首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level‐dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non‐human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7‐T magnetic resonance imaging (MRI) scanner. Somatosensory stimulation (333‐μs pulses; amplitude, 2 mA; 64 Hz) was delivered bilaterally via pairs of contact electrodes. A block design paradigm was used in which the stimulus duration increased in pseudo‐random order from a single pulse up to 256 electrical pulses (4 s). For CBV measurements, 30 mg/kg of ultrasmall superparamagnetic ironoxide particles (USPIO) injected intravenously, were used. Robust BOLD and CBV HRFs were obtained in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate at all stimulus conditions. In particular, BOLD and CBV responses to a single 333‐μs‐long stimulus were reliably measured, and the CBV HRF presented shorter onset time and time to peak than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. Onset times in S1 and S2 were faster than in caudate. Finally, the fine spatiotemporal features of the HRF in awake marmosets were similar to those obtained in humans, indicating that the continued refinement of awake non‐human primate models is essential to maximize the applicability of animal functional MRI studies to the investigation of human brain function.  相似文献   

2.
Neonatal brain injury suffered by preterm infants and newborns with some medical conditions can cause significant neurodevelopmental disabilities. MRI is a preferred method to detect these accidents and perform in vivo evaluation of the brain. However, the commercial availability and optimality of receive coils for the neonatal brain is limited, which in many cases leads to images lacking in quality. As extensively demonstrated, receive arrays closely positioned around the scanned part provide images with high signal‐to‐noise ratios (SNRs). The present work proposes a pneumatic‐based MRI receive array that can physically adapt to infant head dimensions from 27‐week premature to 1.5 months old. Average SNR increases of up to 68% in the head region and 122% in the cortex region, compared with a 32‐channel commercial head coil, were achieved at 3 T. The consistent SNR distribution obtained through the complete coil size range, specifically in the cortex, allows the acquisition of images with similar quality across a range of head dimensions, which is not possible with fixed‐size coils due to the variable coil‐to‐head distance. The risks associated with mechanical pressure on the neonatal head are minimal and the head motion is restricted. The method could be used in coil designs for other age groups, body parts and subjects.  相似文献   

3.
The neuroimaging of nonhuman primates (NHPs) realised with magnetic resonance imaging (MRI) plays an important role in understanding brain structures and functions, as well as neurodegenerative diseases and pathological disorders. Theoretically, an ultrahigh field MRI (≥7 T) is capable of providing a higher signal‐to‐noise ratio (SNR) for better resolution; however, the lack of appropriate radiofrequency (RF) coils for 9.4 T monkey MRI undermines the benefits provided by a higher field strength. In particular, the standard volume birdcage coil at 9.4 T generates typical destructive interferences in the periphery of the brain, which reduces the SNR in the neuroscience‐focused cortex region. Also, the standard birdcage coil is not capable of performing parallel imaging. Consequently, extended scan durations may cause unnecessary damage due to overlong anaesthesia. In this work, assisted by numerical simulations, an eight‐channel receive RF coil array was specially designed and manufactured for imaging NHPs at 9.4 T. The structure and geometry of the proposed receive array was optimised with numerical simulations, so that the SNR enhancement region was particularly focused on monkey brain. Validated with rhesus monkey and cynomolgus monkey brain images acquired from a 9.4 T MRI scanner, the proposed receive array outperformed standard birdcage coil with higher SNR, mean diffusivity and fractional anisotropy values, as well as providing better capability for parallel imaging.  相似文献   

4.
Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level‐dependent (BOLD) signal originating from the macrovasculature and the neuronal‐specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal‐to‐noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high‐density multi‐element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2‐cm2, elements arranged in four flexible modules of four elements each (16‐channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five‐fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16‐channel head coil, the BOLD sensitivity was approximately 2.2‐fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi‐slice, echo planar acquisition, and approximately three‐ and six‐fold higher for three‐dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5‐fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal‐to‐noise ratio) were up to around four‐fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are closer to the spatial/temporal scale of the fundamental functional organization of the human cortex using a simple high‐density coil design for high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Water‐suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non‐water‐suppressed MRS spectrum is used for artefact correction, reconstruction of phased‐array coil data and metabolite quantification. Here, a two‐scan metabolite‐cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short‐echo (TE = 14 ms), two‐dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite‐cycling is counterbalanced by a time‐efficient concentric ring k‐space trajectory. To validate the technique, water‐suppressed MRSI acquisitions were also performed for comparison. The proposed non‐water‐suppressed metabolite‐cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high‐resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non‐water‐suppressed and water‐suppressed techniques. The achieved spectral quality, signal‐to‐noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in‐plane resolution of 10 × 10 mm2 in 8 min and with a Cramér‐Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non‐water‐suppressed technique enabled voxel‐wise single‐scan frequency, phase and eddy current correction. These findings demonstrate that our non‐water‐suppressed metabolite‐cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time.  相似文献   

6.
Functional MRI (fMRI) based on the blood oxygen level‐dependent (BOLD) contrast is widely used in preclinical neuroscience. The small dimensions of rodent brain place high demands on spatial resolution, and hence on the sensitivity of the fMRI experiment. This work investigates the performance of a 400‐MHz cryogenic quadrature transceive radiofrequency probe (CryoProbe) with respect to the enhancement of the BOLD sensitivity. For this purpose, BOLD fMRI experiments were performed in mice during electrical forepaw stimulation using the CryoProbe and a conventional room temperature surface coil of comparable dimensions. Image signal‐to‐noise ratio (SNR) and temporal SNR were evaluated as quality measures for individual images and for fMRI time series of images, resulting in gains (mean ± standard deviation) with factors of 3.1 ± 0.7 and 1.8 ± 1.0 when comparing the CryoProbe and room temperature coil. The CryoProbe thermal shield temperature did not affect the noise characteristics, with temporal noise levels being 63 ± 16% of the corresponding room temperature value. However, a significant effect on BOLD amplitudes was found, which was attributed to temperature‐dependent baseline cerebral blood volumes. Defined local thermal conditions were found to be a critical parameter for achieving an optimal and reproducible fMRI signal. In summary, the CryoProbe represents an attractive alternative for the enhancement of image SNR, temporal SNR and BOLD sensitivity in mouse fMRI experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The acquisition of magnetic resonance spectroscopy (MRS) signals by multiple receiver coils can improve the signal‐to‐noise ratio (SNR) or alternatively can reduce the scan time maintaining a reliable SNR. However, using phased array coils in MRS studies requires efficient data processing and data combination techniques in order to exploit the sensitivity improvement of the phased array coil acquisition method. This paper describes a novel method for the combination of MRS signals acquired by phased array coils, even in presence of correlated noise between the acquisition channels. In fact, although it has been shown that electric and magnetic coupling mechanisms produce correlated noise in the coils, previous algorithms developed for MRS data combination have ignored this effect. The proposed approach takes advantage of a noise decorrelation stage to maximize the SNR of the combined spectra. In particular Principal Component Analysis (PCA) was exploited to project the acquired spectra in a subspace where the noise vectors are orthogonal. In this subspace the SNR weighting method will provide the optimal overall SNR. Performance evaluation of the proposed method is carried out on simulated 1H‐MRS signals and experimental results are obtained on phantom 1H‐MR spectra using a commercially available 8‐element phased array coil. Noise correlations between elements were generally low due to the optimal coil design, leading to a fair SNR gain (about 0.5%) in the center of the field of view (FOV). A greater SNR improvement was found in the peripheral FOV regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Composite MRI arrays consist of triplets where two orthogonal upright loops are placed over the same imaging area as a standard surface coil. The optimal height of the upright coils is approximately half the width for the 7 cm coils used in this work. Resistive and magnetic coupling is shown to be negligible within each coil triplet. Experimental evaluation of imaging performance was carried out on a Philips 3 T Achieva scanner using an eight‐coil composite array consisting of three surface coils and five upright loops, as well as an array of eight surface coils for comparison. The composite array offers lower overall coupling than the traditional array. The sensitivities of upright coils are complementary to those of the surface coils and therefore provide SNR gains in regions where surface coil sensitivity is low, and additional spatial information for improved parallel imaging performance. Near the surface of the phantom the eight‐channel surface coil array provides higher overall SNR than the composite array, but this advantage disappears beyond a depth of approximately one coil diameter, where it is typically more challenging to improve SNR. Furthermore, parallel imaging performance is better with the composite array compared with the surface coil array, especially at high accelerations and in locations deep in the phantom. Composite arrays offer an attractive means of improving imaging performance and channel density without reducing the size, and therefore the loading regime, of surface coil elements. Additional advantages of composite arrays include minimal SNR loss using root‐sum‐of‐squares combination compared with optimal, and the ability to switch from high to low channel density by merely selecting only the surface elements, unlike surface coil arrays, which require additional hardware. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow‐sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The combination of functional MRI (fMRI) and MRS is a promising approach to relate BOLD imaging to neuronal metabolism, especially at high field strength. However, typical scan times for GABA edited spectroscopy are of the order of 6‐30 min, which is long compared with functional changes observed with fMRI. The aim of this study is to reduce scan time and increase GABA sensitivity for edited spectroscopy in the human visual cortex, by enlarging the volume of activated tissue in the primary visual cortex. A dedicated setup at 7 T for combined fMRI and GABA MRS is developed. This setup consists of a half volume multi‐transmit coil with a large screen for visual cortex activation, two high density receive arrays and an optimized single‐voxel MEGA‐sLASER sequence with macromolecular suppression for signal acquisition. The coil setup performance as well as the GABA measurement speed, SNR, and stability were evaluated. A 2.2‐fold gain of the average SNR for GABA detection was obtained, as compared with a conventional 7 T setup. This was achieved by increasing the viewing angle of the participant with respect to the visual stimulus, thereby activating almost the entire primary visual cortex, allowing larger spectroscopy measurement volumes and resulting in an improved GABA SNR. Fewer than 16 signal averages, lasting 1 min 23 s in total, were needed for the GABA fit method to become stable, as demonstrated in three participants. The stability of the measurement setup was sufficient to detect GABA with an accuracy of 5%, as determined with a GABA phantom. In vivo, larger variations in GABA concentration are found: 14‐25%. Overall, the results bring functional GABA detections at a temporal resolution closer to the physiological time scale of BOLD cortex activation.  相似文献   

11.
The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22‐channel receive coil array was constructed specifically for rapid high‐resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal‐to‐noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single‐ and four‐channel receive coils routinely used for macaque MRI. The 22‐channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single‐ or four‐channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single‐ and four‐channel coils. Finally, the performance of the array for functional, anatomical and diffusion‐weighted imaging was evaluated. For all three modalities, the use of the 22‐channel array allowed for high‐resolution and accelerated image acquisition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Abnormalities in brain γ‐aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by 1H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J‐editing difference technique on a 3‐T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight‐channel phased‐array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test–retest reliability of the measurement of GABA with this method. Sensitivity gains and test–retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three‐fold higher GABA detection sensitivity was attained with the eight‐channel head coil compared with the standard single‐channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non‐significant regional variation (p = 0.58). The test–retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single‐channel coil and the eight‐channel phased‐array coil. For the eight‐channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R2 = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co‐edited resonance of combined glutamate and glutamine (Glx) for both coils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Multi‐channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., op timized t runcation to i ntegrate m ulti‐channel MRS data u sing rank‐R s ingular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank‐R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank‐R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor‐supplied method, signal/noise2 weighting, previously reported whitened SVD (rank‐1), and OpTIMUS were evaluated using the signal‐to‐noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank‐1 SVD maximizes SNR was tested empirically, and a higher rank‐R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.  相似文献   

14.
The purpose of this work is to illustrate a new coil decoupling strategy and its application to a transmit/receive sodium/proton phased array for magnetic resonance imaging (MRI) of the human brain. We implemented an array of eight triangular coils that encircled the head. The ensemble of coils was arranged to form a modified degenerate mode birdcage whose eight shared rungs were offset from the z‐axis at interleaved angles of ±30°. This key geometric modification resulted in triangular elements whose vertices were shared between next‐nearest neighbors, which provided a convenient location for counter‐wound decoupling inductors, whilst nearest‐neighbor decoupling was addressed with shared capacitors along the rungs. This decoupling strategy alleviated the strong interaction that is characteristic of array coils at low frequency (32.6 MHz in this case) and allowed the coil to operate efficiently in transceive mode. The sodium array provided a 1.6‐fold signal‐to‐noise ratio advantage over a dual‐nuclei birdcage coil in the center of the head and up to 2.3‐fold gain in the periphery. The array enabled sodium MRI of the brain with 5‐mm isotropic resolution in approximately 13 min, thus helping to overcome low sodium MR sensitivity and improving quantification in neurological studies. An eight‐channel proton array was integrated into the sodium array to enable anatomical imaging.  相似文献   

15.
One major challenge of MRSI is the poor signal‐to‐noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k‐space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32‐channel coil array and were averaged with one, two and eight measurements (avg‐1, avg‐2 and avg‐8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg‐1 and avg‐2 data with λ = 5, respectively. According to the reported Cramer–Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root‐mean‐square errors and spatial variation for all subjects using the avg‐8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Multi-channel receive array rf-coils have become widely available for fMRI. The improved SNR and possibility of acquisition acceleration through parallel imaging are especially beneficial for high-resolution studies. In this study, an 8-channel and a 32-channel coil were compared in a high-resolution finger tapping fMRI experiment at 7 T. 1.3 mm3 resolution data acquired with the 32-channel coil provided higher image- and temporal SNR and yielded higher BOLD sensitivity measures, notably higher cluster sizes in MI/SI and increased z-scores, though not an increase in percent signal change. For sub-millimeter resolution fMRI data acquired with the 32-channel coil smaller clusters were found, though percent signal changes were significantly larger, due to reduced partial volume effects. These results demonstrate the utility of the use of an array coil with a large number of receive elements for high-resolution fMRI at ultra-high field.  相似文献   

17.
One of the major challenges in constructing multi‐channel and multi‐row transmit (Tx) or transceiver (TxRx) arrays is the decoupling of the array's loop elements. Overlapping of the surface loops allows the decoupling of adjacent elements and also helps to improve the radiofrequency field profile by increasing the penetration depth and eliminating voids between the loops. This also simplifies the design by reducing the number of decoupling circuits. At the same time, overlapping may compromise decoupling by generating high resistive (electric) coupling near the overlap, which cannot be compensated for by common decoupling techniques. Previously, based on analytical modeling, we demonstrated that electric coupling has strong frequency and loading dependence, and, at 9.4 T, both the magnetic and electric coupling between two heavily loaded loops can be compensated at the same time simply by overlapping the loops. As a result, excellent decoupling was obtained between adjacent loops of an eight‐loop single‐row (1 × 8) human head tight‐fit TxRx array. In this work, we designed and constructed a 9.4‐T (400‐MHz) 16‐loop double‐row (2 × 8) overlapped TxRx head array based on the results of the analytical and numerical electromagnetic modeling. We demonstrated that, simply by the optimal overlap of array loops, a very good decoupling can be obtained without additional decoupling strategies. The constructed TxRx array provides whole‐brain coverage and approximately 1.5 times greater Tx efficiency relative to a transmit‐only/receive‐only (ToRo) array, which consists of a larger Tx‐only array and a nested tight‐fit 31‐loop receive (Rx)‐only array. At the same time, the ToRo array provides greater peripheral signal‐to‐noise ratio (SNR) and better Rx parallel performance in the head–feet direction. Overall, our work provides a recipe for a simple, robust and very Tx‐efficient design suitable for parallel transmission and whole‐brain imaging at ultra‐high fields.  相似文献   

18.
Diffusion tensor imaging (DTI) of the brain provides essential information on the white matter integrity and structural connectivity. However, it suffers from a low signal‐to‐noise ratio (SNR) and requires a long scan time to achieve high spatial and/or diffusion resolution and wide brain coverage. With recent advances in parallel and simultaneous multislice (multiband) imaging, the SNR efficiency has been improved by reducing the repetition time (TR). However, due to the limited number of RF coil channels available on preclinical MRI scanners, simultaneous multislice acquisition has not been practical. In this study, we demonstrate the ability of multiband DTI to acquire high‐resolution data of the mouse brain with 84 slices covering the whole brain in 0.2 mm isotropic resolution without a coil array at 9.4 T. Hadamard‐encoding four‐band pulses were used to acquire four slices simultaneously, with the reduction in the TR maximizing the SNR efficiency. To overcome shot‐to‐shot phase variations, Hadamard decoding with a self‐calibrated phase was developed. Compared with single‐band DTI acquired with the same scan time, the multiband DTI leads to significantly increased SNR by 40% in the white matter. This SNR gain resulted in reduced variations in fractional anisotropy, mean diffusivity, and eigenvector orientation. Furthermore, the cerebrospinal fluid signal was attenuated, leading to reduced free‐water contamination. Without the need for a high‐density coil array or parallel imaging, this technique enables highly efficient preclinical DTI that will facilitate connectome studies.  相似文献   

19.
To be able to examine dynamic and detailed brain functions, the spatial and temporal resolution of 7 T MRI needs to improve. In this study, it was investigated whether submillimeter multishot 3D EPI fMRI scans, acquired with high‐density receive arrays, can benefit from a 2D CAIPIRINHA sampling pattern, in terms of noise amplification (g‐factor), temporal SNR and fMRI sensitivity. High‐density receive arrays were combined with a shot‐selective 2D CAIPIRINHA implementation for multishot 3D EPI sequences at 7 T. In this implementation, in contrast to conventional inclusion of extra kz gradient blips, specific EPI shots are left out to create a CAIPIRINHA shift and reduction of scan time. First, the implementation of the CAIPIRINHA sequence was evaluated with a standard receive setup by acquiring submillimeter whole brain T2*‐weighted anatomy images. Second, the CAIPIRINHA sequence was combined with high‐density receive arrays to push the temporal resolution of submillimeter 3D EPI fMRI scans of the visual cortex. Results show that the shot‐selective 2D CAIPIRINHA sequence enables a reduction in scan time for 0.5 mm isotropic 3D EPI T2*‐weighted anatomy scans by a factor of 4 compared with earlier reports. The use of the 2D CAIPIRINHA implementation in combination with high‐density receive arrays, enhances the image quality of submillimeter 3D EPI scans of the visual cortex at high acceleration as compared to conventional SENSE. Both the g‐factor and temporal SNR improved, resulting in a method that is more sensitive to the fMRI signal. Using this method, it is possible to acquire submillimeter single volume 3D EPI scans of the visual cortex in a subsecond timeframe. Overall, high‐density receive arrays in combination with shot‐selective 2D CAIPIRINHA for 3D EPI scans prove to be valuable for reducing the scan time of submillimeter MRI acquisitions.  相似文献   

20.
目的 比较小孔径正交相控阵小动物实验线圈与C3表面线圈在大鼠头部磁共振成像(MRI)检查的成像质量.方法 将10只雄性SD大鼠分别应用2种线圈进行头部MRI检查.测量大脑皮层、小脑、脑干、肌肉及眼球内的房水等部位的信号强度及背景噪声值,计算信噪比(SNR);由2位放射科医生对图像质量进行评分,将测量数据进行统计分析.结果 所有图像均得到了大脑皮层、小脑、脑干、肌肉及眼球内的房水等部位的SNR值.两种线罔成像质量比较,大脑皮层T1WI横断位(SNRsense-body=41.3±23.5;SNR C3=10.3±0.5;t=-3.21)、T2WI矢状位(SNR sense-body=63.8±16.6;SNR C3=37.9±4.4:t=-4.00)以及T2WI冠状位(SNR sense.body=91.6±23.8;SNR C3=38.5±11.8;t=-5.69)图像SNR差异均有统计学意义(P<0.01);且在小脑、脑干以及眼球房水测量的结果亦相仿;肌肉组织仅在T1WI横断位(SNR sense-body=39.9±21.1;SNR C3=8.3±1.7;t=-3.64)和T2WI冠状位(SNR sense-body=23.5±9.8:SNR C3=11.9±4.1;t=-3.10)的SNR差异有统计学意义(P<0.01).采用小孔径正交相控阵线圈检查获得的图像中T2WI冠状面得分最高,而2种线圈检查获得的弥散加权成像(DWI)图像质量评分均最低.结论 在大鼠头部成像MRI检查中,小孔径正交相控阵小动物实验线圈的信噪比和图像质量优于现在经常应用的C3表面线圈.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号