首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ground reaction forces on stairs: effects of stair inclination and age   总被引:1,自引:0,他引:1  
The goals of the study were to compare data of vertical ground reaction force (GRF) parameters during level walking, stair ascent and descent on three different stair inclinations and three different age groups. Twenty healthy subjects of three age groups (young 33.7 years; middle 63.6 years; old 76.5 years) were tested during the seven test conditions with 8-10 repetitions. Vertical forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. The results showed that during level walking the vertical GRF curves were very regular and repetitive, the trail-to-trial variability and left-right asymmetry of defined test parameters being around 2-5% and 3-5%. During stair ascent the vertical GRF force pattern was found to change slightly compared to level gait, but considerably compared to stair descent. On the steep stair the average vertical load increased up to 1.6 BW, and variability (5-10%) and asymmetry (5-15%) were increased significantly. The steep stair descent condition was found to be the most demanding test showing the largest variability and asymmetry and thus, the least stable gait pattern. Age was found to be a factor which should be considered, because the young age group walked faster and produced larger vertical GRF maxima during level walking and on stair ascent than the middle and old age group. Differences between the middle and old age group were found to be small. The present investigation is the first to provide normative data of GRF parameters on gait variability and symmetry of two consecutive steps during level gait and stair ambulation. It is the intention that the results of this study may be used as a basis for comparison with patient data.  相似文献   

2.

Purpose

The purpose of this study was to compare knee kinematics during stair walking in patients with simultaneous total knee arthroplasty (TKA) and unicompartmental knee arthroplasties (UKA). It was hypothesized that UKA would reproduce more normalized knee kinematics than TKA during stair ascent and descent.

Methods

Six patients who received UKA in one knee and TKA in the other knee were included in the study. For this study, a four-step staircase was assembled with two force platforms being positioned at the centre of the second and third steps. Each patient was attached with 16 reflective markers at both lower extremities and was asked to perform five roundtrip trials of stair climbing. Kinematic parameters including stance duration, knee angle, vertical ground reaction force (GRF), joint reaction force, and moments were obtained and analysed using a10-camera motion system (VICON, Oxford, UK). Nonparametric Friedman test was used to compare the results between two arthroplasty methods and between stair ascent and descent.

Results

Compared to TKA, UKA knees exhibited significantly greater degree of rotation in transverse planes (5.0 degrees during ascent and 6.0 degrees during descent on average), but showed no difference in terms of the other parameters. When comparing the results during stair ascent with descent, overall greater knee angle, vertical GRF, joint reaction force, and moment were observed during stair descent.

Conclusions

Both UKA and TKA knees have shown overall similar knee kinematics, though UKA knee may allow greater degree of rotation freedom, which resembles normal knee kinematics during stair walking.

Level of evidence

Case–control study, Level III.  相似文献   

3.
AimTo investigate lower limb biomechanical strategy during stair walking in patients with diabetes and patients with diabetic peripheral neuropathy, a population known to exhibit lower limb muscular weakness.MethodsThe peak lower limb joint moments of twenty-two patients with diabetic peripheral neuropathy and thirty-nine patients with diabetes and no neuropathy were compared during ascent and descent of a staircase to thirty-two healthy controls. Fifty-nine of the ninety-four participants also performed assessment of their maximum isokinetic ankle and knee joint moment (muscle strength) to assess the level of peak joint moments during the stair task relative to their maximal joint moment-generating capabilities (operating strengths).ResultsBoth patient groups ascended and descended stairs slower than controls (p < 0.05). Peak joint moments in patients with diabetic peripheral neuropathy were lower (p < 0.05) at the ankle and knee during stair ascent, and knee only during stair descent compared to controls. Ankle and knee muscle strength values were lower (p < 0.05) in patients with diabetic peripheral neuropathy compared to controls, and lower at knee only in patients without neuropathy. Operating strengths were higher (p < 0.05) at the ankle and knee in patients with neuropathy during stair descent compared to the controls, but not during stair ascent.ConclusionPatients with diabetic peripheral neuropathy walk slower to alter gait strategy during stair walking and account for lower-limb muscular weakness, but still exhibit heightened operating strengths during stair descent, which may impact upon fatigue and the ability to recover a safe stance following postural instability.  相似文献   

4.
BackgroundStair ambulation is a challenging activity of daily life that requires larger joint moments than walking. Stabilisation of the body and prevention of lower limb collapse during this task depends upon adequately-sized hip, knee and ankle extensor moments. However, people with Parkinson’s disease (PD) often present with strength deficits that may impair their capacity to control the lower limbs and ultimately increase their falls risk.ObjectiveTo investigate hip, knee and ankle joint moments during stair ascent and descent and determine the contribution of these joints to the body’s support in people with PD.MethodsTwelve PD patients and twelve age-matched controls performed stair ascent and descent trials. Data from an instrumented staircase and a three-dimensional motion analysis system were used to derive sagittal hip, knee and ankle moments. Support moment impulses were calculated by summing all extensor moment impulses and the relative contribution of each joint was calculated.ResultsLinear mixed model analyses indicated that PD patients walked slower and had a reduced cadence relative to controls. Although support moment impulses were typically not different between groups during stair ascent or descent, a reduced contribution by the ankle joint required an increased knee joint contribution for the PD patients.ConclusionsDespite having poorer knee extensor strength, people with PD rely more heavily on these muscles during stair walking. This adaptation could possibly be driven by the somewhat restricted mobility of this joint, which may provide these individuals with an increased sense of stability during these tasks.  相似文献   

5.
This study examined lower extremity biomechanics during the initiation of stair descent from an upright, static posture. Seventeen healthy subjects (aged 23±2.4 years) descended a five-step, steel-reinforced, wooden laboratory staircase (34° decline). Ten trials of stair descent were separated into two blocks of five trials. Beginning from an upright posture, subjects descended the staircase at their preferred velocity (0.53±0.082 m/s) and continued the length of the laboratory walkway (~4 m). Joint mechanics were contrasted between gait cycles. Relative to the initiation cycle at the top of the staircase, the dissipative knee extensor (K3) and hip flexor (H2) moments and powers were independent of progression velocity and approximated steady-state (i.e., constant) values after the first cycle of the trail limb (Step 5 to Step 3). In contrast, a salient relationship was observed between progression velocity and ankle joint mechanics at initial-contact. The plantiflexor moment, power and work at initial-contact (A1) increased with centre of mass velocity. Our results demonstrate that while the knee extensor moment is the primary dissipater of mechanical energy in stair descent, the ankle plantiflexors are the primary dissipaters associated with increased progression velocity. In addition, the results show that steady-state stair descent may not be attained during the first gait cycle of the trail limb. These data shed light on locomotive strategies used in stair descent and can be applied in biomechanical models of human stair gait. Researchers and practitioners should take into consideration the influence of gait cycle and progression velocity when evaluating lower extremity function in stair descent.  相似文献   

6.
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.  相似文献   

7.
The activity of descending stairs increases loading at the joints of the lower extremities as compared to walking, which may cause discomfort and or difficulties in completing the task. This study compared and contrasted the kinematics and kinetics of both forwards and backwards stair descent to those of level walking. We compared the support moments and moment powers of the lower limb joints while descending stairs forwards at a self-selected pace, backwards at a self-selected pace and forwards at the same pace as backwards. Participants were 10 healthy young adults (6 men and 4 women) aged 20–35 years. Sagittal plane kinematics and ground reaction forces were collected and moments of force computed using inverse dynamics. The ratio of stance/swing phase changed from 59:41 for normal level walking to between 65:35 and 70:30 for forward stair descent but backwards descent was 58:42. Stair descent produced larger double-peak support moments with reduced ankle plantar flexor and increased knee extensor moments as compared to level walking (>±95th-percentile confidence interval). The hip moments during stair descent were relatively small and highly variable. We observed significantly larger distances between the centres of pressure and the stair edges for backwards stair descent versus forwards stair descent. These results demonstrate that stair descent, even at a slower pace, requires greater power from the knee extensors than level walking but that backwards stair descent significantly reduced the peak knee power during midstance and provided a potentially safer means of descending stairs than forwards stair descent.  相似文献   

8.
The high incidence of falls in older adults during stair negotiation suggests that this task is physically challenging and potentially dangerous. The present study aimed to examine the influence of light handrail use on the biomechanics of stair negotiation in old age. Thirteen older adults ascended and descended a purpose-built staircase at their self-selected speed: (i) unaided and (ii) with light use of the handrails. Ground reaction forces (GRFs) were measured from force platforms mounted into each step and motion capture was used to collect kinematic data. Knee and ankle joint moments were calculated using the kinetic and kinematic data. The horizontal separation between the centre of mass (COM) and the centre of pressure (COP) was assessed in the sagittal and frontal planes. During stair ascent, handrail use caused a different strategy to be employed compared to unaided ascent with a redistribution of joint moments. Specifically, the ankle joint moment (of the trailing leg) was reduced with handrail use, which has previously been shown to approach its limits during unaided stair ascent, but the knee joint moment (of the leading leg) increased. Previous research has shown that a larger joint moment reserve is available at the knee during unaided stair ascent. During stair descent, the ankle joint moment increased with handrail use, this was associated, however, with a more effective control of balance as shown by a reduced COM-COP separation in the direction of progression compared to unaided descent. These results indicate that although the biomechanical mechanisms are different for stair ascent and descent, the safety of stair negotiation is improved for older adults with light use of the handrails.  相似文献   

9.
This study compared the effects of a unilateral solid ankle-foot orthosis (AFO), hinged AFO and no AFO (shoe) worn by healthy adults on pelvic angles, lower extremity joint angles, moments and powers, and temporal-spatial gait characteristics during stair locomotion. A convenience sample of 19 healthy adults participated in this repeated measures design with subjects serving as their own controls. Subjects ambulated on stairs wearing a left shoe and either a right solid AFO, hinged AFO or shoe. Kinematic and kinetic data were collected with motion analysis equipment and a force plate for the three conditions. Pelvic angles and right hip, knee and ankle angles, moments and powers during stance were compared to determine differences among the conditions. Subjects wearing either orthosis walked slower during stair locomotion and with a shorter right single limb support time during descent. Sagittal knee and ankle angles, moments and powers were similar in individuals wearing a hinged AFO or shoe during pull-up (PU) in ascent and controlled lowering (CL) in descent. Decreased ankle dorsiflexion angle, plantar flexion power, knee flexion angle and extensor moment were seen in subjects wearing a solid AFO as compared to a hinged AFO during PU in ascent and CL in descent. Findings contributed to understanding how biomechanical changes imposed at the ankle by a unilateral solid AFO resulted in more kinetic and kinematic compensations than the hinged AFO in healthy adults without the confounding effects of neuromuscular impairments.  相似文献   

10.
Ascending stairs is an important functional activity that is affected by lower extremity pathology including amputation. Although several studies have demonstrated stair ascent is more challenging than level ground walking, our understanding of the mechanics remains limited. The purpose of this study was to determine the association between lower extremity joint power generation and vertical COM acceleration (COMA) during stair ascent. Twenty-two healthy individuals underwent a biomechanical gait assessment while walking up a 16-step instrumented staircase. The association between the peak joint powers and peak COMA during stance were assessed with respect to timing and magnitude. With respect to timing, peak ankle joint power was highly correlated with peak COMA (R2 = 0.93), while peak knee and hip joint powers demonstrated limited association with COMA (R2 = 0.41 and 0.08, respectively). Only the magnitude of peak ankle power was associated with peak COMA (R2 = 0.3).Significant temporal and magnitude associations between peak ankle joint power and peak COMA suggest ankle power is a key contributor to COMA. Although peak knee joint power and COMA are temporally associated, the association is weaker and the occurrence of peak joint knee power is nearly 10% after peak COMA, suggesting knee joint power plays a lesser role in COMA. These combined findings indicate the role of trail limb ankle plantarflexors should be recognized in the stair ascent cycle definition and demonstrate the potential importance of a power generated by the ankle plantarflexors to normalize stair ascent performance following lower extremity amputation.  相似文献   

11.
Hong Y  Li JX 《Gait & posture》2005,22(1):63-68
The study investigated the effects of carrying methods and loads on gait phase and ground reaction force during stair ascent and descent in children. The carrying methods that were examined included the backpack and one-strap athletic bag. The load weights included 0%, 10%, 15%, and 20% of body weight. Thirteen school children aged 12.21 +/- 0.98 years were recruited as subjects. A Novel Pedar System was used to record and analyze the insole pressure during stair walking with different loads. The load that caused a significant increase in the peak force in each bag and stair mode was 15% of body weight, except for stair ascent carrying the athletic bag, where the load was 10% of body weight. The maximum peak force that was induced by this load in stair descent was 1.25 times that in descent with no load, 1.89 times that in ascent with the same load, and 2.19 times that in ascent with no load. The force-to-time ratio in descent was about three times that in ascent.  相似文献   

12.
BackgroundNegotiating stairs is an important activity of daily living that is also associated with large loads on the knee joint. In medial compartment knee osteoarthritis, the knee adduction moment during level walking is considered a marker for disease severity. It could be argued that the discriminative capability of this parameter is even better if tested in a strenuous stair negotiation task.Research questionWhat is the relation with knee osteoarthritis on the knee adduction moment during the stance phase of both stair ascent and descent in patients with and without obesity?MethodsThis case control study included 22 lean controls, 16 lean knee osteoarthritis patients, and 14 obese knee osteoarthritis patients. All subjects ascended and descended a two-step staircase at a self-selected, comfortable speed. Three-dimensional motion analysis was performed to evaluate the knee adduction moment during stair negotiation.ResultsObese knee osteoarthritis patients show a prolonged stance time together with a more flattened knee adduction moment curve during stair ascent. Normalized knee adduction moment impulse, as well as the first and second peaks were not different between groups. During stair descent, a similar increase in stance time was found for both osteoarthritis groups.SignificanceThe absence of a significant effect of groups on the normalized knee adduction moment during stair negotiation may be explained by a lower ambulatory speed in the obese knee osteoarthritis group, that effectively lowers vertical ground reaction force. Decreasing ambulatory speed may be an effective strategy to lower knee adduction moment during stair negotiation.  相似文献   

13.
The purpose of the study was to determine the reliability of vertical ground reaction force (VGRF) parameters during stair ascent and descent in the elderly. Forty-two elderly subjects (80.1 SD 6.4 years) were asked to perform three stair ascents and descents at their self-selected normal speed. VGRF were measured during two consecutive steps on an instrumented staircase. Force–time curves where then parameterized into force, force-time and time variables, according to a previously suggested protocol. In addition, force and force-time variables were normalized to body weight. Intraclass correlation coefficients (ICC) type (2, 1) and coefficients of variation (CV) were calculated. Force variables showed moderate to good reliability for the normalized values with ICCs ranging from 0.537 to 0.836 and CVs between 2.52% and 6.51%. Variability of Fmax1 and Fmin appeared to be higher in stair descent with CVs of >5.20% as compared to stair ascent (<3.75%). Time variables showed good reliability in stair ascent but were clearly lower in stair descent (ICCs between 0.108 and 0.684 and CVs between 10.70% and 14.45%). Significant differences were found for the ICCs between the absolute and normalized values as well as for the ICCs of the time dependent and CVs of all variables between stair ascent and descent.It has been concluded that VGRF parameters can be used as a reliable measurement tool for the quantification of stair climbing in the elderly. The present data can be further used as reference values in future investigations.  相似文献   

14.
PURPOSE: This study compared the kinematics and kinetics of the knee joint during traditional step-over-step (SOS) and compensatory step-by-step lead-leg (SBSL) and trail-leg (SBST) stair ambulation patterns. METHODS: Seventeen (M:9) healthy adults completed five trials of ascent and descent using three different stepping patterns: 1) SBSL, 2) SBST, and 3) SOS. Kinematics and kinetics were collected with an optoelectronic motion-tracking system and a force plate embedded into a four-step staircase. An inverse-dynamics link-segment model (QGAIT system) was used to calculate the net joint kinetics. RESULTS: During stair ascent, different peak anteroposterior (AP) forces were observed across all three stepping patterns (SOS > SBSL > SBST, P < 0.05). During ascent, the flexion moments of SOS (0.96 N x m x kg(-1)) and SBSL (0.97 N x m x kg(-1)) patterns were similar and much larger than the SBST moments (0.14 N x m x kg(-1)). In the descent conditions, the initial AP peak force for SOS was larger than that of SBSL and SBST. However, the second peak force for SOS (4.92 N x kg(-1)) and SBST (4.68 N x kg(-1)) were larger than SBSL (1.57 N x kg(-1)). During descent, the initial peak flexion moment for the SOS pattern was larger than SBSL and SBST, whereas during the second peak, SOS (1.05 N x m x kg(-1)) and SBST (1.11 N x m x kg(-)) were no different and larger than SBSL (0.18 N x m x kg(-1)). CONCLUSION: Overall, SBSL during ascent and SBST during descent had the highest loads. These results increase our understanding of alternative stepping patterns and have important clinical (reduction of loading on injured/diseased leg) and rehabilitation implications.  相似文献   

15.
Stair negotiation is an essential skill required for independent mobility, and is described by older adults as a challenging task that is associated with high fall risk. Little is known about the age-related changes in joint kinetics and the relative contribution of lower limb joint moments during stair negotiation. This study characterized lower extremity joint kinetics and their variability associated with stair ascent and descent in young and older adults. Twenty three young and 32 older adults (>55 years) participated. Three dimensional, bilateral gait analysis provided ankle, knee, and hip moment profiles, which in the sagittal plane were summed to provide the support moment. In addition, intra- and inter-subject coefficients of variation were calculated for ensemble averaged curves. Age-related differences were found in the magnitudes of the moment contributions during event transitions for stair ascent and descent. Within groups, the moment profiles were generally consistent. Ankle and knee moments predominantly contributed to extensor support in the sagittal plane. In the frontal plane, proximal joint abductor moments maintained lateral stability and were larger at the hip in older adults. Understanding age-related alterations in movement control during functional tasks can help inform the rehabilitation management and assessment of patient populations.  相似文献   

16.
The elderly are prone to stair descent falls under low illumination. Tai Chi, a traditional Chinese conditioning exercise, has been proved to improve body stability by altering body condition, gait, and proprioception. This study investigates whether Tai Chi exercise could improve body stability during stair descent under high and low illumination. Three groups of elderly women who practice Tai Chi, brisk walking, and no exercise were included. They descended from a simulated staircase. Tai Chi participants decreased horizontal velocity, centre of mass (COM) sway, and increased foot clearance compared with other participants, these movements could increase body stability; Compared with under high illumination, Tai Chi participants decreased horizontal velocity, loading rate, braking impulse, and increased inclination angle, COM sway, centre of pressure displacement under low illumination. Tai Chi participants were more sensitive to the difference in illumination, and took corresponding strategies to stabilize their bodies during stair descent.  相似文献   

17.
Although it is likely that foveal information on treads provides important sensory cues for stair walking, it is unclear how gaze stabilization on treads contribute to gait control on stairs. The aim of this study was to determine the extent to which (i) stair walking depends on foveal information on stepped treads, (ii) fixated treads correspond to future foot landing locations, and (iii) the distance looked ahead varies with stepping distance. Gaze and foot position was monitored from six healthy young adults when they ascended and descended a 10 tread long staircase, taking the stairs one or two treads at a time. The results showed that 55-68% of the total fixation time was aimed at treads, and that tread edges were fixated more intensively during stair descent (69% of the total time spent fixating treads) than during stair ascent (48%). A substantial 28-34% of the stepped treads was never fixated and, when the staircase was taken two treads a time, approximately 35% of the fixated treads was never stepped on. Subjects fixated 3.5-4.5 treads ahead in both stepping conditions, but when the staircase was taken 2 treads a time, stepped treads were fixated shorter ahead (2.7-2.9 treads) than treads that were not stepped (3.4-4.1 treads). These results provide new insights into the visual control of stair walking, and suggest that the stabilization of gaze on treads is not used solely to guide foot placement, but may serve other purposes as well, e.g., to facilitate postural control on the staircase.  相似文献   

18.
Individuals often carry items in one hand instead of both hands during activities of daily living. The combined effects of carrying asymmetric loads and stair negotiation may create even higher demands on the low back and lower extremity. The purpose of this study was to investigate the effect of symmetric and asymmetric loading conditions on L5/S1 and lower extremity moments during stair negotiation. Twenty-two college students performed stair ascent and stair descent on a three-step staircase (step height 18.5 cm, tread depth 29.5 cm) at preferred pace under five load conditions: no load, 10% body weight (BW) unilateral load, 20% BW unilateral load, 10% BW bilateral load, and 20% BW bilateral load. Video cameras and force platforms were used to collect kinematic and kinetic data. Inverse dynamics was used to calculate frontal plane moments for the L5/S1 and lower extremity. A 20% BW unilateral load resulted in significantly higher peak L5/S1 lateral bending, hip abduction, and external knee varus moments than nearly all other loading conditions during stair ascent and stair descent. Therefore, we suggest potential benefits when carrying symmetrical loads as compared to an asymmetric load in order to decrease the frontal joint moments, particularly at 20% BW load.  相似文献   

19.
Knee and hip kinetics during normal stair climbing   总被引:7,自引:0,他引:7  
Understanding joint kinetics during activities of daily living furthers our understanding of the factors involved in joint pathology and the effects of treatment. In this study, we examined hip and knee joint kinetics during stair climbing in 35 young healthy subjects using a subject-specific knee model to estimate bone-on-bone tibiofemoral and patello-femoral joint contact forces. The net knee forces were below one body weight while the peak posterior-anterior contact force was close to one body weight. The peak distal-proximal contact force was on average 3 times body weight and could be as high as 6 times body weight. These contact forces occurred at a high degree of knee flexion where there is a smaller joint contact area resulting in high contact stresses. The peak knee adduction moment was 0.42 (0.15) Nm/kg while the flexion moment was 1.16 (0.24) Nm/kg. Similar peak moment values, but different curve profiles, were found for the hip. The hip and knee posterior-anterior shear forces and the knee flexion moment were higher during stair climbing than during level walking. The most striking difference between stair ascent and level walking was that the peak patello-femoral contact force was 8 times higher during stair ascent. These data can be used as baseline measures in pathology studies, as input to theoretical joint models, and as input to mechanical joint simulators.  相似文献   

20.
OBJECTIVE: To test the hypothesis that individuals who respond favorably to bracing will exhibit decreased patellofemoral joint stress during stair ambulation. DESIGN: A repeated-measures, cross-sectional study. BACKGROUND: Ascending and descending stairs is one of the most painful activities of daily living for persons with patellofemoral pain (PFP). Although patellar bracing has been shown to reduce symptoms during such tasks, the underlying mechanism has not been identified. METHODS: Fifteen subjects with a diagnosis of PFP completed 2 phases of data collection: (1) magnetic resonance imaging to determine patellofemoral joint contact area, and (2) gait analysis during stair ascent and descent. Data were obtained under braced and non-braced conditions. Variables obtained from both data collection sessions were used as input variables into a biomechanical model to quantify patellofemoral joint stress. RESULTS: Although subjects reported an average decrease in pain of 56%, bracing did not reduce peak stress during stair ascent and descent. This finding can be explained by the fact that despite improvements in contact area, bracing resulted in greater knee extensor muscle moments and joint reaction forces. CONCLUSIONS: Our results do not support the hypothesis that individuals with PFP would demonstrate reduced patellofemoral stress during stair ambulation following the application of a patellar brace. CLINICAL RELEVANCE: Although bracing did not decrease patellofemoral joint stress during stair ascent and descent, the decrease in pain, increase in quadriceps utilization, and tolerance of joint reaction forces would appear to be beneficial consequences of bracing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号