首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: A positron emission tomography (PET) study has suggested that dopamine transporter density of the caudate/putamen is reduced in methamphetamine users. The authors measured nucleus accumbens and prefrontal cortex density, in addition to caudate/putamen density, in methamphetamine users and assessed the relation of these measures to the subjects' clinical characteristics. METHOD: PET and 2-beta-carbomethoxy-3beta-(4-[(11)C] fluorophenyl)tropane, a dopamine transporter ligand, were used to measure dopamine transporter density in 11 male methamphetamine users and nine male comparison subjects who did not use methamphetamine. Psychiatric symptoms in methamphetamine users were evaluated by using the Brief Psychiatric Rating Scale and applying a craving score. RESULTS: The dopamine transporter density in all three of the regions observed was significantly lower in the methamphetamine users than the comparison subjects. The severity of psychiatric symptoms was significantly correlated with the duration of methamphetamine use. The dopamine transporter reduction in the caudate/putamen and nucleus accumbens was significantly associated with the duration of methamphetamine use and closely related to the severity of persistent psychiatric symptoms. CONCLUSIONS: These findings suggest that longer use of methamphetamine may cause more severe psychiatric symptoms and greater reduction of dopamine transporter density in the brain. They also show that the dopamine transporter reduction may be long-lasting, even if methamphetamine use ceases. Further, persistent psychiatric symptoms in methamphetamine users, including psychotic symptoms, may be attributable to the reduction of dopamine transporter density.  相似文献   

2.
OBJECTIVE: Orbitofrontal cortex regional cerebral blood flow (rCBF) is lower in cocaine-dependent subjects than in non-cocaine-dependent subjects. Performance on the Gambling Task, a test of decision making, is a putative correlate of orbitofrontal cortex activity and is reportedly impaired in drug-dependent subjects. The authors tested the hypothesis that lower Gambling Task scores would be associated with lower resting orbitofrontal cortex rCBF in cocaine-dependent subjects. METHOD: Fifteen healthy comparison subjects and 13 abstinent cocaine-dependent subjects underwent resting single photon emission computed tomography to measure rCBF, after which they completed the Gambling Task. RESULTS: Resting anterior cingulate and left dorsolateral prefrontal cortex rCBF significantly correlated with performance on the Gambling Task, but orbitofrontal cortex rCBF did not. Left dorsolateral prefrontal cortex rCBF was lower in the cocaine-dependent subjects than in the comparison subjects. CONCLUSIONS: Resting anterior cingulate and dorsolateral prefrontal cortex rCBF is significantly related to decision making, as assessed by the Gambling Task.  相似文献   

3.
OBJECTIVE: The role of dopamine in the addictive process (loss of control and compulsive drug intake) is poorly understood. A consistent finding in drug-addicted subjects is a lower level of dopamine D2 receptors. In cocaine abusers, low levels of D2 receptors are associated with a lower level of metabolism in the orbitofrontal cortex. Because the orbitofrontal cortex is associated with compulsive behaviors, its disruption may contribute to compulsive drug intake in addicted subjects. This study explored whether a similar association occurs in methamphetamine abusers. METHOD: Fifteen methamphetamine abusers and 20 non-drug-abusing comparison subjects were studied with positron emission tomography (PET) and [11C]raclopride to assess the availability of dopamine D2 receptors and with [18F]fluorodeoxyglucose to assess regional brain glucose metabolism, a marker of brain function. RESULTS: Methamphetamine abusers had a significantly lower level of D2 receptor availability than comparison subjects (a difference of 16% in the caudate and 10% in the putamen). D2 receptor availability was associated with metabolic rate in the orbitofrontal cortex in abusers and in comparison subjects. CONCLUSIONS: Lower levels of dopamine D2 receptor availability have been previously reported in cocaine abusers, alcoholics, and heroine abusers. This study extends this finding to methamphetamine abusers. The association between level of dopamine D2 receptors and metabolism in the orbitofrontal cortex in methamphetamine abusers, which replicates previous findings in cocaine abusers, suggests that D2 receptor-mediated dysregulation of the orbitofrontal cortex could underlie a common mechanism for loss of control and compulsive drug intake in drug-addicted subjects.  相似文献   

4.
OBJECTIVE: Ketamine is a noncompetitive antagonist at the glutamatergic N-methyl-D-aspartate (NMDA) receptor that is used in human and animal medicine as an injectable anesthetic. The illegal use of ketamine as a recreational drug is rapidly growing. Very little is currently known about the consequences of repeated ketamine exposure in the human brain. Animal studies indicate that the prefrontal dopaminergic system is particularly vulnerable to the toxic effects of repeated administration of NMDA antagonists. In this study, dopamine D1 receptor availability was assessed by using positron emission tomography and the selective D1 receptor radioligand [11C]NNC 112 in a group of 14 recreational chronic ketamine users and matched healthy subjects. METHOD: History of ketamine abuse was confirmed in subjects by hair analysis. [11C]NNC 112 binding potential was measured with kinetic analysis using the arterial input function. RESULTS: Dorsolateral prefrontal cortex D1 receptor availability was significantly up-regulated in chronic ketamine users ([11C]NNC 112 binding potential: mean=1.68 ml/g, SD=0.40) relative to comparison subjects (mean=1.35 ml/g, SD=0.35). No significant differences were noted in other cortical, limbic, or striatal regions. In the chronic ketamine user group, dorsolateral prefrontal cortex [11C]NNC 112 binding potential up-regulation was significantly correlated with the number of vials of ketamine (with a vial representing approximately 200-300 mg of ketamine) used per week. CONCLUSIONS: Chronic ketamine users exhibited a regionally selective up-regulation of D1 receptor availability in the dorsolateral prefrontal cortex, a phenomenon observed following chronic dopamine depletion in animal studies. These data suggest that the repeated use of ketamine for recreational purposes affects prefrontal dopaminergic transmission, a system critically involved in working memory and executive function.  相似文献   

5.
CONTEXT: In animals, methamphetamine is known to have a neurotoxic effect on serotonin neurons, which have been implicated in the regulation of mood, anxiety, and aggression. It remains unknown whether methamphetamine damages serotonin neurons in humans. OBJECTIVE: To investigate the status of brain serotonin neurons and their possible relationship with clinical characteristics in currently abstinent methamphetamine abusers. DESIGN: Case-control analysis. SETTING: A hospital research center. PARTICIPANTS: Twelve currently abstinent former methamphetamine abusers (5 women and 7 men) and 12 age-, sex-, and education-matched control subjects recruited from the community. INTERVENTIONS: The brain regional density of the serotonin transporter, a structural component of serotonin neurons, was estimated using positron emission tomography and trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652). Estimates were derived from region-of-interest and statistical parametric mapping methods, followed by within-case analysis using the measures of clinical variables. MAIN OUTCOME MEASURES: The duration of methamphetamine use, the magnitude of aggression and depressive symptoms, and changes in serotonin transporter density represented by the [(11)C](+)McN-5652 distribution volume. RESULTS: Methamphetamine abusers showed increased levels of aggression compared with controls. Region-of-interest and statistical parametric mapping analyses revealed that the serotonin transporter density in global brain regions (eg, the midbrain, thalamus, caudate, putamen, cerebral cortex, and cerebellum) was significantly lower in methamphetamine abusers than in control subjects, and this reduction was significantly inversely correlated with the duration of methamphetamine use. Furthermore, statistical parametric mapping analyses indicated that the density in the orbitofrontal, temporal, and anterior cingulate areas was closely associated with the magnitude of aggression in methamphetamine abusers. CONCLUSIONS: Protracted abuse of methamphetamine may reduce the density of the serotonin transporter in the brain, leading to elevated aggression, even in currently abstinent abusers.  相似文献   

6.
BACKGROUND: Mood disturbances in methamphetamine (MA) abusers likely influence drug use, but the neurobiological bases for these problems are poorly understood. OBJECTIVE: To assess regional brain function and its possible relationships with negative affect in newly abstinent MA abusers. DESIGN: Two groups were compared by measures of mood and cerebral glucose metabolism ([18F]fluorodeoxyglucose positron emission tomography) during performance of a vigilance task. SETTING: Participants were recruited from the general community to a research center. PARTICIPANTS: Seventeen abstaining (4-7 days) MA abusers (6 women) were compared with 18 control subjects (8 women). MAIN OUTCOME MEASURES: Self-reports of depressive symptoms and anxiety were measured, as were global and relative glucose metabolism in the orbitofrontal, cingulate, lateral prefrontal, and insular cortices and the amygdala, striatum, and cerebellum. RESULTS: Abusers of MA provided higher self-ratings of depression and anxiety than control subjects and differed significantly in relative regional glucose metabolism: lower in the anterior cingulate and insula and higher in the lateral orbitofrontal area, middle and posterior cingulate, amygdala, ventral striatum, and cerebellum. In MA abusers, self-reports of depressive symptoms covaried positively with relative glucose metabolism in limbic regions (eg, perigenual anterior cingulate gyrus and amygdala) and ratings of state and trait anxiety covaried negatively with relative activity in the anterior cingulate cortex and left insula. Trait anxiety also covaried negatively with relative activity in the orbitofrontal cortex and positively with amygdala activity. CONCLUSIONS: Abusers of MA have abnormalities in brain regions implicated in mood disorders. Relationships between relative glucose metabolism in limbic and paralimbic regions and self-reports of depression and anxiety in MA abusers suggest that these regions are involved in affective dysregulation and may be an important target of intervention for MA dependence.  相似文献   

7.
BACKGROUND: This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. METHODS: Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. RESULTS: Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II-IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V-VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. CONCLUSIONS: These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression.  相似文献   

8.
Objective:  To investigate neural activity in prefrontal cortex and amygdala during bipolar depression.
Methods:  Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis.
Results:  Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant.
Conclusions:  Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder.  相似文献   

9.
OBJECTIVE: Behavioral and social impairments have been frequently reported after damage to the prefrontal cortex in humans. This study evaluated social perception in patients with prefrontal cortex lesions and compared their performance on a social perception task with that of healthy volunteers. METHOD: Thirty-three patients with prefrontal cortex lesions and 31 healthy volunteers were tested with the Interpersonal Perception Task. In this task, subjects viewed videotaped social interactions and relied primarily on nonverbal cues to make interpersonal judgments, such as determining the degree of intimacy between two persons depicted in the videotaped scene. Patients with prefrontal cortex lesions were classified according to lesion involvement of specific regions, including the orbitofrontal cortex, dorsolateral prefrontal cortex, and anterior cingulate cortex. RESULTS: Relative to the comparison subjects, patients whose lesions involved the orbitofrontal cortex demonstrated impaired social perception. Contrary to predictions, patients with lesions in the dorsolateral prefrontal cortex also showed deficits in using social cues to make interpersonal judgments. All patients, particularly those with lesions in the dorsolateral prefrontal cortex, showed poorer insight into their deficits, relative to healthy volunteers. CONCLUSIONS: These findings of deficits in social perception after damage to the orbitofrontal cortex extend previous clinical and experimental evidence of damage-related impairment in other aspects of social cognition, such as the ability to accurately evaluate emotional facial expressions. In addition, the results suggest that the dorsolateral prefrontal cortex is recruited when inferences about social interactions are made on the basis of nonverbal information.  相似文献   

10.
OBJECTIVE: Abnormalities in prefrontal cortical gamma-aminobutyric acid (GABA) neurotransmission may contribute to cognitive dysfunction in schizophrenia. The density of chandelier neuron axon terminals (cartridges) immunoreactive for the GABA membrane transporter (GAT-1) has been reported to be reduced in the dorsolateral prefrontal cortex of schizophrenic subjects. Because cartridges regulate the output of pyramidal cells, this study analyzed the laminar distribution of GAT-1-immunoreactive cartridges to determine whether certain subpopulations of pyramidal cells are preferentially affected. METHOD: Measurements were made of the density of GAT-1 -immunoreactive cartridges in layers 2-3a, 3b-4, and 6 of dorsolateral prefrontal cortex area 46 in 30 subjects with schizophrenia, each of whom was matched to one normal and one psychiatric comparison subject. GAT-1-immunoreactive cartridge density was also examined in monkeys chronically treated with haloperidol. RESULTS: Relative to both comparison groups, the schizophrenic subjects had significantly lower GAT-1-immunoreactive cartridge density in layers 2-3a and 3b-4. The decrease was most common and most marked in layers 3b-4, where 80% of the schizophrenic subjects exhibited an average 50.1% decrease in cartridge density in comparison with the matched normal subjects. In contrast, GAT-1-immunoreactive cartridge density was unchanged in the haloperidol-treated monkeys. CONCLUSIONS: These findings demonstrate that the density of GAT-1-immunoreactive cartridges is reduced in the majority of schizophrenic subjects and that this alteration may most prominently affect the function of pyramidal cells located in the middle cortical layers. This abnormality may reflect a number of underlying deficits, including a primary defect in dorsolateral prefrontal cortex circuitry or a secondary response to altered thalamic input to this region.  相似文献   

11.
OBJECTIVE: The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD: Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS: Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS: These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.  相似文献   

12.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

13.
Brain metabolic changes during cigarette craving   总被引:18,自引:0,他引:18  
BACKGROUND: In functional brain imaging studies, exposure to cues related to cocaine, opiates, and alcohol in dependent individuals is associated with activation of the anterior cingulate gyrus, amygdala, orbitofrontal cortex, and dorsolateral prefrontal cortex. Craving for these substances positively correlates with activity in the orbitofrontal cortex, dorsolateral prefrontal cortex, and anterior insula. The objective of this study was to determine changes in regional cerebral glucose metabolism and correlations between craving and regional metabolism in heavy cigarette smokers exposed to cigarette-related cues. METHODS: Twenty heavy smokers (who smoked > or =20 cigarettes per day) and 20 nonsmoking control subjects underwent 2 fluorine 18-fluorodeoxyglucose positron emission tomography scans 10 days apart in randomized order: one while watching a videotape that presented cigarette-related cues and handling a cigarette, and the other while watching an educational (nature) videotape and handling a neutral object (pen). RESULTS: From the neutral to the cigarette cue scan, heavy smokers had greater increases than nonsmoking controls in relative glucose metabolism in the perigenual anterior cingulate gyrus spanning the midline. Significant positive correlations were found between intensity of craving and metabolism in the orbitofrontal cortex, dorsolateral prefrontal cortex, and anterior insula bilaterally. An unexpected positive association was found between craving and metabolism in the right sensorimotor cortex. CONCLUSIONS: Brain regions associated with arousal, compulsive repetitive behaviors, sensory integration, and episodic memory are activated during exposure to cigarette-related cues and cigarette craving. These regional brain activations and associations with craving are similar to findings with other addictive substances.  相似文献   

14.
Using salient pictures with aversive (AV) and non-aversive (NA) content, we probed limbic-emotional function in schizophrenia, testing specific hypotheses that the amygdala would exhibit abnormal activity and a relationship with positive symptoms. Fourteen schizophrenic patients and 13 healthy comparison subjects viewed pictures during [15O] water positron emission tomography (PET). Both groups reported identical subjective experience of the aversive stimuli and both activated right insula (AV-NA). The schizophrenic group showed greater activation of the medial prefrontal cortex (MPFC) for the AV-NA comparison. Control subjects activated bilateral amygdaloid and orbitofrontal regions for NA relative to a blank condition (simple visual fixation, BL), whereas schizophrenic subjects only activated left orbitofrontal cortex. Activity in the left amygdala correlated with positive symptoms in the patients. Both groups activated visual cortex, and the schizophrenic subjects exhibited less modulation throughout visual cortex for NA-BL, as well as more focused deficits in the left fusiform and left mid-occipital gyrus for AV-NA, possibly related to decreased eye movements in the schizophrenic patients. Overall, the data are consistent with a general failure to process salient stimuli in schizophrenia, and the findings support the involvement of the amygdala in the positive symptoms of schizophrenia.  相似文献   

15.
16.
The capacity to voluntarily regulate emotions is critical for mental health, especially when coping with aversive events. Several neuroimaging studies of emotion regulation found the amygdala to be a target for downregulation and prefrontal regions to be associated with downregulation. To characterize the role of prefrontal regions in bidirectional emotion regulation and to investigate regulatory influences on amygdala activity and peripheral physiological measures, a functional magnetic resonance imaging (fMRI) study with simultaneous recording of self-report, startle eyeblink, and skin conductance responses was carried out. Subjects viewed threat-related pictures and were asked to up- and downregulate their emotional responses using reappraisal strategies. While startle eyeblink responses (in successful regulators) and skin conductance responses were amplified during upregulation, but showed no consistent effect during downregulation, amygdala activity was increased and decreased according to the regulation instructions. Trial-by-trial ratings of regulation success correlated positively with activity in amygdala during upregulation and orbitofrontal cortex during downregulation. Downregulation was characterized by left-hemispheric activation peaks in anterior cingulate cortex, dorsolateral prefrontal cortex, and orbitofrontal cortex and upregulation was characterized by a pattern of prefrontal activation not restricted to the left hemisphere. Further analyses showed significant overlap of prefrontal activation across both regulation conditions, possibly reflecting cognitive processes underlying both up- and downregulation, but also showed distinct activations in each condition. The present study demonstrates that amygdala responses to threat-related stimuli can be controlled through the use of cognitive strategies depending on recruitment of prefrontal areas, thereby changing the subject's affective state.  相似文献   

17.
Neurobiologic processes in drug reward and addiction   总被引:8,自引:0,他引:8  
Neurophysiologic processes underlie the uncontrolled, compulsive behaviors defining the addicted state. These"hard-wired"changes in the brain are considered critical for the transition from casual to addictive drug use. This review of preclinical and clinical (primarily neuroimaging) studies will describe how the delineation between pleasure, reward, and addiction has evolved as our understanding of the biologic mechanisms underlying these processes has progressed. Although the mesolimbic dopaminergic efflux associated with drug reward was previously considered the biologic equivalent of pleasure, dopaminergic activation occurs in the presence of unexpected and novel stimuli (either pleasurable or aversive) and appears to determine the motivational state of wanting or expectation. The persistent release of dopamine during chronic drug use progressively recruits limbic brain regions and the prefrontal cortex, embedding drug cues into the amygdala (through glutaminergic mechanisms) and involving the amygdala, anterior cingulate, orbitofrontal cortex, and dorsolateral prefrontal cortex in the obsessive craving for drugs. The abstinent, addicted brain is subsequently primed to return to drug use when triggered by a single use of drug, contextual drug cues, craving, or stress, with each process defined by a relatively distinct brain region or neural pathway. The compulsive drive toward drug use is complemented by deficits in impulse control and decision making, which are also mediated by the orbitofrontal cortex and anterior cingulate. Within this framework, future targets for pharmacologic treatment are suggested.  相似文献   

18.
BACKGROUND: Dual frontolimbic brain pathology has been suggested as a possible correlate of impulsivity and aggressive behavior. One previous study reported volume loss of the hippocampus and the amygdala in patients with borderline personality disorder. We measured limbic and prefrontal brain volumes to test the hypothesis that frontolimbic brain pathology might be associated with borderline personality disorder. METHODS: Eight unmedicated female patients with borderline personality disorder and eight matched healthy controls were studied. The volumes of the hippocampus, amygdala, and orbitofrontal, dorsolateral prefrontal, and anterior cingulate cortex were measured in the patients using magnetic resonance imaging volumetry and compared to those obtained in the controls. RESULTS: We found a significant reduction of hippocampal and amygdala volumes in borderline personality disorder. There was a significant 24% reduction of the left orbitofrontal and a 26% reduction of the right anterior cingulate cortex in borderline personality disorder. Only left orbitofrontal volumes correlated significantly with amygdala volumes. CONCLUSIONS: While volume loss of a single brain structure like the hippocampus is quite an unspecific finding in neuropsychiatry, the patterns of volume loss of the amygdala, hippocampus, and left orbitofrontal and right anterior cingulate cortex might differentiate borderline personality disorder from other neuropsychiatric conditions.  相似文献   

19.
OBJECTIVE: The dorsolateral prefrontal cortex and the anterior cingulate cortex are critical components of the brain circuitry underlying executive control. The objective of this study was to investigate control-related dorsolateral prefrontal cortex functioning and conflict-related anterior cingulate cortex functioning in a group of never medicated first-episode schizophrenia patients to determine whether both regions show dysfunction at illness onset. A second objective was to assess short-term effects of atypical antipsychotic medication on dorsolateral prefrontal cortex and anterior cingulate cortex functioning. METHOD: First-episode schizophrenia patients (N=23) and healthy comparison subjects (N=24) underwent event-related fMRI and performed a cognitive task designed to functionally dissociate the two regions. Four weeks after initiation of pharmacotherapy for patients, a subset of 11 patients and 16 comparison subjects underwent a repeat assessment. RESULTS: At baseline, patients exhibited hypoactivation in the dorsolateral prefrontal cortex and anterior cingulate cortex. After 4 weeks of antipsychotic treatment, the patients demonstrated improved functioning in the anterior cingulate cortex but not in the dorsolateral prefrontal cortex. CONCLUSIONS: These findings confirm the presence of dorsolateral prefrontal cortex dysfunction early in the course of schizophrenia and suggest that anterior cingulate cortex functioning may be altered at illness onset as well. Results also suggest that anterior cingulate cortex functioning may be especially sensitive to remedial antipsychotic treatment effects. These findings are consistent with an emerging literature documenting short-term benefits of atypical antipsychotic medication for the neural circuitry underlying cognitive deficits in schizophrenia.  相似文献   

20.
Successful control of affect partly depends on the capacityto modulate negative emotional responses through the use ofcognitive strategies (i.e., reappraisal). Recent studies suggestthe involvement of frontal cortical regions in the modulationof amygdala reactivity and the mediation of effective emotionregulation. However, within-subject inter-regional connectivitybetween amygdala and prefrontal cortex in the context of affectregulation is unknown. Here, using psychophysiological interactionanalyses of functional magnetic resonance imaging data, we showthat activity in specific areas of the frontal cortex (dorsolateral,dorsal medial, anterior cingulate, orbital) covaries with amygdalaactivity and that this functional connectivity is dependenton the reappraisal task. Moreover, strength of amygdala couplingwith orbitofrontal cortex and dorsal medial prefrontal cortexpredicts the extent of attenuation of negative affect followingreappraisal. These findings highlight the importance of functionalconnectivity within limbic-frontal circuitry during emotionregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号