首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double‐tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double‐tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double‐resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state‐of‐the‐art single‐tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g‐factor maps were used to compare both coils on acceleration possibilities. The newly constructed double‐tuned coil was shown to have comparable proton quality and acceleration possibilities to the single‐tuned alternative while also being able to acquire high SNR sodium images.  相似文献   

2.
The feasibility of broadband proton decoupled in vivo 13C NMR spectroscopy of humans at 1.5 T was explored. A dual surface coil set-up was used, comprising a circular 13C coil and a butterfly 1H decoupling coil placed at one third of its width away from the body. A calibration procedure was introduced to evaluate the specific absorption rate (SAR) in any gram of tissue for the inhomogeneous decoupling field generated by a surface coil. For the WALTZ-4 sequence it was demonstrated that broadband decoupled spectra of both subcutaneous adipose and underlying muscle or liver tissue could be obtained at 1.5 T without exceeding recommended maximum SAR values. Broadband decoupling caused an additional resolution enhancement ascribed to the removal of (1H-13C) long range couplings. Broadband proton decoupled spectra of subcutaneous adipose tissue were obtained in less than 10 min showing highly resolved and intense signals of fully relaxed carbon spin systems of triacylglycerols. Broadband proton decoupled 13C NMR spectra of calf muscle showed several resonances for metabolites resolved from triacylglycerol signals (e.g. C1-C5 of glycogen, C4 of histidine, aromatic and carbonyl carbons of aminoacids and N linked carbons of ethanolamine, choline and creatine). With an acquisition time of 20-30 min, the C1 glycogen signal was observed with a root mean square signal-to-noise ratio of about 15. Not only the glycogen C1 signal but also its C2-C6 signals could be monitored in dynamic studies. Finally broadband proton decoupled 13C spectra were obtained with signals from liver tissue (notably the carbons of glycogen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previously, we devised a novel strategy for in vivo 13C MRS using [2‐13C]glucose infusion and low‐power proton decoupling, and proposed that this strategy could be used to acquire 13C MR spectra from the frontal lobe of the human brain. Here, we demonstrate, for the first time, in vivo 13C MRS of human frontal lobe acquired at 3 T. Because the primary metabolites of [2‐13C]glucose can be decoupled using very‐low‐radiofrequency power, we used a volume coil for proton decoupling in this study. The homogeneous B1 field of the volume coil was found to significantly enhance the decoupling efficiency of the stochastic decoupling sequence. Detailed specific absorption rates inside the human head were analyzed using the finite difference time domain method to ensure experimental safety. In vivo 13C spectra from the occipital and frontal lobes of the human brain were obtained. At a decoupling power of 30 W (time‐averaged power, 2.45 W), the spectra from the occipital lobe showed well‐resolved spectral resolution and excellent signal‐to‐noise ratio. Although frontal lobe 13C spectra were affected by local B0 field inhomogeneity, we demonstrated that the spectral quality could be improved using post‐acquisition data processing. In particular, we showed that the frontal lobe glutamine C5 at 178.5 ppm and aspartate C4 at 178.3 ppm could be spectrally resolved with effective proton decoupling and B0 field correction. Because of its large spatial coverage, volume coil decoupling provides the potential to acquire 13C MRS from more than one brain region simultaneously. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of this work is to illustrate a new coil decoupling strategy and its application to a transmit/receive sodium/proton phased array for magnetic resonance imaging (MRI) of the human brain. We implemented an array of eight triangular coils that encircled the head. The ensemble of coils was arranged to form a modified degenerate mode birdcage whose eight shared rungs were offset from the z‐axis at interleaved angles of ±30°. This key geometric modification resulted in triangular elements whose vertices were shared between next‐nearest neighbors, which provided a convenient location for counter‐wound decoupling inductors, whilst nearest‐neighbor decoupling was addressed with shared capacitors along the rungs. This decoupling strategy alleviated the strong interaction that is characteristic of array coils at low frequency (32.6 MHz in this case) and allowed the coil to operate efficiently in transceive mode. The sodium array provided a 1.6‐fold signal‐to‐noise ratio advantage over a dual‐nuclei birdcage coil in the center of the head and up to 2.3‐fold gain in the periphery. The array enabled sodium MRI of the brain with 5‐mm isotropic resolution in approximately 13 min, thus helping to overcome low sodium MR sensitivity and improving quantification in neurological studies. An eight‐channel proton array was integrated into the sodium array to enable anatomical imaging.  相似文献   

5.
Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole‐body imaging and dual‐frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled‐wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled‐wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1H and 282.6 MHz for 19F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal‐to‐noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance.  相似文献   

6.
Although the quality and speed of MR images have vastly improved with the development of novel RF coil technologies, the engineering expertise required to implement them is often not available in many animal in vivo MR laboratories. We present here an open birdcage coil design which is easily constructed with basic RF coil expertise and produces high quality images. The quality and advantages of mouse cardiac MR images acquired with open birdcage coils were evaluated and compared to images acquired with a bent single loop surface, and standard birdcage coils acquired at 4.7 Tesla. Two low pass open birdcage coils, two single loop surface coils, and a low pass volume birdcage coil were constructed and their B(1) distributions were evaluated and compared. The calculated average signal-to-noise ratio for the left ventricular wall was 10, 23 and 32 for the volume birdcage coil, single loop surface coil and open birdcage coil, respectively. The results demonstrate that the open birdcage coil provides greater sensitivity than the volume coil and a higher signal/contrast-to-noise ratio and B(1) homogeneity than the single loop surface coil. The open birdcage coil offers easy access and better quality mouse cardiac imaging than both the single loop surface coil and volume birdcage coil and does not require extensive RF engineering expertise to construct.  相似文献   

7.
The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 +) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32‐rung birdcage body coil (driven either in a fixed quadrature mode or a two‐channel transmit mode), two single‐ring stripline arrays (with either 8 or 16 elements), and two multi‐ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 + homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double‐ring array outperformed all coils, including the single‐ring arrays. While the advantage of the double‐ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three‐ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 + homogeneity, particularly for a “z‐stacked” double‐ring design with coil elements arranged on two transaxial rings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Phosphorus (31P) MRSI provides opportunities to monitor potential biomarkers. However, current applications of 31P MRS are generally restricted to relatively small volumes as small coils are used. Conventional surface coils require high energy adiabatic RF pulses to achieve flip angle homogeneity, leading to high specific absorption rates (SARs), and occupy space within the MRI bore. A birdcage coil behind the bore cover can potentially reduce the SAR constraints massively by use of conventional amplitude modulated pulses without sacrificing patient space. Here, we demonstrate that the integrated 31P birdcage coil setup with a high power RF amplifier at 7 T allows for low flip angle excitations with short repetition time (TR) for fast 3D chemical shift imaging (CSI) and 3D T1‐weighted CSI as well as high flip angle multi‐refocusing pulses, enabling multi‐echo CSI that can measure metabolite T2, over a large field of view in the body. B1+ calibration showed a variation of only 30% in maximum B1 in four volunteers. High signal‐to‐noise ratio (SNR) MRSI was obtained in the gluteal muscle using two fast in vivo 3D spectroscopic imaging protocols, with low and high flip angles, and with multi‐echo MRSI without exceeding SAR levels. In addition, full liver MRSI was achieved within SAR constraints. The integrated 31P body coil allowed for fast spectroscopic imaging and successful implementation of the multi‐echo method in the body at 7 T. Moreover, no additional enclosing hardware was needed for 31P excitation, paving the way to include larger subjects and more space for receiver arrays. The increase in possible number of RF excitations per scan time, due to the improved B1+ homogeneity and low SAR, allows SNR to be exchanged for spatial resolution in CSI and/or T1 weighting by simply manipulating TR and/or flip angle to detect and quantify ratios from different molecular species.  相似文献   

9.
The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

10.
In vivo 13C MRS at high field benefits from an improved SNR and spectral resolution especially when using surface coils in combination with adiabatic pulses, such as the adiabatic half‐passage (AHP) pulse for 13C excitation. However, the excitation profile of the AHP pulse is asymmetric relative to the carrier frequency, which could lead to asymmetric excitation of the spectral lines relative to the center of the spectrum. In this study, a pulse‐acquire sequence was designed for adiabatic 13C excitation with a symmetric bandwidth, utilizing a combination of two AHP pulses with inverted phases in alternate scans. Magnetization and phase behavior as a function of frequency offset and RF amplitude of the B1 field, as well as the steady‐state transverse magnetization response to off‐resonance, were simulated. Excitation properties of the combined pulse sequence were studied by 23Na imaging and 13C spectroscopy in vitro on a phantom and in vivo on the human calf at 7 T. Simulations demonstrated symmetric transverse magnetization and phase with respect to positive and negative frequency offsets when using two AHP pulses with inverted phases in alternate scans, thereby minimizing baseline distortion and achieving symmetric T1 weighting, as confirmed by in vitro measurements. The intensities of the lipid peaks at 15, 30, 62, 73, and 130 ppm were in agreement with those theoretically predicted using two AHP pulses with inverted phases in alternate scans. We conclude that using two phase‐inverted AHP pulses improves the symmetry of the 13C excitation profile and phase response to off‐resonance effects at 7 T in comparison with using a single AHP pulse.  相似文献   

11.
The purpose of this study was to evaluate the feasibility of an eight‐channel dual‐tuned transceiver surface RF coil array for combined 1H/19F MR of the human knee at 7.0 T following application of 19F‐containing drugs. The 1H/19F RF coil array includes a posterior module with two 1H loop elements and two anterior modules, each consisting of one 1H and two 19F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized 19F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a 19F‐containing non‐steroidal anti‐inflammatory drug – to determine T1 and T2 and to study the 19F signal‐to‐dose relationship. The suitability of the proposed approach for 1H/19F MR was examined in healthy subjects. Reflection coefficients of each channel were less than ?17 dB and coupling between channels was less than ?11 dB. QL/QU was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1/T2 = 673/31 ms at 101 mmol/L and T1/T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in‐plane spatial resolution of (1.5 × 1.5) mm2 achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined 1H/19F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real‐time bioavailability studies and quantification of 19F‐containing medicinal compounds in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Widespread use of ultrahigh‐field 31P MRSI in clinical studies is hindered by the limited field of view and non‐uniform radiofrequency (RF) field obtained from surface transceivers. The non‐uniform RF field necessitates the use of high specific absorption rate (SAR)‐demanding adiabatic RF pulses, limiting the signal‐to‐noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body‐sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick‐up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7‐T MRI scanner. The accuracy of power calibration with pick‐up probes is analyzed at a clinical 3‐T MR system with a close to identical 1H body coil integrated at the MR system. Finally, we demonstrate high‐quality three‐dimensional 31P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The neuroimaging of nonhuman primates (NHPs) realised with magnetic resonance imaging (MRI) plays an important role in understanding brain structures and functions, as well as neurodegenerative diseases and pathological disorders. Theoretically, an ultrahigh field MRI (≥7 T) is capable of providing a higher signal‐to‐noise ratio (SNR) for better resolution; however, the lack of appropriate radiofrequency (RF) coils for 9.4 T monkey MRI undermines the benefits provided by a higher field strength. In particular, the standard volume birdcage coil at 9.4 T generates typical destructive interferences in the periphery of the brain, which reduces the SNR in the neuroscience‐focused cortex region. Also, the standard birdcage coil is not capable of performing parallel imaging. Consequently, extended scan durations may cause unnecessary damage due to overlong anaesthesia. In this work, assisted by numerical simulations, an eight‐channel receive RF coil array was specially designed and manufactured for imaging NHPs at 9.4 T. The structure and geometry of the proposed receive array was optimised with numerical simulations, so that the SNR enhancement region was particularly focused on monkey brain. Validated with rhesus monkey and cynomolgus monkey brain images acquired from a 9.4 T MRI scanner, the proposed receive array outperformed standard birdcage coil with higher SNR, mean diffusivity and fractional anisotropy values, as well as providing better capability for parallel imaging.  相似文献   

14.
For MRI at 16.4T, with a proton Larmor frequency of 698 MHz, one of the principal RF engineering challenges is to generate a spatially homogeneous transmit field over a larger volume of interest for spin excitation. Constructing volume coils large enough to house a receive array along with the subject and to maintain the quadrature symmetry for different loading conditions is difficult at this frequency. This calls for new approaches to RF coil design for ultra‐high field MR systems. A remotely placed capacitively tunable patch antenna, which can easily be adjusted to different loading conditions, was used to generate a relatively homogeneous excitation field covering a large imaging volume with a transversal profile similar to that of a birdcage coil. Since it was placed in front of the animal, this created valuable free space in the narrow magnet bore around the subject for additional hardware. To enhance the reception sensitivity, the patch antenna was combined with an actively detunable 3‐channel receive coil array. In addition to increased SNR compared to a quadrature transceive surface coil, we were able to get high quality gradient echo and spin‐echo images covering the whole rat brain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In vivo metabolic imaging using hyperpolarized [1‐13C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio‐frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non‐excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1‐13C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1‐13C]lactate and [1‐13C]alanine) and [1‐13C]pyruvate‐hydrate. By eliminating the loss of hyperpolarized [1‐13C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal‐to‐noise ratio (SNR) and the extension of the lifetime of the [1‐13C]lactate and [1‐13C]alanine pools when compared with conventional non‐spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi‐band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1‐13C]pyruvate‐hydrate as a proxy for the actual [1‐13C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1‐13C]pyruvate metabolic imaging with high fidelity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The ability to accelerate the spatial encoding process during a chemical shift imaging (CSI) scan of hyperpolarized compounds is demonstrated through parallel imaging. A hardware setup designed to simultaneously acquire 13C data from multiple receivers is presented here. A system consisting of four preamplifiers, four gain stages, a transmit coil, and a four receive channel rat coil was built for single channel excitation and simultaneous multi‐channel detection of 13C signals. The hardware setup was integrated with commercial scanner electronics, allowing the system to function similar to a conventional proton multi‐channel setup, except at a different frequency. The ability to perform parallel imaging is demonstrated in vivo. CSI data from the accelerated scans are reconstructed using a self‐calibrated multi‐spectral parallel imaging algorithm, by using lower resolution coil sensitivity maps obtained from the central region of k‐space. The advantages and disadvantages of parallel imaging in the context of imaging hyperpolarized compounds are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The fidelity of gradient waveforms in MRI pulse sequences is essential to the acquisition of images and spectra with minimal distortion artefacts. Gradient waveforms can become nonideal when eddy currents are created in nearby conducting structures; however, the resultant magnetic fields can be characterised and compensated for by measuring the spatial and temporal field response following a gradient impulse. This can be accomplished using a grid of radiofrequency (RF) coils. The RF coils must adhere to strict performance requirements: they must achieve a high sensitivity and signal‐to‐noise ratio (SNR), have minimal susceptibility field gradients between the sample and surrounding material interfaces and be highly decoupled from each other. In this study, an apparatus is presented that accomplishes these tasks with a low‐cost, mechanically simple solution. The coil system consists of six transmit/receive RF coils immersed in a high‐molarity saline solution. The sensitivity and SNR following an excitation pulse are sufficiently high to allow accurate phase measurements during free‐induction decays; the intrinsic susceptibility matching of the materials, because of the unique design of the coil system, results in sufficiently narrow spectral line widths (mean of 19 Hz), and adjacent RF coils are highly decoupled (mean S12 of ?47 dB). The temporal and spatial distributions of eddy currents following a gradient pulse are measured to validate the efficacy of the design, and the resultant amplitudes and time constants required for zeroth‐ and first‐order compensation are provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.  相似文献   

19.
Nuclear magnetic resonance (NMR) spectroscopy of small lesions is restricted by the difficulties of localizing the surface coil with respect to the lesion and the problem of ensuring that signal is only obtained from the lesion and not from surrounding tissue. A double-tuned coil has been developed that permits NMR proton images to be obtained from a region of interest, prior to carrying out 31P spectroscopy of the same region with the same coil, without the need for further adjustment. The coil provides a means of accurately localizing the region from which the 31P signal is obtained, whilst offering a means of accurately applying 31P signal localization methods, and the possibility of making corrections for the nonuniform sensitivity of a given surface coil. The coil makes use of two parallel resonant circuits, with independent rf connections, but sharing a common coil. Simulated shorted and open circuit lambda /4 cables are used, respectively, to open circuit each circuit at the resonant frequency of the other circuit and ensure that the simulated lambda /4 line is short circuited for each circuit at the circuit's resonant frequency. At 63.6 MHz, the Q of the coil was 190 unloaded and 90 loaded, and at 25.7 MHz the Q was 210 unloaded and 140 loaded, for a 4-cm-diam coil. The coil has been used to obtain proton images and 31P spectra. A circuit employing only one input was also developed.  相似文献   

20.
The sensitivity of proton MR Spectroscopic Imaging (1H‐MRSI) of the prostate can be optimized by using the high magnetic field strength of 7 T in combination with an endorectal coil. In the work described in this paper we introduce an endorectal transceiver at 7 T, validate its safety for in vivo use and apply a pulse sequence, optimized for three‐dimensional (3D) 1H‐MRSI of the human prostate at 7 T. A transmit/receive endorectal RF coil was adapted from a commercially available 3 T endorectal receive‐only coil and validated to remain within safety guidelines for radiofrequency (RF) power deposition using numerical models, MR thermometry of phantoms, and in vivo temperature measurements. The 1H‐MRSI pulse sequence used adiabatic slice selective refocusing pulses and frequency‐selective water and lipid suppression to selectively obtain the relevant metabolite signals from the prostate. Quantum mechanical simulations were used to adjust the inter‐pulse timing for optimal detection of the strongly coupled spin system of citrate resulting in an echo time of 56 ms. Using this endorectal transceiver and pulse sequence with slice selective adiabatic refocusing pulses, 3D 1H‐MRSI of the human prostate is feasible at 7 T with a repetition time of 2 s. The optimized inter‐pulse timing enables the absorptive detection of resonances of spins from spermine and citrate in phase with creatine and choline. These potential tumor markers may improve the in vivo detection, localization, and assessment of prostate cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号