首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was aimed at evaluating whether the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is altered in platelets from patients with an acute coronary syndrome (unstable angina and acute myocardial infarction). We investigated 10 patients with unstable angina (UA), 14 with acute myocardial infarction (AMI) and 14 age and sex-matched healthy subjects. The serum markers of platelet activation (sP-selectin), inflammation (TNF-α and erythrocyte sedimentation rate), thrombotic state (fibrinogen) and plaque disruption were significantly higher in both UA and AMI patients compared to the healthy controls. In their platelets we assessed the cGMP levels in basal conditions and after stimulation with sodium nitroprusside (SNP), and performed Western blot analysis of homogenates to measure the expression of soluble guanylate cyclase isoforms. Basal levels of cGMP (pmol/1010 platelets) were significantly higher in platelets from UA patients (1,097 ± 111; p < 0.0001) and AMI (1,122 ± 77; p < 0.0001) compared to those collected from healthy controls (497 ± 80). The platelets of AMI patients exhibited a lack of cGMP increase after SNP stimulation in comparison with UA patients. The phosphorylation of upstream (Akt1 protein kinase α and endothelial NO synthase) and downstream (vasodilator-stimulated phosphoprotein, VASP) signaling proteins of the NO/cGMP pathway was investigated: serine phosphorylation in Akt1, eNOS and VASP was enhanced in platelets from UA and AMI patients when compared to controls. Furthermore, in AMI patients the inhibitors of guanylate cyclase and cGMP-dependent protein kinase did not revert the VASP phosphorylation. These data suggest that platelets from AMI patients are more resistant to SNP stimulation, not only as cGMP production, but also in terms of VASP activation. From these ex vivo results we hypothesize that the increased inflammatory state which often accompanies patients with cardiovascular diseases might promote a platelet preactivation resulting in their reduced sensitivity to NO.  相似文献   

2.
Introduction: Congenital diaphragmatic hernia (CDH) remains a frustating cause of respiratory failure associated with persistent pulmonary hypertension of the newborn (PPHN). Although inhaled nitric oxide (iNO) is effective in many infants with PPHN, it often fails to improve oxygenation in infants with CDH. As the increase in vascular smooth muscle cyclic guanosine monophosphate (cGMP) in response to iNO may be impeded by increased phosphodiesterase type-V (PDE-V) activity, it has been suggested that PDE-V blockade potentiates the efficiency of iNO. Case reports: We used dypiridamole (Persantine), a specific PDE-V inhibitor, in two patients with CDH. Prenatal diagnosis showed a left-sided CDH at 23 weeks of gestation (GA) with intrathoracic stomach and left heart underdevelopment in the one infant and a right-sided CDH at 26 weeks GA with intrathoracic liver in the other. After antenatal corticoids, planned delivery was performed by the vaginal route at 38 weeks GA. Preoperative stabilization was achieved by high frequency oscillation, iNO and inotropic support over 24 h. Both had early pneumothorax drained by a chest tube. Despite optimization of ventilatory and hemodynamic support with surfactant replacement, iNO and adrenaline, oxygenation worsened progressively. Dypiridamole was introduced intravenously at 27 and 40 h, respectively, and improved oxygenation over the next 12 h. However, oxygenation again deteriorated and both patients died. Conclusion: Dypiridamole enhanced the response to iNO in PPHN associated with CDH, although this effect was transient. Combined therapy of iNO with PDE-V inhibitors may improve pulmonary vasodilation in some forms of PPHN which do not respond to iNO, thereby reducing the need for extracorporeal membrane oxygenation (ECMO) and improving outcome. Received: 6 July 1998 Accepted: 13 November 1998  相似文献   

3.
Relaxation induced by nitric oxide (NO) donors is impaired in renal hypertensive two kidney-one clip (2K-1C) rat aortas. It has been proposed that caveolae are important in signal transduction and Ca2+ homeostasis. Therefore, in the present study we investigate the integrity of caveolae in vascular smooth muscle cells (VSMCs), as well as their influence on the effects produced by NO released from both the new NO donor [Ru(NH.NHq) (terpy)NO+]3+ (TERPY) and sodium nitroprusside (SNP) on 2K-1C rat aorta. The potency of both TERPY and SNP was lower in the 2K-1C aorta that in the normotensive aorta [two kidney (2K)], whereas the maximal relaxant effect (ME) was similar in both 2K-1C and 2K aortas. In the 2K aorta, methyl-beta-cyclodextrin (CD) reduced both the potency of TERPY and SNP, and their ME compared with the control, but it had no effect on the potency and ME of these NO donors in 2K-1C aortas. The decrease in cytosolic Ca2+ concentration ([Ca2+]c) induced by TERPY was larger in 2K than in 2K-1C cells, and this effect was inhibited by CD in 2K cells only. Aortic VSMCs from 2K rats presented a larger number of caveolae than those from 2K-1C rats. Treatment with CD reduced the number of caveolae in both 2K and 2K-1C aortic VSMCs. Our results support the idea that caveolae play a critical role in the relaxant effect and in the decrease in [Ca2+]c induced by NO, and they could be responsible for impaired aorta relaxation by NO in renal hypertensive rats.  相似文献   

4.
5.

Purpose

The response to inhaled nitric oxide (iNO) is inconsistent in patients with acute respiratory distress syndrome (ARDS). We sought to determine whether the response to iNO, defined as 20% Pao2/Fio2 increase from baseline, depends on the level of cardiac natriuretic peptides.

Materials and methods

This is a prospective cohort study including 11 consecutive patients with ARDS who were eligible to receive iNO. Measurements of plasma concentrations of atrial natriuretic peptide (ANP), N-Terminal-Pro-B-Type Natriuretic Peptide (NT-pro-BNP) and 3′,5′-cyclic guanosine monophosphate were obtained before initiating iNO and 30 minutes later during iNO. Baseline cardiac peptides, oxygenation, and hemodynamic variables and their change during iNO were compared among responders and nonreponders to iNO.

Results

Baseline ANP and NT-pro-BNP concentrations were higher in patients that responded to iNO and tended to decrease during iNO in responders only. 3′,5′-Cyclic guanosine monophosphate concentrations were not different among responders and nonresponders and were unchanged during iNO. Baseline ANP was strongly correlated with change in intrapulmonary shunt, and baseline NT-pro-BNP and its change were correlated with the change in cardiac output.

Conclusions

High ANP and NT-pro-BNP concentrations are associated with the response to iNO. These data suggest that cardiac peptides have the potential to identify a subgroup of patients with ARDS who might derive clinical benefit from iNO.  相似文献   

6.
7.
S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NACysNO) are nitrosothiols that release nitric oxide (NO) and mimic the effects of endogenous NO. This study investigated the relaxation induced by GSNO and NACysNO in rat aorta and the relation between relaxation and NO formation. Both compounds at concentrations from 10(-9) M to 10(-4) M relaxed the rat aorta in a concentration-dependent manner. However, NO production depended on the concentration of nitrosothiols present and was detected only above 100 microM GSNO or NACysNO. To determine whether K+ channels are involved in the relaxation induced by nitrosothiols, the contractions were induced with KCl at concentrations of 30, 60, or 90 mM. The concentration-effect curves for the relaxation induced by nitrosothiols were shifted to the right for all the K+ concentrations compared with aortas precontracted with phenylephrine. These results indicate the participation of K+ channels in the relaxation induced by GSNO and NACysNO. A selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, significantly inhibited the relaxation induced by the nitrosothiols. The relaxation induced by GSNO and NACysNO was inhibited by the K+ channel blockers glibenclamide, selective K(ATP) channels, and apamin, selective for low-conductance Ca2+-activated K+ channels in rat aorta, but was not inhibited by charybdotoxin, a potent and selective Ca2+-activated K+ channel blocker, or by 4-aminopyridine, a voltage-gated K+ channel blocker. These results indicate that relaxation induced by GSNO and NACysNO is partially due to activation of K(ATP) channels and partially due to activation of low-conductance Ca2+-activated K+ channels. However, the ability of the nitrosothiol compounds to overcome the inhibitory effect of high extracellular K+ concentrations suggests another mechanism of relaxation contributing to the nitrosothiol response. The most intriguing finding is that relaxation is not related to the NO produced in rat aorta.  相似文献   

8.
It is well known that chronotropic and inotropic responses to beta-adrenergic stimulation are impaired in cirrhosis, but the exact reason is not clear. Considering the inhibitory effect of endogenous opioid peptides and nitric oxide (NO) on beta-adrenergic pathway, we examined their roles in hyporesponsiveness of isolated atria and papillary muscles to isoproterenol stimulation in cirrhotic rats. Cirrhosis was induced by chronic bile duct ligation. Four weeks after ligation or sham operation, the responses of the isolated atria and papillary muscles to isoproterenol stimulation were evaluated in the absence and presence of naltrexone HCl (10(-6) m), N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) m), and naltrexone plus L-NAME in the organ bath. Considering the role of inducible NOS (iNOS) in hemodynamic abnormalities of cirrhotic rats, the chronotropic and inotropic responses of cirrhotic rats to isoproterenol stimulation were also assessed in the presence of aminoguanidine (a selective inhibitor of iNOS, 3 x 10(-4) m). Sham operation had no significant effect on basal atrial beating rate, contractile force, and maximal time derivatives for the development and the dissipation of papillary muscle tension. The basal atrial beating rate of cirrhotic rats did not show any significant difference compared with the sham-operated ones; however, the basal contractile parameters were significantly decreased in cirrhosis. Although the maximum effects of isoproterenol on chronotropic and inotropic responses were significantly reduced in cirrhotic rats, there was no difference in half-maximal effective concentrations of isoproterenol in these concentration-response curves. The basal abnormalities and the attenuated chronotropic and inotropic responses to isoproterenol were completely corrected by the administration of naltrexone, L-NAME and aminoguanidine. Concurrent administration of naltrexone and L-NAME also restored to normal the basal abnormalities and the blunted responses to isoproterenol in cirrhotic rats, and did not show any antagonistic effect. Based on these findings, both the endogenous opioid peptides and NO may be involved in the attenuated chronotropic and inotropic responses to beta-adrenergic stimulation in cirrhosis. It seems that the iNOS activity results in NO-induced hyporesponsiveness to beta-adrenergic stimulation in cirrhosis.  相似文献   

9.
Ibuprofen has been shown in vitro to modulate production of nitric oxide (NO), a mediator of sepsis-induced hypotension. We sought to determine whether ibuprofen alters NO production and, thereby, vascular tone, in normal and endotoxin-challenged volunteers. Techniques for detecting NO were validated in 17 subjects infused with sodium nitroprusside, a NO donor. Then, endotoxin (4 ng/kg) or saline (vehicle alone) was administered in a single-blinded, crossover design to 12 other subjects randomized to receive either ibuprofen (2400 mg p.o.) or a placebo. Endotoxin decreased mean arterial pressure (MAP; P =.002) and increased alveolar NO flow rates (P =.04) and urinary excretion of nitrite and nitrate (P =.07). In both endotoxemic and normal subjects, ibuprofen blunted the small fall in MAP associated with bed rest (P =.005) and decreased alveolar NO flow rates (P =.03) and urinary excretion of nitrite and nitrate (P =.02). However, ibuprofen had no effect on the decrease in MAP caused by endotoxin, although it blocked NO production to the point of disrupting the normal relationship between increases in exhaled NO flow rate and decreases in MAP (P =.002). These are the first in vivo data to demonstrate that ibuprofen down-regulates NO in humans. Ibuprofen impaired the NO response to bed rest, producing a small rise in blood pressure. Although ibuprofen also interfered with the ability of endotoxin to induce NO production, it had no effect on the fall in blood pressure, suggesting that the hemodynamic response to endotoxin is not completely dependent on NO under these conditions.  相似文献   

10.
Cocaine decreases coronary artery endothelial-dependent vasorelaxation. To explore the potential mechanisms, the present study examined the effect of cocaine on nitric oxide release in bovine coronary artery endothelial cells (BCAECs). In the absence of cocaine, basal nitric oxide release from BCAECs continued to accumulate in the medium over the period from 6 to 72 h. Cocaine significantly decreased nitric oxide release at each time point of the study. At 48-h treatment, cocaine (3-30 muM) produced a concentration-dependent decrease in nitric oxide release in BCAECs. In accordance with its inhibition of nitric oxide release, cocaine decreased endothelial nitric-oxide synthase (eNOS) protein levels in BCAECs in a concentration-dependent manner. In addition to the prolonged effect, cocaine pretreatment for 1 h significantly decreased basal and ATP-induced nitric oxide release in BCAECs. Whereas acute cocaine treatment did not affect basal levels of free intracellular calcium concentrations in BCAECs, it significantly decreased the ATP-induced elevation of intracellular calcium and increased its time lag to reach the peak. A quantitative approach by immunofluorescence microscopy revealed that cocaine significantly increased eNOS localized at the cell membrane in BCAECs. Collectively, the results suggest that cocaine inhibits nitric oxide release in BCAECs by decreasing intracellular calcium mobilization, increasing the inactive state of eNOS, and decreasing eNOS protein levels.  相似文献   

11.
Experiments were designed to determine whether a heterogeneity of endothelium-dependent relaxations in arteries from different vascular beds exists in experimental congestive heart failure (CHF) and to determine the mediators of those responses. CHF was produced in dogs by rapid ventricular pacing for 15 d. Rings of coronary, femoral, and renal arteries with and without endothelium from control and CHF dogs were suspended in organ chambers for measurement of isometric force. In arteries contracted with prostaglandin F2 alpha, endothelium-dependent relaxations to BHT 920 (an alpha 2-adrenergic agonist) were increased in coronary arteries from dogs with CHF (maximal relaxation: control -15 +/- 9% vs CHF -92 +/- 5%; n = 5-6; P < 0.05), with a modest enhancement in renal arteries. Relaxations to adenosine diphosphate and the calcium ionophore were unchanged. Relaxations to BHT 920 in CHF were reduced by NG monomethyl-L-arginine (L-NMMA) and pertussis toxin but not by indomethacin. These data suggest that endothelium-dependent relaxations are affected heterogeneously in CHF. The enhanced response to alpha 2-adrenergic agonists in the coronary artery is mediated by nitric oxide through a mechanism sensitive to inhibition by pertussis toxin. This selective increase in endothelium-dependent relaxations in the coronary artery may contribute to preserving coronary blood flow during CHF.  相似文献   

12.
13.
Recent findings suggest that nitric oxide (NO) is an important biologic mediator which exerts a wide variety of effects on numerous physiological and pathophysiological processes. L-Arginine is oxidized to L-citrulline with concomitant NO production; as a result, nitrate and nitrite accumulates. This study was conducted to determine the potential NO production by proximal tubular cells (PTC) in response to bacterial lipopolysac-charides (LPS) and cytokines and to evaluate the cytotoxic effect associated with NO release. After a 7-day stimulation with LPS (100 micrograms/ml), interleukin-1 beta (IL-1 beta) (10 ng/ml), and tumor necrosis factor alpha (TNF-alpha) (10 ng/ml), the nitrate and nitrite levels were determined by a spectrophotometric method based on the Griess reaction. Moreover, alpha-methylglucopyranoside phosphate and lactate dehydrogenase release and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay served as indicators of sodium-dependent hexose transport integrity and cell death, respectively. IL-1 beta and TNF-alpha used alone or together or combined with LPS led to a significant generation of NO by PTC. Our results also demonstrate that NO induced by LPS and cytokines could inhibit sodium-dependent transport and could induce PTC damage.  相似文献   

14.
The potency of the nitric oxide (NO) donors glyceryltrinitrate (GTN) and 3-morpholinosydnonimine was compared in human dorsal hand veins, the radial artery, and the forearm resistance vessels. NO donors were more potent in veins and the radial artery (vessels with minimal basal NO-mediated dilatation) than in the resistance vascular bed (where basal NO is a major determinant of vascular tone). In contrast, 8-bromoguanosine 3',5'-cyclic monophosphate (a cGMP mimetic) was approximately equipotent in resistance arteries and veins and was less potent in the radial artery. Inhibition of phosphodiesterase V with dipyridamole did not alter the arteriovenous profile of GTN. Increasing the local concentration of NO in veins (by infusing sodium nitroprusside) reduced their sensitivity to GTN but not to 8-bromoguanosine 3',5'-cyclic monophosphate. Conversely, reducing endogenous NO production in the resistance vasculature led to time-dependent increases in the response to GTN. These data suggest that soluble guanylate cyclase rather than cGMP-dependent protein kinase or phosphodiesterase V is the site in the second messenger pathway that determines the arteriovenous profile of NO donors. Moreover, the sensitivity of soluble guanylate cyclase to NO donors might be regulated by the ambient concentration of NO, with increased local NO down-regulating the dilator response to NO donors.  相似文献   

15.
The detection of nitric oxide (NO) release by human polymorphonuclear neutrophil leukocytes (PMNs) presents several difficulties, mainly due to concomitant production of O2- and H2O2, which could interfere with the measurements. A Nafion and nickel porphyrin-coated microelectrode was used to measure NO production in PMNs in vitro. It allowed detection of 6.3 +/- 1.9 nM NO in a PMN-containing system and was unaffected by added chemicals. Addition of the chemotactic oligopeptide f-met-leu-phe (fMLP; 100 nM) induced a NO release which reached a value of 71 +/- 30 pmol NO/10(6) PMN x ml(-1) 5 min after stimulation in the presence of SOD (150 U/ml). If SOD was omitted, the corresponding value was 36 +/- 20 pmol NO/10(6) PMN x ml(-1). Presence or absence of catalase did not alter the amount of NO measured. Addition of the NO-synthase inhibitor N(G)-monomethyl-L-arginine (LNMMA; 1 mM) reduced the current by 82 +/- 20%. These results agree with the rate of NO production in human PMNs when measured spectrophotometrically using the NO-dependent oxidation of oxyhaemoglobin to methaemoglobin. The NO production in human PMN was dependent on fMLP concentrations, but independent of cell-concentrations of 0.5-3.5 x 10(6)/ml. This paper shows that a electrochemical method, e.g. Nafion and porphyrin-coated microelectrode, is suitable for studies of NO release from stimulated human PMNs.  相似文献   

16.
背景:骨保护素和一氧化氮在防治骨质疏松方面有重要作用,但目前关于两者在抑制破骨细胞增殖分化方面的关系研究较少。
  目的:验证不同剂量的骨保护素对破骨细胞内生成一氧化氮量及内皮型一氧化氮合酶活性的影响。
  方法:用抗酒石酸酸性磷酸酶染色验证诱导生成的破骨细胞;将诱导生成的破骨细胞分成6个组,空白对照组不加任何试剂;阴性对照组培养液中加入培养液;骨保护素组分为4组分别加入10,25,50,75μg/L不同剂量的骨保护素试剂。采用Annexinv-FITC细胞凋亡检测试剂盒,利用流式细胞仪测定破骨细胞凋亡率;荧光定量PCR检测破骨细胞标志基因抗酒石酸酸性磷酸酶mRNA及蛋白激酶K mRNA 的表达量变化;一氧化氮检测试剂盒检测破骨细胞中内一氧化氮浓度;内皮型一氧化氮合成酶活力试剂盒检测破骨细胞内一氧化氮合酶的活力;骨保护素各组加入内皮细胞型一氧化氮合酶抑制剂;荧光定量PCR检测破骨细胞特异性酶抗酒石酸酸性磷酸酶 mRNA及蛋白激酶K mRNA表达量的变化。
  结果与结论:①骨保护素可以抑制破骨细胞的分化生成并诱导其凋亡。②骨保护素的质量浓度与诱导生成的破骨细胞数量及其标志酶mRNA的表达量呈负相关,与破骨细胞凋亡率呈正相关。③骨保护素可以增加破骨细胞内一氧化氮的生成以及内皮型一氧化氮合酶活性的升高;骨保护素的质量浓度与破骨细胞生成的一氧化氮浓度及内皮型一氧化氮合酶活性呈正相关。④Raw264.7细胞在体外培养条件下,骨保护素与一氧化氮在抑制破骨细胞生成及促进其凋亡方面有协同作用,推测两者之间可能存在骨保护素/内皮型一氧化氮合酶/一氧化氮信号通路。  相似文献   

17.
Patients with insulin-dependent diabetes mellitus have an increased mortality and morbidity due to vascular complications. Nitric oxide from the vascular endothelium contributes to the control of normal vascular tone, and endothelial dysfunction has been implicated in the pathogenesis of diabetic vascular disease. In this study we have examined basal and stimulated nitric oxide-mediated vasodilatation in insulin-dependent diabetics and age- and sex-matched healthy controls. Drugs were infused locally into the brachial artery and forearm blood flow measured using venous occlusion plethysmography. Noradrenaline and NG-monomethyl-L-arginine produced similar reductions in resting forearm blood flow in healthy controls. However, in the diabetics, NG-monomethyl-L-arginine was significantly less effective than noradrenaline. Comparing between groups, the response to NG-monomethyl-L-arginine was also significantly less in the diabetics compared with the healthy controls. The response to sodium nitroprusside was significantly less in the diabetics compared with the healthy controls, whereas the responses to both acetylcholine and verapamil were the same in the two groups. The results provide evidence for an abnormality of basal nitric oxide-mediated dilatation in the forearm arterial bed of patients with insulin-dependent diabetes mellitus, and suggest that the vascular smooth muscle is less sensitive to nitric oxide.  相似文献   

18.
The effects of cooling (to 28 °C) on the vasodilation induced by diazoxide (10−9–3 × 10−4  m ) on carbachol-pre-contracted calf cardiac vein and coronary artery and the role of nitric oxide in these effects were analyzed. Diazoxide produced concentration-dependent relaxation of calf cardiac vein and coronary artery rings pre-contracted with carbachol (10−6  m ). During cooling, the pIC50 values, but not the maximal responses, to diazoxide were significantly lower than at 37 °C in both preparations. Cooling to 28 °C in the presence of NG-nitro-L-arginine methyl ester (10−4  m ) did not modify the effect of temperature both in cardiac vein and coronary artery. These results suggest that cooling-induced changes of diazoxide in calf cardiac vein and coronary artery are independent of nitric oxide.  相似文献   

19.
The forearm vascular response to nitric oxide (NO) and calcitonin gene-related peptide (CGRP) was investigated in 10 migraine patients and 10 matched control subjects. Changes in forearm blood flow (FBF) during intrabrachial infusion of: (i) serotonin (releasing endogenous NO), (ii) sodium nitroprusside (SNP, exogenous NO-donor), and (iii) CGRP were measured using venous occlusion plethysmography. Flow-mediated dilation (FMD) of the brachial artery, a measure for the endogenous release of NO reactive to occlusion, was measured using ultrasound and expressed as percentage change vs. baseline diameter. FBF ratio (i.e. FBF in the infused over the control arm) at baseline (1.1 +/- 0.1) did not differ between both populations. Serotonin, SNP and CGRP induced a dose-dependent increase (P < 0.001) in FBF ratio in controls (to 2.8 +/- 0.3, 6.7 +/- 1.4 and 6.9 +/- 1.2 at the highest dose, respectively) and migraineurs (2.5 +/- 0.4, 5.6 +/- 0.8 and 6.5 +/- 1.3, respectively); these ratios did not differ between both groups. FMD was comparable in control subjects (5.8 +/- 1%) and migraine patients (5.2 +/- 1%). Based on the forearm vascular response to NO and CGRP, migraine patients do not display generalized changes in vascular function.  相似文献   

20.
We have recently put forward the hypothesis that the dual inhibition of proinflammatory nitric oxide (NO) and prostaglandins (PG) may contribute to the antiinflammatory properties of nitric oxide synthase (NOS) inhibitors. This hypothesis was tested in the present study. A rapid inflammatory response characterized by edema, high levels of nitrites (NO2-, a breakdown product of NO), PG, and cellular infiltration into a fluid exudate was induced by the administration of carrageenan into the subcutaneous rat air pouch. The time course of the induction of inducible nitric oxide synthase (iNOS) protein in the pouch tissue was found to coincide with the production of NO2-. Dexamethasone inhibited both iNOS protein expression and NO2- synthesis in the fluid exudate (IC50 = 0.16 mg/kg). Oral administration of N-iminoethyl-L-lysine (L-NIL) or NG-nitro-L-arginine methyl ester (NO2Arg) not only blocked nitrite accumulation in the pouch fluid in a dose-dependent fashion but also attenuated the elevated release of PG. Finally, carrageenan administration produced a time-dependent increase in cellular infiltration into the pouch exudate that was inhibited by dexamethasone and NOS inhibitors. At early times, i.e., 6 h, the cellular infiltrate is composed primarily of neutrophils (98%). Pretreatment with colchicine reduced both neutrophil infiltration and leukotriene B4 accumulation in the air pouch by 98% but did not affect either NO2- or PG levels. In conclusion, the major findings of this paper are that (a) selective inhibitors of iNOS are clearly antiinflammatory agents by inhibiting not only NO but also PG and cellular infiltration and (b) that neutrophils are not responsible for high levels of NO and PG produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号