首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that free fatty acids (FFAs) modulate microvascular function and that this contributes to obesity-associated insulin resistance, hypertension, and microangiopathy, we examined the effects of both FFA elevation in lean women and FFA lowering in obese women on skin microvascular function. A total of 16 lean and 12 obese women underwent, respectively, Intralipid plus heparin (or saline) infusion and overnight acipimox (or placebo) treatment. We measured capillary recruitment with capillaroscopy and endothelium-(in)dependent vasodilation by iontophoresis of acetylcholine and sodium nitroprusside before and during hyperinsulinemia (40 mU . m(-2) . min(-1)). FFA elevation impaired capillary recruitment and acetylcholine-mediated vasodilation before (44.6 +/- 16.8 vs. 56.9 +/- 18.9%, P < 0.05; and 338 +/- 131 vs. 557 +/- 162%, P < 0.01, respectively) and during (54.0 +/- 21.3 vs. 72.4 +/- 25.4%, P < 0.01; and 264 +/- 186 vs. 685 +/- 199%, P < 0.01, respectively) hyperinsulinemia. FFA lowering improved capillary recruitment before (50.9 +/- 14.6 vs. 37.4 +/- 9.3%, P < 0.01) and during (66.8 +/- 20.6 vs. 54.8 +/- 15.4%, P < 0.05) hyperinsulinemia. Changes in FFA levels were inversely associated with changes in capillary recruitment and insulin sensitivity in lean (r = -0.46, P = 0.08; and r = -0.56, P = 0.03) and in obese (r = -0.70, P = 0.02; and r = -0.62, P = 0.04) women. Regression analyses showed that changes in capillary recruitment statistically explained approximately 29% of the association between changes in FFA levels and insulin sensitivity. In conclusion, FFA levels modulate microvascular function and may contribute to obesity-associated insulin resistance, hypertension, and microangiopathy.  相似文献   

2.
In the peripheral vasculature, insulin induces time- and dose-dependent vasodilation. We have recently demonstrated that insulin potentiates adenosine-stimulated myocardial blood flow. However, it is unknown whether insulin's effects on the coronary vasculature are dose dependent. In this study, we quantitated myocardial blood flow and adenosine-stimulated coronary flow (140 microg.kg(-1).min(-1) for 5 min) in 10 healthy men (age, 32 +/- 6 years; BMI, 24.1 +/- 1.8 kg/m(2)) using positron emission tomography and (15)O-labeled water. Hyperemic myocardial blood flow was measured in the basal state, during euglycemic physiological hyperinsulinemia (serum insulin approximately 65 mU/l) and during supraphysiological hyperinsulinemia (serum insulin approximately 460 mU/l). Basal myocardial blood flow was 0.84 +/- 0.17 ml.g(-1).min(-1). Physiological hyperinsulinemia increased the adenosine-stimulated flow by 20% (from 3.92 +/- 1.17 to 4.72 +/- 0.96 ml.g(- 1).min(-1); P < 0.05). Supraphysiological hyperinsulinemia further enhanced the adenosine-stimulated flow by 19% (to 5.61 +/- 1.03 ml.g(-1).min(-1); P < 0.05). These effects were not explained by changes in systemic hemodynamics, since coronary resistance decreased during each insulin infusion (P < 0.05). In addition, hyperemic myocardial blood flow responses during insulin stimulation were positively correlated with whole-body glucose uptake. The results demonstrate that insulin is able to enhance hyperemic myocardial blood flow in a dose-dependent manner in healthy subjects. These effects might contribute to the known beneficial dose-dependent effects of insulin on myocardial ischemia.  相似文献   

3.
Supraphysiological doses of insulin enhance total limb blood flow and recruit capillaries in skeletal muscle. Whether these processes change in response to physiological hyperinsulinemia is uncertain. To examine this, we infused either saline (n = 6) or insulin (euglycemic clamp, 3.0 mU x min(-1) x kg(-1), n = 9) into anesthetized rats for 120 min. Femoral artery flow was monitored continuously using a Doppler flow probe, and muscle microvascular recruitment was assessed by metabolism of infused 1-methylxanthine (1-MX) and by contrast-enhanced ultrasound (CEU). Insulin infusion raised plasma insulin concentrations by approximately 10-fold. Compared with saline, physiological hyperinsulinemia increased femoral artery flow (1.02 +/- 0.10 vs. 0.68 +/- 0.09 ml/min; P < 0.05), microvascular recruitment (measured by 1-MX metabolism [6.6 +/- 0.5 vs. 4.5 +/- 0.48 nmol/min; P < 0.05] as well as by CEU [167.0 +/- 39.8 vs. 28.2 +/- 13.8%; P < 0.01]), and microvascular flow velocity (beta, 0.14 +/- 0.02 vs. 0.09 +/- 0.02 s(-1)). Subsequently, we studied the time dependency of insulin's vascular action in a second group (n = 5) of animals. Using CEU, microvascular volume was measured at 0, 30, and 90 min of insulin infusion. Insulin augmented microvascular perfusion within 30 min (52.8 +/- 14.8%), and this persisted at 90 min (64.6 +/- 9.9%). Microvascular recruitment occurred without changes to femoral artery flow or beta. We conclude that insulin increases tissue perfusion by recruiting microvascular beds, and at physiological concentrations this precedes increases in total muscle blood flow by 60-90 min.  相似文献   

4.
Temporal variations in microcirculatory blood flow in the testis and blood pressure were examined in intact, pentobarbital-anesthetized rats with a two-channel laser Doppler flowmeter. The laser Doppler probes that measure local blood flow in a tissue volume of about 2 mm3 were placed either over the mid portion of the left and right testes or on the right testes 1 cm apart. Testicular microcirculation was characterized by a prominent vasomotion with a frequency of 5.3+/-1.4 cycles per minute and with an amplitude of 73+/-32% (mean +/- SD) of the mean. In addition to this large and rapid variation in local blood flow, there were also major variations from minute to minute in the average blood flow, vasomotion frequency, and vasomotion amplitude at 40 and 53 minutes. Such variations in local blood flow, vasomotion frequency, and vasomotion amplitude were correlated with each other at two different sites on the same testis (r(s) = 0.39, r(s) = 0.82, r(s) = 0.64, respectively, P < 0.001), and they were all correlated with systemic blood pressure (r(s) 0.41, r(s) = 0.61, r(s) = 0.32, respectively, P < 0.001). Minute-to-minute variations in local blood flow, vasomotion frequency, and vasomotion amplitude were also correlated between the right and left testes (r(s) = 0.58, r(s) = 0.75, r(s) = 0.57, respectively, P < 0.001). There are substantial temporal variations in testicular microcirculation. These variations are to some extent related to temporal changes in systemic blood pressure, but changes in the ultralocal environment are probably more important. The functional significance of, and the factors responsible for, local variations in testicular microcirculation remain to be elucidated.  相似文献   

5.
Inyard AC  Clerk LH  Vincent MA  Barrett EJ 《Diabetes》2007,56(9):2194-2200
We examined whether contraction-induced muscle microvascular recruitment would expand the surface area for insulin and nutrient exchange and thereby contribute to insulin-mediated glucose disposal. We measured in vivo rat hindlimb microvascular blood volume (MBV) using contrast ultrasound and femoral blood flow (FBF) using Doppler ultrasound in response to a stimulation frequency range. Ten minutes of 0.1-Hz isometric contraction more than doubled MBV (P < 0.05; n = 6) without affecting FBF (n = 7), whereas frequencies >0.5 Hz increased both. Specific inhibition of nitric oxide (NO) synthase with N(omega)-l-nitro-arginine-methyl ester (n = 5) significantly elevated mean arterial pressure by approximately 30 mmHg but had no effect on basal FBF or MBV. We next examined whether selectively elevating MBV without increasing FBF (0.1-Hz contractions) increased muscle uptake of albumin-bound Evans blue dye (EBD). Stimulation at 0.1 Hz (10 min) elicited more than twofold increases in EBD content (micrograms EBD per gram dry tissue) in stimulated versus contralateral muscle (n = 8; 52.2 +/- 3.8 vs. 20 +/- 2.5, respectively; P < 0.001). We then measured muscle uptake of EBD and (125)I-labeled insulin (dpm per gram dry tissue) with 0.1-Hz stimulation (n = 6). Uptake of EBD (19.1 +/- 3.8 vs. 9.9 +/- 1; P < 0.05) and (125)I-insulin (5,300 +/- 800 vs. 4,244 +/- 903; P < 0.05) was greater in stimulated muscle versus control. Low-frequency contraction increases muscle MBV by a NO-independent pathway and facilitates muscle uptake of albumin and insulin in the absence of blood flow increases. This microvascular response may, in part, explain enhanced insulin action in exercising skeletal muscle.  相似文献   

6.
Human obesity is associated with insulin resistance, hyperinsulinemia, and a predisposition to hypertension and vascular disease, the origin of which may lie in impairment of endothelial function. We tested the effects of the thiazolidinedione rosiglitazone on blood pressure and endothelial function in insulin-resistant fatty Zucker rats, which display hypertension and abnormal endothelial cell function. We studied fatty Zucker rats given rosiglitazone maleate (50 micromol/kg diet; n = 8) for 9-12 weeks (treated fatty), untreated fatty rats (n = 8), and lean rats (n = 8) given diet alone. At the end of the study, systolic blood pressure was significantly higher in untreated fatty (147 +/- 5 mmHg) than in lean rats (125 +/- 2 mmHg; P < 0.05), but rosiglitazone treatment prevented the development of hypertension in fatty rats (123 +/- 1 mmHg). Fasting hyperinsulinemia in untreated fatty rats (28.7 +/- 6.0 ng/ml) was significantly lowered by rosiglitazone (7.0 +/- 1.4 ng/ml; P < 0.05 vs. untreated fatty), but remained significantly higher than the levels seen in lean rats (1.5 +/- 0.4 ng/ml; P < 0.01). Mesenteric arteries were studied in a myograph. Maximal acetylcholine chloride (1.1 micromol/l)-induced relaxation of norepinephrine hydrochloride (NE)-induced constriction was impaired in untreated fatty (62.4 +/- 3.4%) vs. lean (74.3 +/- 3.5%; P = 0.01) rats; this defect was partially prevented by rosiglitazone (66.5 +/- 3.0%; P = 0.01 vs. untreated fatty). Insulin (50 mU/l) significantly attenuated the contractile response to NE in lean rats (14.7 +/- 3.3%; P = 0.02); this vasodilator effect of insulin was absent in untreated fatty rats at concentrations of 50-5,000 mU/l, but was partially restored by rosiglitazone (9.7 +/- 2.5% attenuation; P = 0.02 vs. no insulin). Thus, rosiglitazone prevents the development of hypertension and partially protects against impaired endothelial function associated with insulin resistance. These latter effects may contribute to the drug's antihypertensive properties.  相似文献   

7.
Clerk LH  Vincent MA  Jahn LA  Liu Z  Lindner JR  Barrett EJ 《Diabetes》2006,55(5):1436-1442
We have previously shown that skeletal muscle capillaries are rapidly recruited by physiological doses of insulin in both humans and animals. This facilitates glucose and insulin delivery to muscle, thus augmenting glucose uptake. In obese rats, both insulin-mediated microvascular recruitment and glucose uptake are diminished; however, this action of insulin has not been studied in obese humans. Here we used contrast ultrasound to measure microvascular blood volume (MBV) (an index of microvascular recruitment) in the forearm flexor muscles of lean and obese adults before and after a 120-min euglycemic-hyperinsulinemic (1 mU . min(-1) . kg(-1)) clamp. We also measured brachial artery flow, fasting lipid profile, and anthropomorphic variables. Fasting plasma glucose (5.4 +/- 0.1 vs. 5.1 +/- 0.1 mmol/l, P = 0.05), insulin (79 +/- 11 vs. 38 +/- 6 pmol/l, P = 0.003), and percent body fat (44 +/- 2 vs. 25 +/- 2%, P = 0.001) were higher in the obese than the lean adults. After 2 h of insulin infusion, whole-body glucose infusion rate was significantly lower in the obese versus lean group (19.3 +/- 3.2 and 37.4 +/- 2.6 mumol . min(-1) . kg(-1) respectively, P < 0.001). Compared with baseline, insulin increased MBV in the lean (18.7 +/- 3.3 to 25.0 +/- 4.1, P = 0.019) but not in the obese group (20.4 +/- 3.6 to 18.8 +/- 3.8, NS). Insulin increased brachial artery diameter and flow in the lean but not in the obese group. We observed a significant, negative correlation between DeltaMBV and BMI (R = -0.482, P = 0.027) in response to insulin. In conclusion, obesity eliminated the insulin-stimulated muscle microvascular recruitment and increased brachial artery blood flow seen in lean individuals.  相似文献   

8.
Obese subjects exhibit a delay in insulin action and delivery of insulin to muscle interstitial fluid during glucose/insulin infusion. The aim of the present study was to follow the distribution of insulin to skeletal muscle after an oral glucose load in obese subjects. We conducted an oral glucose tolerance test (OGTT) in 10 lean and 10 obese subjects (BMI 23 +/- 0.6 vs. 33 +/- 1.2 kg/m(2); P < 0.001). Insulin measurements in muscle interstitial fluid were combined with forearm arteriovenous catheterization and blood flow measurements. In the obese group, interstitial insulin was significantly (35-55%) lower than plasma insulin (P < 0.05) during the 1st h after the OGTT, whereas in lean subjects, no significant difference was found between interstitial and plasma insulin levels during the same time period. The permeability surface area product for glucose, representing capillary recruitment, increased in the lean group (P < 0.05) but not in the obese group (NS). Obese subjects had a significantly higher plasma insulin level at 90-120 min after oral glucose (398 +/- 57 vs. 224 +/- 37 pmol/l in control subjects; P < 0.05). The significant gradient between plasma insulin and muscle interstitial insulin during the first hour after OGTT suggests a slow delivery of insulin in obese subjects. The hindered transcapillary transport of insulin may be attributable to a defect in insulin-mediated capillary recruitment.  相似文献   

9.
Insulin and glucose delivery (muscle perfusion) can modulate insulin-mediated glucose uptake. This study was undertaken to determine 1) to what extent insulin sensitivity modulates the effect of perfusion on glucose uptake and 2) whether this effect is achieved via capillary recruitment. We measured glucose disposal rates (GDRs) and leg muscle glucose uptake (LGU) in subjects exhibiting a wide range of insulin sensitivity, after 4 h of steady-state (SS) euglycemic hyperinsulinemia (>6,000 pmol/l) and subsequently after raising the rate of leg blood flow (LBF) 2-fold with a superimposed intrafemoral artery infusion of methacholine chloride (Mch), an endothelium-dependent vasodilator. LBF was determined by thermodilution: LGU = arteriovenous glucose difference (AVGdelta) x LBF. As a result of the 114+/-12% increase in LBF induced by Mch, the AVGdelta decreased 32+/-4%, and overall rates of LGU increased 40+/-5% (P < 0.05). We found a positive relationship between the Mch-modulated increase in LGU and insulin sensitivity (GDR) (r = 0.60, P < 0.02), suggesting that the most insulin-sensitive subjects had the greatest enhancement of LGU in response to augmentation of muscle perfusion. In separate groups of subjects, we also examined the relationship between muscle perfusion rate and glucose extraction (AVGdelta). Perfusion was either pharmacologically enhanced with Mch or reduced by intra-arterial infusion of the nitric oxide inhibitor N(G)-monomethyl-L-arginine during SS euglycemic hyperinsulinemia. Over the range of LBF, changes in AVGdelta were smaller than expected based on the noncapillary recruitment model of Renkin. Together, the data indicate that 1) muscle perfusion becomes more rate limiting to glucose uptake as insulin sensitivity increases and 2) insulin-mediated increments in muscle perfusion are accompanied by capillary recruitment. Thus, insulin-stimulated glucose uptake displays both permeability- and perfusion-limited glucose exchange properties.  相似文献   

10.
El-Assal ON  Radulescu A  Besner GE 《Surgery》2007,142(2):234-242
BACKGROUND: The gut is highly susceptible to injury after hemorrhagic shock and resuscitation (HS/R) because of progressive mesenteric hypoperfusion. The aim of the current study was to evaluate the effect of heparin-binding EGF-like growth factor (HB-EGF) on mesenteric microcirculatory blood flow and intestinal injury in rats subjected to HS/R. METHODS: HS/R was induced in adult rats, with some rats receiving HB-EGF (600 mug/kg) IV at the onset of resuscitation (HS/R+HB-EGF) and others receiving vehicle only (HS/R). FITC-dextran was administered intra-arterially to evaluate mesenteric microcirculation, and intestinal damage and restitution were evaluated histologically. Data were expressed as mean +/- SE, with P < .05 considered statistically significant. RESULTS: Microcirculatory blood flow was significantly reduced 1 hour after HS/R. HS/R+HB-EGF rats had significantly increased microcirculatory flow compared with HS/R rats at 1 hour (4.5 +/- 0.43 vs 2.64 +/- 0.46, P < .05) and 3 hours (8.04 +/- 1.58 vs 2.89 +/- 0.63, P < .05) after HS/R. HS/R+HB-EGF rats had significantly less intestinal damage compared with HS/R rats 3 hours after resuscitation (2.04 +/- 0.5 vs 3.08 +/- 0.5, P < .05), along with significantly fewer incompetent (nonresurfaced, nonhealed) villi, which is indicative of improved restitution. CONCLUSIONS: HB-EGF significantly improved postresuscitation microcirculatory blood flow in rats subjected to HS/R, associated with significantly decreased intestinal damage and increased restitution. These results suggest that HB-EGF may be a useful therapeutic agent that improves intestinal blood flow in patients with intestinal injury secondary to hemorrhagic shock.  相似文献   

11.
Pharmacological doses of insulin increase limb blood flow and enhance tissue recruitment for small solutes such as glucose. We investigated whether elevating insulin within the physiological range (68 +/- 6 vs. 425 +/- 27 pmol/l) can influence tissue recruitment of [(14)C]inulin, an inert diffusionary marker of molecular weight similar to that of insulin itself. During hyperinsulinemic-euglycemic clamps, transport parameters and distribution volumes of [(14)C]inulin were determined in conscious dogs by applying a three-compartment model to the plasma clearance data of intravenously injected [(14)C]inulin (0.8 microCi/kg). In a second set of experiments in anesthetized dogs with direct cannulation of the hindlimb skeletal muscle lymphatics, we measured a possible effect of physiological hyperinsulinemia on the response of the interstitial fluid of skeletal muscle to intravenously injected [(14)C]inulin and compared this response with the model prediction from plasma data. Physiological hyperinsulinemia caused a 48 +/- 10% (P < 0.005) and a 35 +/- 15% (P < 0.05) increase of peripheral and splanchnic interstitial distribution volumes for [(14)C]inulin. Hindlimb lymph measurements directly confirmed the ability of insulin to enhance the access of macromolecules to the peripheral interstitial fluid compartment. The present results show that physiological hyperinsulinemia will enhance the delivery of a substance of similar molecular size to insulin to previously less intensively perfused regions of insulin-sensitive tissues. Our data suggest that the delivery of insulin itself to insulin-sensitive tissues could be a mechanism of insulin action on cellular glucose uptake independent of and possibly synergistic with either enhanced blood flow distribution or GLUT4 transporter recruitment to enhance glucose utilization. Because of the differences between inulin and insulin itself, whether delivery of the bioactive hormone is increased remains speculative.  相似文献   

12.
Insulin and exercise have been shown to activate glucose transport at least in part via different signaling pathways. However, it is unknown whether insulin resistance is associated with a defect in the ability of an acute bout of exercise to enhance muscle glucose uptake in vivo. We compared the abilities of insulin and isometric exercise to stimulate muscle blood flow and glucose uptake in 12 men with type 1 diabetes (age 24 +/- 1 years, BMI 23.0 +/- 0.4 kg/m(2)) and in 11 age- and weight-matched nondiabetic men (age 25 +/- 1 years, BMI 22.3 +/- 0.6 kg/m(2)) during euglycemic hyperinsulinemia (1 mU. kg(-1). min(-1) insulin infusion for 150 min). One-legged exercise was performed at an intensity of 10% of maximal isometric force for 105 min (range 45-150). Rates of muscle blood flow, oxygen consumption, and glucose uptake were quantitated simultaneously in both legs using [(15)O]water, [(15)O]oxygen, [(18)F]-2-fluoro-2-deoxy-D-glucose, and positron emission tomography. Resting rates of oxygen consumption were similar during hyperinsulinemia between the groups (2.4 +/- 0.3 vs. 2.0 +/- 0.5 ml. kg(-1) muscle. min(-1); normal subjects versus patients with type 1 diabetes, NS), and exercise increased oxygen consumption similarly in both groups (25.3 +/- 4.3 vs. 20.1 +/- 3.0 ml. kg(-1) muscle. min(-1), respectively, NS). Rates of insulin-stimulated muscle blood flow and the increments in muscle blood flow induced by exercise were also similar in normal subjects (129 +/- 14 ml. kg(-1). min(-1)) and in patients with type 1 diabetes (115 +/- 12 ml. kg(-1). min(-1)). The patients with type 1 diabetes exhibited resistance to both insulin stimulation of glucose uptake (34 +/- 6 vs. 76 +/- 9 micromol. kg(-1) muscle. min(-1), P < 0.001) and also to the exercise-induced increment in glucose uptake (82 +/- 15 vs. 162 +/- 29 micromol. kg(-1) muscle. min(-1), P < 0.05). We conclude that the ability of exercise to increase insulin-stimulated glucose uptake in vivo is blunted in patients with insulin-resistant type 1 diabetes compared with normal subjects. This could be caused by either separate or common defects in exercise- and insulin-stimulated pathways.  相似文献   

13.
Previous studies have suggested an involvement of inducible nitric oxide synthase (iNOS) in obesity, but the relation, if any, between this and mechanisms underlying endothelial dysfunction in obesity is unknown. We studied mice fed an obesogenic high-fat or standard diet for up to 8 weeks. Obesity was associated with elevated blood pressure; resistance to the glucoregulatory actions of insulin; resistance to the vascular actions of insulin, assessed as the reduction in phenylephrine constrictor response of aortic rings after insulin preincubation (lean -21.7 +/- 11.5 vs. obese 18.2 +/- 15.5%; P < 0.05); and evidence of reactive oxygen species (ROS)-dependent vasodilatation in response to acetylcholine in aortic rings (change in maximal relaxation to acetylcholine after exposure to catalase: lean -2.1 +/- 6.0 vs. obese -15.0 +/- 3.8%; P = 0.04). Obese mice had increased expression of iNOS in aorta, with evidence of increased vascular NO production, assessed as the increase in maximal constriction to phenylephrine after iNOS inhibition with 1400W (lean -3.5 +/- 9.1 vs. obese 42.1 +/- 11.2%; P < 0.001). To further address the role of iNOS in obesity-induced vascular and metabolic dysfunction, we studied the effect of a high-fat diet in iNOS knockout mice (iNOS KO). Obese iNOS KO mice were protected against the development of resistance to insulin's glucoregulatory and vascular effects (insulin-dependent reduction in maximal phenylephrine response: obese wild-type 11.2 +/- 15.0 vs. obese iNOS KO -20.0 +/- 7.7%; P = 0.02). However, obese iNOS KO mice remained hypertensive (124.0 +/- 0.7 vs. 114.9 +/- 0.5 mmHg; P < 0.01) and had evidence of increased vascular ROS production. Although these data support iNOS as a target to protect against the adverse effects of obesity on glucoregulation and vascular insulin resistance, iNOS inhibition does not prevent the development of raised blood pressure or oxidative stress.  相似文献   

14.
To examine the molecular mechanisms by which plasma amino acid elevation impairs insulin action, we studied seven healthy men twice in random order during infusion of an amino acid mixture or saline (total plasma amino acid approximately 6 vs. approximately 2 mmol/l). Somatostatin-insulin-glucose clamps created conditions of low peripheral hyperinsulinemia ( approximately 100 pmol/l, 0-180 min) and prandial-like peripheral hyperinsulinemia ( approximately 430 pmol/l, 180-360 min). At low peripheral hyperinsulinemia, endogenous glucose production (EGP) did not change during amino acid infusion but decreased by approximately 70% during saline infusion (EGP(150-180 min) 11 +/- 1 vs. 3 +/- 1 mumol . kg(-1) . min(-1), P = 0.001). Prandial-like peripheral hyperinsulinemia completely suppressed EGP during both protocols, whereas whole-body rate of glucose disappearance (R(d)) was approximately 33% lower during amino acid infusion (R(d) (330-360 min) 50 +/- 4 vs. 75 +/- 6 mumol . kg(-1) . min(-1), P = 0.002) indicating insulin resistance. In skeletal muscle biopsies taken before and after prandial-like peripheral hyperinsulinemia, plasma amino acid elevation markedly increased the ability of insulin to activate S6 kinase 1 compared with saline infusion ( approximately 3.7- vs. approximately 1.9-fold over baseline). Furthermore, amino acid infusion increased the inhibitory insulin receptor substrate-1 phosphorylation at Ser312 and Ser636/639 and decreased insulin-induced phosphoinositide 3-kinase activity. However, plasma amino acid elevation failed to reduce insulin-induced Akt/protein kinase B and glycogen synthase kinase 3alpha phosphorylation. In conclusion, amino acids impair 1) insulin-mediated suppression of glucose production and 2) insulin-stimulated glucose disposal in skeletal muscle. Our results suggest that overactivation of the mammalian target of rapamycin/S6 kinase 1 pathway and inhibitory serine phosphorylation of insulin receptor substrate-1 underlie the impairment of insulin action in amino acid-infused humans.  相似文献   

15.
In type 1 diabetic patients, acute loss of metabolic control is associated with increased blood flow, which is believed to favor the development of long-term complications. The mechanisms for inappropriate vasodilation are partially understood, but a role of endothelium-derived nitric oxide (NO) production can be postulated. We assessed, in type 1 diabetic patients, the effect of the acute loss of metabolic control and its restoration on forearm endothelial function in 13 type 1 diabetic patients who were studied under conditions of mild ketosis on two different occasions. In study 1, after basal determination, a rapid amelioration of the metabolic picture was obtained by insulin infusion. In study 2, seven type 1 diabetic patients underwent the same experimental procedure, except that fasting plasma glucose was maintained constant throughout. Basal plasma venous concentrations of nitrites/nitrates (NO2- + NO3-) were determined both before and after intravenous insulin infusion. Endothelium-dependent and -independent vasodilation of the brachial artery was assessed by an intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) and sodium nitroprusside (SNP), respectively. The same parameters were determined in 13 control subjects at baseline conditions and during a hyperinsulinemic-euglycemic glucose clamp. Baseline forearm blood flow (4.89 +/- 0.86 vs. 3.65 +/- 0.59 ml x (100 ml tissue)(-1) x min(-1)) and NO2- + NO3- concentration (30 +/- 8 vs. 24 +/- 3 micromol/l) were higher in type 1 diabetic patients than in control subjects (P < 0.05). Insulin infusion was associated with lower forearm blood flow and plasma (NO2- + NO3-) concentration (P < 0.05), irrespective of the prevailing glucose levels, as compared with patients under ketotic conditions. The responses to L-NMMA were significantly lower in type 1 diabetic patients during euglycemia and hyperglycemic hyperinsulinemia (-11 +/- 5 and -10 +/- 4%, respectively, of the ratio of the infused arm to the control arm) than in control subjects at baseline (-18 +/- 6%, P < 0.05) and during hyperinsulinemia (-32 +/- 11%, P < 0.01). We conclude that the acute loss of metabolic control is associated with a functional disturbance of the endothelial function characterized by hyperemia and increased NO release during ketosis and blunted NO-mediated vasodilatory response during restoration of metabolic control by intravenous insulin. This functional alteration is unlikely to be explained by hyperglycemia itself.  相似文献   

16.
Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity   总被引:5,自引:0,他引:5  
The kinetics of in vivo insulin-mediated glucose uptake in human obesity have not been previously studied. To examine this, we used the glucose-clamp technique to measure whole-body and leg muscle glucose uptake in seven lean and six obese men during hyperinsulinemia (approximately 2000 pM) at four glucose levels (approximately 4.5, approximately 8.3, approximately 13.5, and approximately 23.5 mM). To measure leg glucose uptake, the femoral artery and vein were catheterized, and blood flow was measured by thermodilution (leg glucose uptake = arteriovenous glucose difference x blood flow). With this approach, we found that rates of whole-body and leg glucose uptake were significantly lower in obese than in lean subjects at each glucose plateau. Leg blood flow rates increased from 4.3 +/- 0.4 to 6.5 +/- 0.8 dl/min over the range of glucose in lean subjects (P less than 0.05) but remained unchanged in obese subjects. The apparent maximal capacity (Vmax), based on whole-body and leg glucose uptake, was reduced in obese compared with lean subjects, but the apparent Km was similar in the lean and obese subjects (6-9 mM, NS). To assess the affinity of muscle for glucose extraction independent of changes in muscle plasma flow, we determined the mean half-maximal effective glucose concentration (EG50) and found it was similar in the lean and obese subjects (6.0 +/- 0.3 vs. 6.0 +/- 0.8 mM, NS). We conclude that 1) the kinetics of in vivo insulin-mediated glucose uptake in skeletal muscle in human obesity are characterized by reduced Vmax but normal Km; 2) the EG50 for insulin-mediated glucose extraction in skeletal muscle was 6 mM in both lean and obese subjects, consistent with a Km characteristic of the glucose-transport system; 3) obese subjects were unable to generate increases in blood flow in response to hyperglycemia under hyperinsulinemic conditions, and this contributed significantly to lower rates of leg and whole-body glucose uptake.  相似文献   

17.
Background: Hypoperfusion and necrosis in free flaps used to correct tissue defects remain important clinical problems. The authors studied the effects of two vasoactive drugs, sodium nitroprusside and phenylephrine, which are used frequently in anesthetic practice, on total blood flow and microcirculatory flow in free musculocutaneous flaps during general anesthesia.

Methods: In a porcine model (n = 9) in which clinical conditions for anesthesia and microvascular surgery were simulated, latissimus dorsi free flaps were transferred to the lower extremity. Total blood flow in the flaps was measured using ultrasound flowmetry and microcirculatory flow was measured using laser Doppler flowmetry. The effects of sodium nitroprusside and phenylephrine were studied during local infusion through the feeding artery of the flap and during systemic administration.

Results: Systemic sodium nitroprusside caused a 30% decrease in mean arterial pressure, but cardiac output did not change. The total flow in the flap decreased by 40% (P < 0.01), and microcirculatory flow decreased by 23% in the skin (P < 0.01) and by 30% in the muscle (P < 0.01) of the flap. Sodium nitroprusside infused locally into the flap artery increased the total flap flow by 20% (P < 0.01). Systemic phenylephrine caused a 30% increase in mean arterial pressure, whereas heart rate, cardiac output, and flap blood flow did not change. Local phenylephrine caused a 30% decrease (P < 0.01) in the total flap flow.  相似文献   


18.
Insulin resistance is frequently associated with increased lipid content in muscle and liver. Insulin excess stimulates tissue lipid accumulation. To examine the effects of insulin and improved glycemia on insulin sensitivity and intracellular lipids, we performed stepped (1, 2, and 4 mU x min(-1) x kg(-1)) hyperinsulinemic-euglycemic clamps in eight type 2 diabetic and six nondiabetic control subjects at baseline and after 12 and 67 h of insulin-mediated near-normoglycemia (118 +/- 7 mg/dl). Intrahepatocellular lipids (IHCLs) and intramyocellular lipids (IMCLs) of soleus (IMCL-S) and tibialis anterior muscle (IMCL-TA) were measured with (1)H nuclear magnetic resonance spectroscopy. At baseline, nondiabetic subjects had an approximate twofold higher insulin sensitivity (P < 0.02) and lower IHCLs than diabetic patients (5.8 +/- 1.2 vs. 18.3 +/- 4.2%, P < 0.03), in whom IMCL-TA negatively correlated with insulin sensitivity (r = -0.969, P < 0.001). After a 67-h insulin infusion in diabetic patients, IMCL-S and IHCLs were increased (P < 0.05) by approximately 36 and approximately 18%, respectively, and correlated positively with insulin sensitivity (IMCL-S: r = 0.982, P < 0.0005; IHCL: r = 0.865, P < 0.03), whereas fasting glucose production, measured with D-[6,6-(2)H(2)]glucose, decreased by approximately 10% (P < 0.04). In conclusion, these results indicate that IMCLs relate to insulin resistance in type 2 diabetic patients at baseline and that insulin-mediated near-normoglycemia for approximately 3 days reduces fasting glucose production but stimulates lipid accumulation in liver and muscle without affecting insulin sensitivity.  相似文献   

19.
The kinetics of insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU) in humans have not been well defined. We used the glucose-clamp technique to measure rates of whole-body and leg muscle glucose uptake in six healthy lean men during hyperinsulinemia (approximately 460 pM) to study IMGU and during somatostatin-induced insulinopenia to study NIMGU at four glucose levels (4.5, 9, 12, and 21 mM). To measure leg glucose uptake, the femoral artery and vein were catheterized, and blood flow was measured by thermodilution (leg glucose uptake = arteriovenous glucose difference [A-VG] x blood flow). With this approach, we found that, during hyperinsulinemia, both whole-body and leg glucose uptake increased in a curvilinear fashion at every glucose level, the highest glucose uptake values obtained being 139 +/- 17 mumol.kg-1.min-1 and 3656 +/- 931 mumol.min-1.leg-1, respectively. Leg blood flow increased twofold from 6.0 +/- 1.7 to 11.7 +/- 3.1 dl/min (P less than 0.01) over the range of glucose and was correlated with whole-body glucose uptake (r = 0.55, P less than 0.005). Leg muscle glucose extraction, independent of changes in blood flow, which is reflected by the A-VG, saturated over the range of glucose (1.28 +/- 0.12, 2.22 +/- 0.30, 2.92 +/- 0.42, 3.02 +/- 0.41 mM, NS between last 2 values) with a half-maximal effective glucose concentration (EG50) of 5.3 +/- 0.4 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To evaluate the metabolic consequences of pancreas transplantation with systemic venous drainage on beta-cell function, we examined insulin and C-peptide responses to glucose and arginine in type I (insulin-dependent) diabetic pancreas recipients (n = 30), nondiabetic kidney recipients (n = 8), and nondiabetic control subjects (n = 28). Basal insulin levels were 66 +/- 5 pM in control subjects, 204 +/- 18 pM in pancreas recipients (P less than 0.0001 vs. control), and 77 +/- 17 pM in kidney recipients. Acute insulin responses to glucose were 416 +/- 44 pM in control subjects, 763 +/- 91 pM in pancreas recipients (P less than 0.01 vs. control), and 589 +/- 113 pM in kidney recipients (NS vs. control). Basal and stimulated insulin levels in two pancreas recipients with portal venous drainage were normal. Integrated acute C-peptide responses were not statistically different (25.3 +/- 4.3 nM/min in pancreas recipients, 34.2 +/- 5.5 nM/min in kidney recipients, and 23.7 +/- 2.1 nM/min in control subjects). Similar insulin and C-peptide results were obtained with arginine stimulation, and both basal and glucose-stimulated insulin-C-peptide ratios in pancreas recipients were significantly greater than in control subjects. We conclude that recipients of pancreas allografts with systemic venous drainage have elevated basal and stimulated insulin levels and that these alterations are primarily due to alterations of first-pass hepatic insulin clearance, although insulin resistance secondary to immunosuppressive therapy (including prednisone) probably plays a contributing role. To avoid hyperinsulinemia and its possible long-term adverse consequences, transplantation of pancreas allografts into sites with portal rather than systemic venous drainage should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号