首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
OBJECTIVE: To investigate if cell cycle progression plays a role in modulating the engraftment potential of mouse hematopoietic stem and progenitor cells (HSPC). MATERIALS AND METHODS: HSPC were isolated from adult mouse bone marrow, cultured in vitro under conditions promoting cell cycle arrest, and subsequently were evaluated for cell cycle status, clonogenic activity, and transplant potential. RESULTS In the presence of steel factor (STL) as a survival cytokine, transforming growth factor beta (TGF-beta) increased the G0/G1 fraction of cycling progenitor cells (Rh(high)) after a 20-hour culture. Clonogenic activity of quiescent long-term repopulating (Rh(low)) HSPC was unaffected by this culture, whereas clonogenic potential of Rh(high) cells decreased by about 30%. In competitive repopulation assays, Rh(low) cells cultured in STL + TGF-beta engrafted better than cells cultured in STL alone. However, culture in STL + TGF-beta did not overcome the failure of Rh(high) cells to engraft after transplant. We also utilized a two-stage culture system to first induce proliferation of Rh(low) HSPC by a 48-hour culture in STL + interleukin 6 + Flt-3 ligand, followed by shifting the culture to STL + TGF-beta for 24 hours to induce cycle arrest. A competitive repopulation assay demonstrated a relative decrease in repopulating potential in cultures that were cycle arrested compared to those that were not. CONCLUSION: Cell cycle progression by itself cannot account for the decrease in repopulating potential that is observed after ex vivo expansion. Other determinants of engraftment must be identified to facilitate the transplantation of cultured HSPC.  相似文献   

3.
Because human CD34+ and murine Sca-1+ hematopoietic stem-progenitor cells (HSPCs) express platelet-binding sialomucin P-selectin (CD162) and integrin Mac-1 (CD11b-CD18) antigen, it was inferred that these cells might interact with platelets. As a result of this interaction, microparticles derived from platelets (PMPs) may transfer many platelet antigens (CD41, CD61, CD62, CXCR4, PAR-1) to the surfaces of HSPCs. To determine the biologic significance of the presence of PMPs on human CD34+ and murine Sca-1+ cells, their expressions on mobilized peripheral blood (mPB) and on nonmobilized PB- and bone marrow (BM)-derived CD34+ cells were compared. In addition, the effects of PMPs on the proliferation of CD34+ and Sca-1+ cells and on adhesion of HSPCs to endothelium and immobilized SDF-1 were studied. Finally, the hematopoietic reconstitution of lethally irradiated mice receiving transplanted BM mononuclear cells covered or not covered with PMPs was examined. It was found that PMPs are more numerous on mPB than on BM CD34+ cells, do not affect the clonogenicity of human and murine HSPCs, and increase adhesion of these cells to endothelium and immobilized SDF-1. Moreover, murine BM cells covered with PMPs engrafted lethally irradiated mice significantly faster than those not covered, indicating that PMPs play an important role in the homing of HSPCs. This could explain why in a clinical setting human mPB HSPCs (densely covered with PMPs) engraft more rapidly than BM HSPCs (covered with fewer PMPs). These findings indicate a new role for PMPs in stem cell transplantation and may have clinical implications for the optimization of transplantations.  相似文献   

4.
5.
Liang Y  Van Zant G  Szilvassy SJ 《Blood》2005,106(4):1479-1487
To test the hypothesis that aging has negative effects on stem-cell homing and engraftment, young or old C57BL/6 bone marrow (BM) cells were injected, using a limiting-dilution, competitive transplantation method, into old or young Ly5 congenic mice. Numbers of hematopoietic stem cells (HSCs) and progenitor cells (HPCs) recovered from BM or spleen were measured and compared with the numbers initially transplanted. Although the frequency of marrow competitive repopulation units (CRUs) increased approximately 2-fold from 2 months to 2 years of age, the BM homing efficiency of old CRUs was approximately 3-fold lower than that of young CRUs. Surprisingly, the overall size of individual stem-cell clones generated in recipients receiving a single CRU was not affected by donor age. However, the increased ages of HSC donors and HSC transplant recipients caused marked skewing of the pattern of engraftment toward the myeloid lineage, indicating that HSC-intrinsic and HSC-extrinsic (microenvironmental) age-related changes favor myelopoiesis. This correlated with changes after transplantation in the rate of recovery of circulating leukocytes, erythrocytes, and platelets. Recovery of the latter was especially blunted in aged recipients. Collectively, these findings may have implications for clinical HSC transplantation in which older persons increasingly serve as donors for elderly patients.  相似文献   

6.
Thrombopoietin stimulation of hematopoietic stem/progenitor cells   总被引:4,自引:0,他引:4  
The recent cloning of the thrombopoietin gene, and the production of recombinant protein, have allowed studies on both its biological actions and clinical utility. Thrombopoietin not only affects the cells of the megakaryocytic lineage, but has a diverse set of cellular targets. In particular, it stimulates the ex vivo expansion of hematopoietic stem/progenitor cells suggesting that it may play a role in transplantation studies. Pre-clinical but limited clinical studies indicate that under defined conditions, thrombopoietin may accelerate white blood cell count and platelet recoveries following myelosuppression or radiotherapy.  相似文献   

7.
8.
Hematopoietic stem and progenitor cells (HSPC) are crucial in the maintenance of lifelong production of all blood cells. These stem cells are highly regulated to maintain homeostasis through a delicate balance between quiescence, self-renewal and differentiation. However, this balance is altered during the recovery after HSPC transplantation. Transplantation efficacy can be limited by inadequate hematopoietic stem cell number, poor homing, low level of engraftment, or limited self-renewal. As recent evidence indicates that estrogens are involved in regulating hematopoiesis, we sought to examine whether natural estrogens (estrone or E1, estradiol or E2, estriol or E3 and estetrol or E4) modulate human HSPC. Our results show that human HSPC subsets express estrogen receptors, and that signaling is activated by E2 and E4 on these cells. Additionally, these natural estrogens cause different effects on human progenitors in vitro. We found that both E2 and E4 expand human HSPC. However, E4 was the best tolerated estrogen and promoted cell cycling of human hematopoietic progenitors. Furthermore, we found that E2 and, more significantly, E4 doubled human hematopoietic engraftment in immunodeficient mice without altering other HSPC properties. Finally, the impact of E4 on promoting human hematopoietic engraftment in immunodeficient mice might be mediated through the regulation of mesenchymal stromal cells in the bone marrow niche. Collectively, our data demonstrate that E4 is well tolerated and enhances human reconstitution in immunodeficient mice directly, by modulating human hematopoietic progenitor properties, and indirectly, by interacting with the bone marrow niche. This might have particular relevance for improving hematopoietic recovery after myeloablative conditioning, especially when limited numbers of HSPC are available.  相似文献   

9.
The mechanism of hematopoietic stem and progenitor cell (HSPC) homing to hematopoietic organs after transplantation is still poorly understood. There is evidence that HSPC homing is a multistep process involving integrins and other adhesion molecules as well as stimulation of cytokine and chemokine receptors, similar to the process of lymphocyte recirculation and leukocyte emigration. This study examined the effect of pertussis toxin (PT), an inhibitor of signaling by many Galphai protein-coupled chemokine receptors, on engraftment of HSPC. An in vitro incubation of total bone marrow cells in PT-supplemented media prior to transplantation into lethally irradiated syngeneic mice resulted in an increase in marrow repopulation and a parallel decrease of colony-forming unit-spleen (CFU-S) on day 13. PT treatment of Rh(low)Lineage(neg)Sca-1pos cells prior to transplant resulted in delayed spleen cell engraftment, but no observable difference in the bone marrow cellularity compared to animals transplanted with untreated cells. FACS analysis of hematopoietic organs revealed that myeloid cell recovery in the bone marrow was unaffected by PT treatment of HSPC. However, a reduced myeloid cell recovery in the spleen and an increased B lymphoid recovery in both the spleen and the bone marrow were observed in recipients of PT-treated grafts relative to untreated grafts. To test the hypothesis that PT inhibits proliferation rather than engraftment of HSPC in the spleen, the effect of PT on cytokine-stimulated proliferation of HSPC was tested. Although an inhibition of the growth of microcolonies in response to interleukin 6 as a single cytokine could be observed after PT treatment, colony growth of HSPC after steel factor or steel factor + interleukin 6 stimulation was unaffected by PT. This study demonstrates that bone marrow, but not splenic, recovery after HSPC transplantation is independent of PT-sensitive mechanisms. It is likely that PT inhibits spleen cell recovery by disrupting a Galphai-coupled homing receptor expressed by HSPC. These studies support the hypothesis that distinct mechanisms regulate splenic vs bone marrow engraftment of HSPC, and that B lymphocyte progenitors and HSPC can utilize a PT-resistant homing mechanism to localize in hematopoietic tissues after transplantation.  相似文献   

10.
One of the central tasks of stem cell biology is to understand the molecular mechanisms that control self-renewal in stem cells. Several cytokines are implicated as crucial regulators of hematopoietic stem cells (HSCs), but little is known about intracellular signaling for HSC self-renewal. To address this issue, we attempted to clarify how self-renewal potential is enhanced in HSCs without the adaptor molecule Lnk, as in Lnk-deficient mice HSCs are expanded in number >10-fold because of their increased self-renewal potential. We show that Lnk negatively regulates self-renewal of HSCs by modifying thrombopoietin (TPO)-mediated signal transduction. Single-cell cultures showed that Lnk-deficient HSCs are hypersensitive to TPO. Competitive repopulation revealed that long-term repopulating activity increases in Lnk-deficient HSCs, but not in WT HSCs, when these cells are cultured in the presence of TPO with or without stem cell factor. Single-cell transplantation of each of the paired daughter cells indicated that a combination of stem cell factor and TPO efficiently induces symmetrical self-renewal division in Lnk-deficient HSCs but not in WT HSCs. Newly developed single-cell immunostaining demonstrated significant enhancement of both p38 MAPK inactivation and STAT5 and Akt activation in Lnk-deficient HSCs after stimulation with TPO. Our results suggest that a balance in positive and negative signals downstream from the TPO signal plays a role in the regulation of the probability of self-renewal in HSCs. In general, likewise, the fate of stem cells may be determined by combinational changes in multiple signal transduction pathways.  相似文献   

11.
Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.  相似文献   

12.
Hematopoietic stem cells (HSCs) are maintained at a very low frequency in adult bone marrow under steady-state conditions. However, it is not fully understood how homeostasis of bone marrow HSCs is maintained. We attempted to identify a key molecule involved in the regulation of HSC numbers, a factor that, in the absence of Lnk, leads to HSC expansion. Here, we demonstrate that upon stimulation with thrombopoietin, expression of Bcl-xL, an antiapoptotic protein, was highly enhanced in Lnk-deficient HSCs compared to normal HSCs. As a result, Lnk-deficient HSCs underwent reduced apoptosis following exposure to lethal radiation. Downregulation of Bcl-xL expression in Lnk-deficient HSCs by short-hairpin RNA resulted in a great reduction of their capacity for reconstitution. These findings suggest that Lnk/Sh2b3 constrains the expression of Bcl-xL and that the loss of Lnk/Sh2b3 function enhances survival of HSCs by inhibiting apoptosis. Furthermore, our observations indicate that HSCs in patients with an Lnk/Sh2b3 mutation might become resistant to apoptosis due to thrombopoietin-mediated enhanced expression of Bcl-xL. Consequently, reduced apoptosis could facilitate accumulation of HSCs with oncogenic mutations leading to development of myeloproliferative disorders.  相似文献   

13.
Rizo A  Dontje B  Vellenga E  de Haan G  Schuringa JJ 《Blood》2008,111(5):2621-2630
The polycomb group (PcG) gene BMI1 has been identified as one of the key epigenetic regulators of cell fates during different stages of development in multiple murine tissues. In a clinically relevant model, we demonstrate that enforced expression of BMI1 in cord blood CD34(+) cells results in long-term maintenance and self-renewal of human hematopoietic stem and progenitor cells. Long-term culture-initiating cell frequencies were increased upon stable expression of BMI1 and these cells engrafted more efficiently in NOD-SCID mice. Week 5 cobblestone area-forming cells (CAFCs) were replated to give rise to secondary CAFCs. Serial transplantation studies in NOD-SCID mice revealed that secondary engraftment was only achieved with cells overexpressing BMI1. Importantly, BMI1-transduced cells proliferated in stroma-free cytokine-dependent cultures for more than 20 weeks, while a stable population of approximately 1% to 5% of CD34(+) cells was preserved that retained colony-forming capacity. Whereas control cells lost most of their NOD-SCID engraftment potential after 10 days of ex vivo culturing in absence of stroma, NOD-SCID multilineage engraftment was retained by overexpression of BMI1. Thus, our data indicate that self-renewal of human hematopoietic stem cells is enhanced by BMI1, and we classify BMI1 as an intrinsic regulator of human stem/progenitor cell self-renewal.  相似文献   

14.
Pinto do O P  Richter K  Carlsson L 《Blood》2002,99(11):3939-3946
Hematopoietic stem cells (HSCs) are unique in their capacity to maintain blood formation following transplantation into immunocompromised hosts. Expansion of HSCs in vitro is therefore important for many clinical applications but has met with limited success because the mechanisms regulating the self-renewal process are poorly defined. We have previously shown that expression of the LIM-homeobox gene Lhx2 in hematopoietic progenitor cells derived from embryonic stem cells differentiated in vitro generates immortalized multipotent hematopoietic progenitor cell lines. However, HSCs of early embryonic origin, including those derived from differentiated embryonic stem cells, are inefficient in engrafting adult recipients upon transplantation. To address whether Lhx2 can immortalize hematopoietic progenitor/stem cells that can engraft adult recipients, we expressed Lhx2 in hematopoietic progenitor/stem cells derived from adult bone marrow. This approach allowed for the generation of immortalized growth factor-dependent hematopoietic progenitor/stem cell lines that can generate erythroid, myeloid, and lymphoid cells upon transplantation into lethally irradiated mice. When transplanted into stem cell-deficient mice, these cell lines can generate a significant proportion of circulating erythrocytes in primary, secondary, and tertiary recipients for at least 18 months. Thus, Lhx2 immortalizes multipotent hematopoietic progenitor/stem cells that can generate functional progeny following transplantation into lethally irradiated hosts and can long-term repopulate stem cell-deficient hosts.  相似文献   

15.
16.
Yoder MC  Mead LE  Prater D  Krier TR  Mroueh KN  Li F  Krasich R  Temm CJ  Prchal JT  Ingram DA 《Blood》2007,109(5):1801-1809
The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration.  相似文献   

17.
Jin H  Xu J  Wen Z 《Blood》2007,109(12):5208-5214
The development of vertebrate definitive hematopoiesis is featured by temporally and spatially dynamic distribution of hematopoietic stem/progenitor cells (HSPCs). It is proposed that the migration of definitive HSPCs, at least in part, accounts for this unique characteristic; however, compelling in vivo lineage evidence is still lacking. Here we present an in vivo analysis to delineate the migration route of definitive HSPCs in the early zebrafish embryo. Cell-marking analysis was able to first map definitive HSPCs to the ventral wall of dorsal aorta (DA). These cells were subsequently found to migrate to a previously unappreciated organ, posterior blood island (PBI), located between the caudal artery and caudal vein, and finally populate the kidney, the adult hematopoietic organ. These findings demonstrate that the PBI acts as an intermediate hematopoietic organ in a manner analogous to the mammalian fetal liver to sustain definitive hematopoiesis before adult kidney hematopoiesis occurs. Thus our study unambiguously documents the in vivo trafficking of definitive HSPCs among developmentally successive hematopoietic compartments and underscores the ontogenic conservation of definitive hematopoiesis between zebrafish and mammals.  相似文献   

18.
CD9 belongs to the transmembrane 4 superfamily, and has been shown to influence cell proliferation, motility, and adhesion. We show here that ligation of CD9 modifies proliferation and/or differentiation of hematopoietic stem/progenitors. Pluripotent EML-C1 hematopoietic cells were cocultured with MS-5 stromal cells in the presence of KMC8.8, an anti-CD9 antibody. Numbers of recovered EML-C1 cells were slightly reduced and the antibody caused the hematopoietic cells to migrate beneath the adherent stromal cell layer. Of particular interest, EML-C1 cells recovered from CD9-ligated cultures had undifferentiated properties. Separate pretreatment of the two cell types with antibody showed that stromal-cell CD9 mediated these responses. Spontaneous expression of erythroid marker was completely blocked and there was a shift towards undifferentiated clonogenic progenitors. Immunoprecipitation studies showed that stromal-cell CD9 associates with the beta1 subunit of integrin, as well as a novel 100 kD protein. Antibody cross-linking of cell surface CD9 increased the amount of 100 kD protein that was subsequently coprecipitated with CD9. These observations show that stromal-cell CD9 influences physical interactions with hematopoietic cells and may be one factor that determines the degree of stem cell differentiation.  相似文献   

19.
To overcome the limitations of allogeneic hematopoietic stem cell transplantation (HSCT), we conducted a study to identify a strategy for enhancing hematopoietic stem cell (HSC) engraftment during HSCT. Co-transplantation experiments with mesenchymal stem cells (MSCs) derived from adult human tissues including bone marrow (BM), adipose tissue (AT), and umbilical cord blood (CB) were conducted. We showed that AT-MSCs and CB-MSCs enhanced the engraftment of HSCs as effectively as BM-MSCs in NOD/SCID mice, suggesting that AT-MSCs and CB-MSCs can be used as alternative stem cell sources for enhancing the engraftment and homing of HSCs. CB-MSCs derived from different donors showed different degrees of efficacy in enhancing the engraftment of HSCs. The most effective CB-MSCs showed higher proliferation rates and secreted more MCP-1, RANTES, EGF, and VEGF. Our results suggest that AT-MSCs and CB-MSCs could be alternative stem cell sources for co-transplantation in HSCT. Furthermore, in terms of MSCs’ heterogeneity, characteristics of each population of MSCs are considerable factors for selecting MSCs suitable for co-transplantation with HSC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号