首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vaccination against nicotine to elicit the production of nicotine-specific antibodies is a potential treatment for tobacco addiction which reduces nicotine distribution from serum to brain. Vaccination of pregnant rats also reduces the distribution of maternally-administered nicotine to the fetal brain. Whether this is due to maternal antibody reducing the transfer of nicotine from mother to fetus, or to fetal antibody altering the distribution of nicotine within the fetus, is not clear. In the current study, passive immunization of rats with the murine monoclonal nicotine-specific antibody Nic311 was used as a surrogate for vaccination because antibody transfer to the fetus was anticipated to be lower than with vaccination. Pregnant rats received nicotine from gestational day (GD) 18-20 as frequent i.v. boluses to simulate nicotine exposure from smoking. Nic311 was administered at doses of 30, 80 or 240 mg/kg on GD 19. Fetal serum Nic311 levels on GD 20 were <3% of concurrent maternal levels, but concentrations of up to 20 ug/ml in fetal serum were obtained owing to the very high levels in maternal serum. Accumulation of the chronically administered nicotine, measured on GD 20, was not changed by Nic311 treatment in either maternal or fetal brain. The early distribution of nicotine to maternal brain, measured 5 min after a dose, was markedly reduced by Nic311, while the early distribution of nicotine to whole fetus and fetal brain was not substantially altered. These data suggest that the limited transfer of Nic311 to the fetus in turn limits the ability of Nic311 to reduce nicotine distribution to the fetal brain.  相似文献   

2.
Vaccination of rats against nicotine reduces nicotine distribution to brain even at nicotine doses greatly exceeding the estimated binding capacity of the available antibody. This observation suggests a differential effect by which vaccination reduces nicotine distribution to brain to a greater extent than to other tissues. To test this hypothesis, vaccinated rats received a single intravenous nicotine dose equal to twice the estimated binding capacity of nicotine-specific antibody in vaccinated rats. The total and bound serum nicotine concentrations were higher in the vaccinated rats compared to controls, while the unbound serum nicotine concentration was lower. Distribution of nicotine to brain was reduced in vaccinated rats in a time-dependent manner, with a greater reduction at 1 min (64%) than at 25 min (45%). Vaccination reduced nicotine distribution to muscle, testis, spleen, liver, heart, and kidney, but to a lesser extent than to brain, while nicotine distribution to fat was increased. Chronically infused nicotine showed a similarly altered pattern of tissue distribution in vaccinated rats, but differences were in general smaller than after a single nicotine dose; brain nicotine concentration was 24% lower in vaccinated rats, while lung nicotine concentration was higher. The presence of nicotine-specific antibody in tissues may have contributed to the increased nicotine concentrations in fat and lung. These data suggest that vaccination reduces nicotine distribution to brain not only by sequestering nicotine in serum but also by redirecting tissue distribution disproportionately away from brain, such that nicotine concentrations are reduced to a greater extent in brain than in other tissues.  相似文献   

3.
Preclinical models of nicotine vaccine pharmacology have relied on i.v. or s.c. administration of nicotine. Models using cigarette smoke inhalation might more accurately simulate nicotine exposure in smokers. Nicotine vaccine effects were examined in rats using two cigarette smoke exposure models: a 10 min nose-only exposure (NSE) producing serum nicotine levels equivalent to the nicotine boost from 1 cigarette in a smoker, and a 2 h whole-body exposure (WBE) producing serum nicotine levels similar to those associated with regular mid-day smoking. Vaccination prior to 10 min smoke NSE reduced nicotine distribution to brain by 90%, comparable to its effect on nicotine administered i.v. Vaccination prior to 2 h smoke WBE reduced nicotine distribution to brain by 35%. The nicotine concentration in broncheoalveolar lavage (BAL) fluid obtained after 2 h WBE was increased by 230% in vaccinated rats but was also increased in rats passively immunized with a nicotine-specific monoclonal antibody, and so was likely due to transfer of antibody from serum rather than local production at the pulmonary mucosa. Nicotine-specific IgA was not detectable in BAL fluid, but titers in serum were appreciable at 21–25% of the IgG titer and could contribute to vaccine efficacy. Both vaccination and passive immunization are effective in reducing nicotine distribution to brain in rats when nicotine is delivered via inhaled cigarette smoke. These data validate results previously obtained in rodents for nicotine vaccines using i.v. or s.c. nicotine dosing and provide a quantitative method for studying aspects of nicotine exposure which are unique to cigarette smoke inhalation.  相似文献   

4.
Gestational exposure of rats to nicotine produces long-lasting alterations in brain development. Vaccination of adult female rats against nicotine reduces the distribution of maternally administered nicotine to fetal brain, suggesting that vaccination might protect against these effects. In the current study, the effects of vaccination on nicotine-induced changes in fetal (3)H-epibatidine binding and c-fos mRNA expression were evaluated using tissue from a previous pharmacokinetic study of vaccination. An intermittent nicotine dosing regimen designed to resemble nicotine intake in a smoker was administered from GD1-20. Peak nicotine levels in fetal brain were reduced by vaccination, whereas the chronic accumulation of nicotine in fetal brain was not. Gestational nicotine exposure produced significant increases in (125)I-epibatidine binding to brain and spinal cord on GD20, and decreased c-fos mRNA expression in fetal striatum, adrenal and lung. Vaccination did not significantly alter these effects. These data suggest that nicotine dosing, using a clinically relevant intermittent bolus dose regimen, produces substantial changes in fetal nicotinic receptor and c-fos mRNA expression. The decrease in c-fos mRNA expression contrasts with previously reported increases, and suggests that the nicotine dosing regimen used may influence its effects. The lack of effect of vaccination suggests that the cumulative exposure of fetal tissues to nicotine may influence the measured parameters to a greater extent than peak exposure levels.  相似文献   

5.
Rationale Immunization of rats against nicotine using a nicotine conjugate vaccine reduces the distribution of nicotine to brain in rats and attenuates some of nicotine's physiological and behavioral effects. It is not known whether such a vaccine can attenuate nicotine's reinforcing effects. Objective The present experiment was conducted to determine whether a nicotine conjugate vaccine could interfere with the acquisition and maintenance of nicotine self-administration (NSA) in rats given 23 h day−1 access to nicotine. Methods To examine acquisition of NSA, rats were vaccinated with nicotine or control immunogen prior to being given access to a 0.01 mg kg−1 infusion−1 nicotine under a fixed-ratio(FR) 1 schedule for week 1, FR 2 for week 2, and FR 3 for week 3. Acquisition of cocaine self-administration (CSA) was similarly examined to determine the specificity of vaccination effects. To examine maintenance of NSA, rats were initially trained to self-administer nicotine under an FR 3 schedule, and then vaccinated with nicotine or control immunogen while NSA continued to be monitored. Results NSA was significantly lower in vaccinated rats compared to controls during the acquisition protocol, with a 38% decrease in the number of infusions during the last week of training. The percentage of rats meeting acquisition criteria in the vaccinated group was lower (36%) than that in the control group (70%), but this difference was not statistically significant. Vaccination did not affect acquisition of CSA, demonstrating its specificity for nicotine. Maintenance of NSA was significantly reduced in vaccinated rats as compared to controls after the final vaccine injection, with a mean reduction of 57%. There was no evidence in either protocol that vaccinated rats attempted to compensate for altered nicotine distribution by increasing nicotine intake. Conclusion These data suggest that vaccination against nicotine can reduce the reinforcing effects of nicotine in rats and may have therapeutic potential for the treatment of tobacco dependence.  相似文献   

6.
The adverse effects of smoking during pregnancy on fetal development are, in part, due to nicotine. These effects may be due to the actions of nicotine in fetal circulation or on placental functions. In pregnant rats, vaccination with a nicotine immunogen reduces the transfer of nicotine from the maternal to fetal circulation. However, extrapolation of these results to pregnant women might not be valid due to the well-recognized differences between human and rat placentas. In the current investigation, the effects of nicotine-specific antibodies on the transfer of nicotine from the maternal to fetal circuit of the dually perfused human placental lobule were determined. Two types of nicotine-specific antibodies were investigated; nicotine-specific mouse monoclonal antibody (Nic311, K(d) for nicotine 60nM) and IgG from rabbits vaccinated with a nicotine immunogen (Nic-IgG, K(d) 1.6nM). Transfer of the antibodies from maternal to fetal circuits was negligible. Both rabbit Nic-IgG and, to a lesser extent, mouse monoclonal Nic311 significantly reduced nicotine transfer from the maternal to fetal circuit as well as the retention of the drug by placental tissue. These effects were mediated by a substantial increase in the protein binding of nicotine and a reduction in the unbound nicotine concentration. Therefore, the data cited in this report suggest that the use of nicotine-specific antibodies might reduce fetal exposure to the drug, and that antibody affinity for nicotine is a key determinant of the extent of nicotine transfer.  相似文献   

7.
Passive immunization against nicotine interferes with its locomotor and pressor effects. The current study determined whether immunization could prevent another nicotine action: the reversal of nicotine abstinence syndrome. IgG containing 4.4-5.6% nicotine-specific antibody was isolated from rabbits immunized with 3'-amino-methyl-nicotine conjugated to a carrier protein. Twenty rats were rendered dependent by 7 days of subcutaneous infusion of 3.15 mg/kg/day nicotine (expressed as the base). Upon termination of nicotine infusion, each rat was injected intraperitoneally with 150 mg of IgG from normal serum (n=13) or from nicotine antiserum (n=7). Twenty-two and one-half hours later, all rats were observed over 15 min for baseline nicotine abstinence signs. Two and one-half hours after baseline observations, seven of the 13 rats pretreated with control IgG and all seven rats pretreated with nicotine-specific IgG were then challenged by 0.12 mg/kg (sc) nicotine. The remaining six rats pretreated with control IgG were challenged with saline alone. All rats were then observed again for abstinence signs. Nicotine injection caused significantly less reduction of abstinence signs in the immunized rats. The nicotine effect in immunized rats was comparable to the saline effect in nonimmunized rats. Immunization also significantly reduced free serum nicotine concentration and nicotine distribution to the brain. These results raise the possibility that immunization might prevent nicotine consumption from relieving the discomforts of smoking cessation.  相似文献   

8.
The ability of a nicotine vaccine to protect against nicotine-induced seizures was studied in rats. Groups of 10 rats were vaccinated with 3 doses of either a nicotine conjugate vaccine over 6 weeks to elicit high titers of nicotine-specific antibodies or with a control vaccine. Rats were then pretreated with a 1-week subcutaneous infusion of either nicotine 1 mg/kg/day or saline and then received a single 2 mg/kg ip dose of nicotine to provoke seizures. Vaccination reduced the incidence of seizures. The combination of vaccination and pretreatment with nicotine infusion was more effective than either treatment alone. These data suggest that vaccination is protective against this toxic effect of nicotine and that combining vaccination and chronic nicotine administration may provide a novel strategy for blocking some effects of nicotine.  相似文献   

9.
Although recent studies have demonstrated prenatal nicotine can increase cardiovascular risk in the offspring, it is unknown whether exposure to nicotine during pregnancy also may be a risk for development of arrhythmia in the offspring. In addition, in previous studies of fetal arrhythmia affected by smoking, only two patterns, bradycardia and tachycardia, were observed. The present study examined acute effects of maternal nicotine on the fetal arrhythmia in utero, and chronic influence on offspring arrhythmia at adult stage following prenatal exposure to nicotine. Nicotine was administered to pregnant ewes and rats. In the fetal sheep, intravenous nicotine not only induced changes of fetal heart rate, but also caused cardiac cycle irregularity, single and multiple dropped cardiac cycles. Although maternal nicotine had no influence on fetal blood pH, lactic acid, hemocrit, Na+, K+ levels and plasma osmolality, fetal blood PO2 levels were significantly decreased following maternal nicotine in ewes. In offspring rats at 4–5 months after birth, prenatal exposure to nicotine significantly increased heart rate and premature ventricular contraction in restraint stress. In addition, arrhythmias induced by injection of nicotine were higher in the offspring prenatal exposure to nicotine in utero. The results provide new evidence that exposure to nicotine in pregnancy can cause fetal arrhythmia in various patterns besides tachycardia and bradycardia, the possible mechanisms for nicotine‐induced fetal arrhythmia included in utero hypoxia. Importantly, following exposure to nicotine significantly increased risk of arrhythmia in the adult offspring. The finding offers new insight for development of cardiac rhythm problems in fetal origins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Immunization of rats reduces nicotine distribution to brain   总被引:3,自引:3,他引:0  
The effect of active immunization against nicotine on the initial distribution of nicotine to brain was studied in anesthetized rats. Animals received nicotine 0.03 mg/kg nicotine (equivalent to the nicotine dose absorbed by a human smoking two cigarettes) as a rapid injection in the jugular vein. In control animals, the arterial serum nicotine concentration initially exceeded the venous concentration 4.6-fold, similar to the initial arteriovenous difference produced by cigarette smoking in humans. Animals immunized with the nicotine analog CMUNic maintained this arteriovenous gradient, but with both arterial and venous nicotine concentrations several times higher than in controls. The arterial nicotine concentration was higher in immunized animals even at the first (7.5 s) sampling time. The brain nicotine concentration at 3 min was 36% lower in the immunized animals. The time course of nicotine distribution to brain was studied in a second group of animals. Brain nicotine concentration was reduced in rats immunized with CMUNic over the entire 6-min sampling period immediately following nicotine dosing (mean reduction 38%). A reduction was found at the earliest sampling time (30 s) and was maximal at 1 min (48%). Nicotine protein binding in serum was markedly increased in animals immunized with CMUNic compared to controls (91.2 versus 10.9%), and the unbound nicotine concentration in serum was lower (10.0 versus 13.4 ng/ml). The reduction in brain nicotine concentration correlated with antibody affinity for nicotine, and the percentage of nicotine bound in serum. These data demonstrate that nicotine-specific antibodies produced by active immunization rapidly bind nicotine in arterial blood, reduce the unbound nicotine concentration, and reduce the early distribution of nicotine to brain. Effects were observed using a clinically relevant nicotine dose and route of administration. These data suggest that the use of immunization to modify the behavioral effects of nicotine may be possible. Received: 6 July 1998/Final version: 24 August 1998  相似文献   

11.
Vaccination of animals to elicit drug-specific antibodies, or the passive transfer of such antibodies from other animals, can reduce the behavioral effects of drugs such as cocaine and heroin. To study the potential application of this approach to treating nicotine dependence, IgG was isolated from rabbits immunized with a nicotine-protein conjugate vaccine. Anesthetized rats received immune IgG containing nicotine-specific antibodies (Nic-IgG) or control-IgG i.v.. Thirty minutes later, rats received nicotine at 0.03 mg/kg i.v., equivalent on an mg/kg basis to the nicotine intake from two cigarettes by a smoker. Compared to control-IgG, Nic-IgG reduced the brain nicotine concentration in a dose-related manner (65% reduction at the highest IgG dose). Pretreatment with Nic-IgG also reduced the distribution to brain of five repeated doses of nicotine (equivalent to the nicotine intake from 10 cigarettes) administered over 80 min. To study blood pressure effects, rats received control-IgG or Nic-IgG 1 day prior to administering nicotine. Nicotine-induced systolic blood pressure increases were attenuated by Nic-IgG in a dose-related manner, and were almost completely blocked by the highest Nic-IgG dose. Pretreatment with Nic-IgG also completely prevented the nicotine-induced stimulation of locomotor activity observed in rats receiving control-IgG. Nic-IgG did not prevent locomotor activation from cocaine, demonstrating its specificity for nicotine. These data demonstrate that the administration of nicotine-specific antibodies can reduce or prevent some of the pharmacokinetic, cardiovascular, and behavioral consequences of nicotine in rats. Effects were observed at nicotine doses and nicotine serum concentrations equal to or exceeding those typically associated with nicotine exposure in cigarette smokers. A potential role for immunization in the treatment of nicotine dependence is suggested.  相似文献   

12.
Vaccination against nicotine is being studied as a potential treatment for nicotine dependence. Some of the limitations of vaccination, such as variability in antibody titer and affinity, might be overcome by instead using passive immunization with nicotine-specific monoclonal antibodies. The effects of antibodies on nicotine distribution to brain were studied using nicotine-specific monoclonal antibodies (NICmAbs) with K(d) values ranging from 60 to 250 nM and a high-affinity polyclonal rabbit antiserum (K(d) = 1.6 nM). Pretreatment with NICmAbs substantially increased the binding of nicotine in serum after a single nicotine dose, reduced the unbound nicotine concentration in serum, and reduced the distribution of nicotine to brain. Efficacy was directly related to antibody affinity for nicotine. Efficacy of the highest affinity NICmAb, NICmAb311, was dose-related, with the highest dose reducing nicotine distribution to brain by 78%. NICmAb311 decreased nicotine clearance by 90% and prolonged the terminal half-life of nicotine by 120%. At equivalent doses, NICmAb311 was less effective than the higher affinity rabbit antiserum but comparable efficacy could be achieved by increasing the NICmAb311 dose. These data suggest that passive immunization with nicotine-specific monoclonal antibodies substantially alters nicotine pharmacokinetics in a manner similar to that previously reported for vaccination against nicotine. Antibody efficacy is a function of both dose and affinity for nicotine.  相似文献   

13.
Nicotine vaccines have shown preliminary evidence of efficacy for enhancing smoking cessation rates, but the serum nicotine-specific antibody (NicAb) concentrations produced are highly variable and many subjects do not develop effective levels. As an alternative to vaccination, passive immunization with nicotine-specific monoclonal antibodies could produce more uniform serum NicAb concentrations, but its use is limited by their high cost and shorter elimination half-life. This study investigated supplementing vaccination with monoclonal antibodies in a targeted fashion to increase vaccine efficacy while minimizing the required monoclonal antibody dose. Rats were vaccinated and then given individualized supplemental doses of the nicotine-specific monoclonal antibody Nic311 to achieve a target total serum NicAb concentration known to be effective for blocking locomotor sensitization (LMS) to nicotine. Rats received vaccine, Nic311, both, or neither, followed by 0.3 mg/kg nicotine s.c. for 10 days to produce LMS. Combination immunotherapy completely blocked the development of LMS, while monotherapy with vaccine or Nic311 alone was only minimally effective. Lower brain nicotine levels were associated with reduced locomotor activity averaged over days 7–10. Despite its greater efficacy, combination immunotherapy did not reduce the variability in the resulting total serum NicAb concentrations. Variability in total serum NicAb concentrations was contributed to by both vaccine-generated antibody and by Nic311. These data show that combination immunotherapy, using a Nic311 dose that is by itself only minimally effective, can substantially enhance nicotine vaccine efficacy. However, variability in serum NicAb levels with combination immunotherapy may make translation of this approach challenging.  相似文献   

14.
Risks and benefits of nicotine to aid smoking cessation in pregnancy.   总被引:17,自引:0,他引:17  
Cigarette smoking during pregnancy is the single largest modifiable risk for pregnancy-related morbidity and mortality in the US. Addiction to nicotine prevents many pregnant women who wish to quit smoking from doing so. The safety and efficacy of nicotine replacement therapy (NRT) for smoking cessation during pregnancy have not been well studied. Nicotine is classified by the US Food and Drug Administration as a Pregnancy Category D drug. Animal studies indicate that nicotine adversely affects the developing fetal CNS, and nicotine effects on the brain may be involved in the pathophysiology of sudden infant death syndrome (SIDS). It has been assumed that the cardiovascular effects of nicotine resulting in reduced blood flow to the placenta (uteroplacental insufficiency) is the predominant mechanism of the reproductive toxicity of cigarette smoking during pregnancy. Short term high doses of nicotine in pregnant animals do adversely affect the maternal and fetal cardiovascular systems. However, studies of the acute effects of NRT in pregnant humans indicate that nicotine alone has minimal effects upon the maternal and fetal cardiovascular systems. Cigarette smoking delivers thousands of chemicals, some of which are well documented reproductive toxins (e.g. carbon monoxide and lead). A myriad of cellular and molecular biological abnormalities have been documented in placentas, fetuses, and newborns of pregnant women who smoke. The cumulative abnormalities produced by the various toxins in cigarette smoke are probably responsible for the numerous adverse reproductive outcomes associated with smoking. It is doubtful that the reproductive toxicity of cigarette smoking is primarily related to nicotine. We recommend the following. Efficacy trials of NRT as adjunctive therapy for smoking cessation during pregnancy should be conducted. The initial dose of nicotine in NRT should be similar to the dose of nicotine that the pregnant woman received from smoking. Intermittent-use formulations of NRT (gum, spray, inhaler) are preferred because the total dose of nicotine delivered to the fetus will be less than with continuous-use formulations (transdermal patch). A national registry for NRT use during pregnancy should be created to prospectively collect obstetrical outcome data from NRT efficacy trials and from individual use. The goal of this registry would be to determine the safety of NRT use during pregnancy, especially with respect to uncommon outcomes such as placental abruption. Finally, our review of the data indicate that minimal amounts of nicotine are excreted into breast milk and that NRT can be safely used by breast-feeding mothers.  相似文献   

15.
Nicotine conjugate vaccine efficacy is limited by the concentration of nicotine-specific antibodies that can be reliably generated in serum. Previous studies suggest that the concurrent use of 2 structurally distinct nicotine immunogens in rats can generate additive antibody responses by stimulating distinct B cell populations. In the current study we investigated whether it is possible to identify a third immunologically distinct nicotine immunogen. The new 1'-SNic immunogen (2S)-N,N'-(disulfanediyldiethane-2,1-diyl)bis[4-(2-pyridin-3-ylpyrrolidin-1-yl)butanamide] conjugated to keyhole limpet hemocyanin (KLH) differed from the existing immunogens 3'-AmNic-rEPA and 6-CMUNic-BSA in linker position, linker composition, conjugation chemistry, and carrier protein. Vaccination of rats with 1'-SNic-KLH elicited high concentrations of high affinity nicotine-specific antibodies. The antibodies produced in response to 1'-SNic-KLH did not appreciably cross-react in ELISA with either 3'-AmNic-rEPA or 6-CMUNic-BSA or vice versa, showing that the B cell populations activated by each of these nicotine immunogens were non-overlapping and distinct. Nicotine retention in serum was increased and nicotine distribution to brain substantially reduced in rats vaccinated with 1'-SNic-KLH compared to controls. Effects of 1'-SNic-KLH on nicotine distribution were comparable to those of 3'-AmNic-rEPA which has progressed to late stage clinical trials as an adjunct to smoking cessation. These data show that it is possible to design multiple immunogens from a small molecule such as nicotine which elicit independent immune responses. This approach could be applicable to other addiction vaccines or small molecule targets as well.  相似文献   

16.
The effects of continuous nicotine infusion on nicotine self-administration (NSA) were studied in rats as a model of nicotine replacement therapy (NRT) in humans. A NSA model in which rats had 23-h/day access to nicotine was used to approximate nicotine access conditions in cigarette smokers. In order to estimate serum nicotine concentrations associated with NSA, arterial and venous serum nicotine concentrations were measured during a simulation of NSA. Nicotine was noncontingently administered as 30 doses/12 h of 0.03 mg/kg/i.n.f. or 60 doses/12 h of 0.01 mg/kg/i.n.f. daily. Venous serum nicotine concentrations were measured after the first nicotine dose of the day, and arterial and venous concentrations were measured after doses in the middle of the day. The range of mean concentrations measured was similar to those reported in cigarette smokers (venous concentrations 6-59 ng/ml, arterial concentrations 42-96 ng/ml). The effects of continuous nicotine infusion on NSA were studied by noncontingently administering nicotine at various rates via osmotic pump to animals self-administering nicotine (0.01 or 0.03 mg/kg/i.n.f.) during 23-h/day sessions. Continuous nicotine infusion at all infusion rates substantially suppressed NSA, but suppression was rate-related only for the 0.01-mg/kg/inf NSA unit dose. Nicotine infusion rates producing venous serum nicotine concentrations equaling or exceeding the peak venous levels associated with simulated NSA were more effective than lower infusion rates only at the lower NSA unit dose. The highest nicotine infusion rate had no sustained effect on food-maintained responding, demonstrating its specificity for suppression of NSA. These data provide a model for studying NRT in the rat.  相似文献   

17.
Methylmercuric chloride was orally given to inbred C57BL/6N mice on d 13 of pregnancy at doses of 2.5, 5, 10, and 20 mg/kg. Animals were sacrificed on each of d 14-18 of pregnancy, and mercury levels in the brain, liver, and kidney of both the fetus and dam were determined. The dose effect on the time course of mercury accumulation in the brain was observed both in the fetus and dam; after the higher doses administered, the brain mercury reached the highest concentration later than it did after the lower doses. In addition, the mercury concentration in the fetal brain was disproportionately higher after a dose of 20 mg/kg, which was toxic in the fetus since the weight of the brain was reduced. The concentration in the fetal brain was 1.6-4.9 times higher than in the maternal brain. The sex difference of fetuses in mercury levels was observed in the brain after a dose of 2.5 mg/kg, in which mercury concentration was higher in females than in males. This corresponded to the previously reported difference in adult mice and rats. However, the sex difference was not seen after doses of 5, 10, or 20 mg/kg.  相似文献   

18.
We have previously shown that active immunization with the nicotine immunoconjugate IP18-KLH attenuates the reinforcing effects of nicotine, i.e., suppresses the nicotine-induced brain dopamine release and prevents reinstatement of the nicotine-seeking behavior in rats. These effects are thought to be due to an alteration of the kinetics of nicotine distribution by the antibodies, resulting in an attenuated nicotine distribution to the brain. In this study, the distribution of nicotine administered at doses corresponding to those used in our previous studies, was investigated in immunized rats and controls. Male Wistar rats received two immunizations with IP18-KLH in Freunds incomplete adjuvant, 21 days apart, and experiments were performed 7–11 days post-immunization under chloral hydrate anesthesia. Blood samples were collected to determine antibody titer and nicotine selectivity using enzyme-linked immunosorbent assay (ELISA) techniques. The animals received an intravenous nicotine dose and were sacrificed either 3 min or 60 min after nicotine administration. Trunk blood was collected and the brains were removed for analysis of nicotine content. The results showed that immunization against nicotine increases the nicotine concentration in blood and significantly decreases the amount of nicotine that reaches the brain. The present findings thus demonstrate an altered distribution of nicotine after immunization with IP18-KLH. Despite the sustained nicotine binding by the antibodies, the active immunization did not alter the metabolism of nicotine to cotinine, the major nicotine metabolite. In conclusion, the attenuation of the reinforcing effect of nicotine after immunization with IP18-KLH, shown previously, is indeed associated with an altered distribution of nicotine.  相似文献   

19.
Vaccination against nicotine is under investigation as a treatment for tobacco dependence. Passive immunization with nicotine-specific antibodies represents a complementary strategy to vaccination. A potential adverse effect of passive immunization in nicotine-dependent individuals is that it may lead to a rapid reduction in brain nicotine levels and trigger withdrawal. The goal of this study was to determine if passive immunization with the nicotine-specific monoclonal antibody Nic311 precipitated withdrawal in nicotine-dependent rats as measured by increases in brain reward thresholds and somatic signs. Another cohort of rats was used to measure brain nicotine levels after Nic311 administration. Nic311 30, 80 or 240 mg/kg reduced brain nicotine concentrations by 45, 83 or 92% compared to controls. None of these Nic311 doses precipitated withdrawal measured at intervals up to 72 h following antibody administration. Administration of the nicotinic antagonist mecamylamine precipitated a robust nicotine withdrawal syndrome. Therefore, a substantial, but not complete, acute reduction in brain nicotine levels following passive immunization was not sufficient to precipitate nicotine withdrawal in nicotine-dependent rats. The Nic311 doses used have been shown to attenuate the behavioral effects of nicotine, suggesting that the use of passive immunization to treat nicotine addiction is not likely to precipitate withdrawal.  相似文献   

20.
Rationale Because of the adverse effects of smoking during pregnancy, understanding the factors that influence maternal smoking may help in developing better treatments to help women quit smoking during pregnancy. Animal models could be useful for this purpose. Objective The purpose of the present study was to begin the development of an animal model of smoking during pregnancy by initially characterizing nicotine self-administration (NSA) in pregnant rats. Another purpose was to begin to explore the effects of pregnancy on nicotine pharmacokinetics in rats. Materials and methods In experiment 1, female rats self-administering nicotine during 23-h sessions were examined throughout gestation and lactation. In experiment 2, locomotor activity was measured during pregnancy to assess further potential motor effects of pregnancy. Experiments 3 and 4 compared the single-dose pharmacokinetics of nicotine in male, nonpregnant female, and pregnant females in the first and third trimester of pregnancy and the first week of lactation. Results NSA decreased over the course of pregnancy with NSA significantly lower in the third trimester compared to nonpregnant controls. NSA remained suppressed for up to 10 days into lactation. Locomotor behavior was also significantly suppressed during the second and third trimesters and throughout lactation. Nicotine elimination was slower in pregnant females compared to nonpregnant females only in the third trimester. Conclusions NSA, locomotor behavior, and nicotine elimination in rats are decreased during late pregnancy. The present study is the first to characterize NSA during pregnancy in animals, providing a potential model of maternal smoking in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号