed for histological examination. The histological analysis of the temporal bones revealed that the spiral ganglion cells in the basal turn of the cochlea where the magnitude of traumatic impact had been the least in our experimental condition were rescued in a statistically significant fashion in the compression with nimodipine treatment group. The results of the present study indicate that nimodipine may become an intra- and post-operative important adjunct to raise the rate of hearing preservation in vestibular schwannoma excision or other cerebellopontine angle surgical interventions.  相似文献   

12.
The anteroventral cochlear nucleus (AVCN) is the first central processing site for acoustic information. The influence and extent of convergent auditory nerve input to AVCN neurons was investigated using brief (<0.2 ms) intracochlear electrical activation of spiral ganglion cells. In 40 neurons recorded in vivo, the major intracellular response to stimulation was an excitatory postsynaptic potential (EPSP) with short latency (∼1 ms) and fast rise time (<1 ms). Graduated EPSP amplitude increases were also seen with increasing stimulation strength resulting in spike generation. Hyperpolarization followed excitation in most neurons, its extent distinguished three response types: Type I showed no hyperpolarization; Type II and Type III displayed short (<10 ms) and long (>19 ms) duration hyperpolarization, respectively. Hyperpolarization was attributed to an inhibitory postsynaptic potential (IPSP) in addition to spike after hyperpolarization. Neurobiotin filling identified Type I and II neurons as stellate and Type III as bushy cells. These results suggests that AVCN neurons receive direct, possibly convergent, excitatory input from auditory nerves emanating from spiral ganglion cells with hyperpolarization resulting from polysynaptic inhibitory input.  相似文献   

13.
For establishing the relationships of the central projections of the spiral ganglion with the cytoarchitectural regions of the cochlear nuclear complex in a primate species, 23 squirrel monkeys, Saimiri sciureus were utilized. Restricted lesions of the cochlea were confirmed histologically and the resulting degeneration was traced to the cochlear nuclei in sections prepared with Nauta (′57) and Fink-Heimer (′67) technics. By following the course of degeneration, the cochlear root fibers can be seen to bifurcate into ascending and descending branches. The ascending branches from the apical through basal turns of the spiral ganglion terminate in a rostro-lateral to caudo-medial gradient in the anteroventral cochlear nucleus. The descending branches from the apical through basal segments of the spiral ganglion terminate in a ventral to dorsal pattern in the posteroventral and dorsal cochlear nuclei. Ascending branches terminate chiefly on large and small spherical cells and globular cells in the anteroventral region. Terminals of descending branches are associated with globular, multipolar and octopus cells of the posteroventral nucleus and cells of the central and granular layers of the dorsal cochlear region.  相似文献   

14.
The immunocytochemical localization of glutaminase, which we have proposed as a marker for excitatory amino acid neurotransmitters was determined in the guinea pig auditory nerve. Glutaminase-like immunoreactivity was seen in auditory nerve terminals in the cochlear nucleus and in the cell bodies of the auditory nerve in the cochlea. This staining was seen in type I and not type II spiral ganglion cells. Glutaminase-like immunoreactivity was also observed in granule cells in the cochlear nucleus.  相似文献   

15.
It is well known that experimentally induced cochlear damage produces structural, physiological, and biochemical alterations in neurons of the cochlear nucleus. In contrast, much less is known with respect to the naturally occurring cochlear pathology presented by congenital deafness. The present study attempts to relate organ of Corti structure and auditory nerve activity to the morphology of primary synaptic endings in the cochlear nucleus of congenitally deaf white cats. Our observations reveal that the amount of sound-evoked spike activity in auditory nerve fibers influences terminal morphology and synaptic structure in the anteroventral cochlear nucleus. Some white cats had no hearing. They exhibited severely reduced spontaneous activity and no sound-evoked activity in auditory nerve fibers. They had no recognizable organ of Corti, presented >90% loss of spiral ganglion cells, and displayed marked structural abnormalities of endbulbs of Held and their synapses. Other white cats had partial hearing and possessed auditory nerve fibers with a wide range of spontaneous activity but elevated sound-evoked thresholds (60–70 dB SPL). They also exhibited obvious abnormalities in the tectorial membrane, supporting cells, and Reissner's membrane throughout the cochlear duct and had complete inner and outer hair cell loss in the base. The spatial distribution of spiral ganglion cell loss correlated with the pattern of hair cell loss. Primary neurons of hearing-impaired cats displayed structural abnormalities of their endbulbs and synapses in the cochlear nucleus which were intermediate in form compared to normal and totally deaf cats. Changes in endbulb structure appear to correspond to relative levels of deafness. These data suggest that endbulb structure is significantly influenced by sound-evoked auditory nerve activity. J. Comp. Neurol. 397:532–548, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
In order to investigate the pathophysiologic mechanisms responsible for trauma-induced hearing disturbances due to auditory nerve degeneration, we established for the first time a rat experimental model in which auditory nerve degeneration due to compression injury of the cerebellopontine (CP) angle portion of the auditory nerve can be quantitatively evaluated. In this paper, I demonstrate our clinical experience in CP angle surgery and some of the results of our experiments performed on this rat experimental model. Trauma-induced hearing loss in CP angle operations has long been regarded as a sort of unavoidable "natural course" and therefore hopeless. I believe that this pessimistic view should be challenged and changed through new approaches in scientific research.  相似文献   

17.
In an effort to further characterize the proteins of the auditory nerve, the effects of hair cell loss on rapidly transported proteins of the auditory nerve were studied. The effects were studied in the waltzing guinea pig, a genetically deaf animal which displays an age-dependent loss of sensory cells, and in normal guinea pigs treated with neomycin. In both cases hair cell loss is followed by a slow degeneration of spiral ganglion cells and corresponding auditory nerve fibers. Rapidly transported proteins in the cochlear nucleus were analyzed by two dimensional electrofocusing/electrophoresis 3 h after cochlear injection of [35S]methionine. In both the waltzing guinea pig and the neomycin-treated animals, a significant increase in labeling of two series of polypeptides (average molecular weights of 27,000 and 36,000 daltons) was apparent. Quantitation of the 36,000 dalton protein by extracting from dried gels showed a 2-fold increase in the 10-day-old waltzing guinea pig and a 6-fold increase in the 80-day-old waltzing guinea pig. Further analysis shows these proteins to be membrane-associated glycoproteins.  相似文献   

18.
Unmyelinated axons of the auditory nerve in cats.   总被引:2,自引:0,他引:2  
This paper describes some central terminations of type II spiral ganglion neurons as labeled by extracellular injections of horseradish peroxidase (HRP) into the auditory nerve of cats. After histological processing with diaminobenzidine, both thick (2-4 microns) and thin (0.5 microns) fibers of the auditory nerve were stained. Whenever traced, thick fibers always originated from type I spiral ganglion neurons and thin fibers always from type II ganglion neurons. Because the labeling of type II axons faded as fibers projected into the cochlear nucleus, this report is limited to regions of the ventral cochlear nucleus near the auditory nerve root. The central axons of type II neurons are unmyelinated, have simple yet variable branching patterns in the cochlear nucleus, and form both en passant and terminal swellings. Under the light microscope, most swellings are located in the neuropil but they are also found in the vicinity of cell bodies, nodes of Ranvier of type I axons, and blood vessels. Eighteen en passant swellings in the neuropil were located by light microscopy and resectioned for electron microscopy; two of these swellings exhibited ultrastructural features characteristic of chemical synapses. The data indicate that inputs from outer hair cells might be able to influence auditory processing in the cochlear nucleus through type II primary neurons.  相似文献   

19.
This study aimed to evaluate the potential of embryonic stem cell-derived neural progenitors for use as transplants for the replacement of the auditory primary neurons, spiral ganglion neurons. Mouse embryonic stem cell-derived neural progenitors were implanted into the base of the cochlear modiolus of normal or deafened guinea pigs, which contains spiral ganglion neurons and cochlear nerve fibers. Histological analysis demonstrated the survival and neural differentiation of transplants in the cochlear modiolus and active neurite outgrowth of transplants toward host peripheral or central auditory systems. Functional assessments indicated the potential of transplanted embryonic stem cell-derived neural progenitors to elicit the functional recovery of damaged cochleae. These findings support the hypothesis that transplantation of embryonic stem cell-derived neural progenitors can contribute to the functional restoration of spiral ganglion neurons.  相似文献   

20.
The short- and long-term effects of static compression of the cochlear nerve were studied in dogs. The nerve was exposed in the cerebellopontine angle and a modified aneurysm clip was applied to reduce the diameter of the nerve trunk to 50%, 40%, 30% or 20% of normal (designated respectively as 50%, 60%, 70%, and 80% compression). Brainstem auditory evoked potentials (BAEPs) were monitored intraoperatively and post-operatively. The animals were sacrificed between 5 and 119 days after nerve compression and temporal bones were examined histologically. In the 50% compression group, all peaks except peak I disappeared immediately after nerve compression. After release of the clip, however, peak II and subsequent components recovered and prolonged interpeak latency (IPL) between peaks I and IV normalized within 7 days. In the 60% compression group, recovery was incomplete for as long as 49 days after compression. Significant histological changes were not always reflected in the electrophysiological recordings, as shown by the finding of multiple cavitations at the compressed portion of the cochlear nerve in cases in which conduction block of cochlear nerve impulses was reversible. In the 70% compression group, peak IV did not reappear for more than 1 week, and histological examination revealed severe damage to all cochlear nerve fibers except those from the apical turn, which lie in the center of the cochlear nerve trunk. Severe injury occurred to the cochlear nerve fibers that are situated more superficially in the nerve, which are tonotopically responsible for the perception of high-frequency sound and the generation of BAEPs. This means that the BAEP changes due to cochlear nerve compression would be detectable by BAEP monitoring, although changes in the apical region of the cochlea are not fully detectable by BAEP monitoring. In the 80% compression group, all peaks except peak I were lost permanently and the amplitude of peak I, which had been preserved in the acute phase, gradually decreased. Reversibility of impaired cochlear nerve impulse conduction was related to the severity of compression, and at some level of compression between 70% and 80% the nerve fibers generating BAEPs permanently lost the ability to conduct electrical impulses proximal to the site of compression. In the 70% and 80% compression groups, the amplitude of peak I gradually decreased over the first 30 days after compression and did not change significantly thereafter. Histologically, the branches of the internal auditory artery were resilient to compression, although they are easily avulsed due to stretch force. Furthermore, retrograde degeneration of cochlear neurons triggered by compression at the cisternal portion of the cochlear nerve was apparent. Such slowly progressive degeneration of nerve fibers may play a part in development of the delayed postoperative hearing disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号