首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. METHODS: A myocardial infarction was induced by surgical coronary artery ligation in heterozygous IGF-1 deficient mice. One week after surgery, left ventricular function was analyzed, and parameters of cardiac remodeling were measured. RESULTS: No significant difference in cardiac function was found between infarcted wildtype and knock-out animals, despite a marked reduction in capillarization and blunting of the hypertrophic response of the interventricular septum in the IGF-1 deficient group. Furthermore, decreased DNA synthesis and increased apoptosis rates were observed in the IGF-1 knock-out mice. CONCLUSION: IGF-1 deficient mice show preservation of cardiac function 1 week after MI, despite an altered cardiac remodeling process.  相似文献   

2.
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of metabolism in which patients have extremely elevated plasma total homocysteine and have clinical manifestations in the vascular, visual, skeletal, and nervous systems. Homocysteine is an intermediary metabolite produced from the hydrolysis of S-adenosylhomocysteine (SAH), which is a by-product of methylation reactions involving the methyl-donor S-adenosylmethionine (SAM). Here, we have measured SAM, SAH, DNA and histone methylation status in an inducible mouse model of CBS deficiency to test the hypothesis that homocysteine-related phenotypes are caused by inhibition of methylation due to elevated SAH and reduced SAM/SAH ratio. We found that mice lacking CBS have elevated cellular SAH and reduced SAM/SAH ratios in both liver and kidney, but this was not associated with alterations in the level of 5-methylcytosine or various histone modifications. Using methylated DNA immunoprecipitation in combination with microarray, we found that of the 241 most differentially methylated promoter probes, 89 % were actually hypermethylated in CBS deficient mice. In addition, we did not find that changes in DNA methylation correlated well with changes in RNA expression in the livers of induced and uninduced CBS mice. Our data indicates that reduction in the SAM/SAH ratio, due to loss of CBS activity, does not result in overall hypomethylation of either DNA or histones.  相似文献   

3.
4.
The transition to pulmonary respiration following birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure and remodeling of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. A role for prostaglandins in regulating the closure of this vessel has been supported by pharmacological and genetic studies. The production of prostaglandins is dependent on two cyclooxygenases (COX-1 and COX-2), which are encoded by separate genes. We report here that the absence of either or both COX isoforms in mice does not result in premature closure of the DA in utero. However, 35% of COX-2(-/-) mice die with a patent DA within 48 h of birth. In contrast, the absence of only the COX-1 isoform does not affect closure of the DA. The mortality (35%) and patent DA incidence due to absence of COX-2 is, however, significantly increased (79%) when one copy of the gene encoding COX-1 is also inactivated. Furthermore, 100% of the mice deficient in both isoforms die with a patent DA within 12 h of birth, indicating that in COX-2-deficient mice, the contribution of COX-1 to DA closure is gene dosage-dependent. Together, these data establish roles for COX-1, and especially for COX-2, in the transition of the cardiopulmonary circulation at birth.  相似文献   

5.

Objective

To study the role of CD44, the principal hyaluronan (HA) receptor, in experimental arthritis.

Methods

We generated CD44 gene deficiency in arthritis‐susceptible DBA/1LacJ mice to study the role of CD44 directly in collagen‐induced arthritis (CIA). Wild‐type and CD44‐deficient mice were immunized with chicken type II collagen, and the onset and severity of CIA were monitored up to day 64. The immune status of immunized mice was determined at the end of the experiments. Cell transfer experiments were performed to monitor lymphocyte traffic to the inflamed joints.

Results

Mice homozygous for the CD44 mutation developed normally and showed no phenotypic defects. Although they showed a normal response to immunization with type II collagen and had Th1/Th2 ratios comparable with those in wild‐type animals, CD44‐deficient mice exhibited significant reductions in both the incidence and severity of CIA. This was accompanied by altered serum levels of HA, reduced expression of L‐selectin, and a delayed entry of intravenously injected CD44‐deficient donor lymphocytes into the arthritic joints of recipient mice.

Conclusion

While CD44 is not essential for morphogenesis and autoimmunity, this cell surface receptor seems to play an important role in the development of arthritis, most likely by directing leukocyte traffic to the site of inflammation.
  相似文献   

6.
Tissue factor (TF), the cell surface receptor for the serine protease FVIIa supports cell migration by interaction with the cytoskeleton. Intracellular signaling pathways dependent on the cytoplasmic domain of TF modify cell migration and may alter vascular remodeling. Vascular remodeling was analyzed in a femoral artery injury and a blood flow cessation model in mice with a targeted deletion of the 18 carboxy-terminal intracellular amino acids of TF (TF(Deltact/Deltact)) and compared with TF wild-type mice (TF(wt/wt)). Morphometric analysis revealed a decrease in the intima/media ratio after vascular injury in arteries from TF(Deltact/Deltact) compared with TF(wt/wt) mice (femoral artery injury: 2.4+/-0.3 TF(wt/wt) versus 0.6+/-0.3 TF(Deltact/Deltact), n=9 to 10, P=0.002; carotis ligation: 0.45+0.11 TF(wt/wt) versus 0.22+0.03 TF(Deltact/Deltact), n=12 to 14, P=0.09). This was caused by an increase in the media by 54% (P=0.04) in the femoral artery model and by 32% (P=0.03) after carotis ligation and was associated with an increased number of proliferating cells. Isolated aortic smooth muscle cells (SMCs) of TF(wt/wt) mice showed an increased migratory response toward the TF ligand active site-inhibited FVIIa that was abolished in TF(Deltact/Deltact) SMC. In contrast, the unstimulated proliferation rate was increased in TF(Deltact/Deltact) SMC compared with TF(wt/wt) SMCs. Thus, retention of SMCs attributable to a migratory defect and increased proliferation results in thickening of the media and in decrease in neointima formation after arterial injury. TF cytoplasmic domain signaling alters vascular remodeling and, thereby, may play a role in the development of restenosis, atherosclerotic disease, and neovascularization.  相似文献   

7.
8.
9.
Bacterial toxins, including endotoxin/LPS as well as superantigens, are major causative agents of multi-organ failure associated with sepsis and liver disease. However, the precise mechanisms initiating cell activation by the toxins have not been clarified. We compared lethal shock and cytokine production in response to LPS with responses to the superantigen staphylococcal enterotoxin B (SEB) in both LPS-responsive C3H/HeN mice and LPS-hyporesponsive C3H/HeJ mice treated with D-galactosamine (GalN). LPS was not lethal and did not induce production of TNF-alpha in C3H/HeJ mice. In contrast, SEB produced lethal shock associated with liver failure and induced cytokines such as TNF-alpha, IFN-gamma, and IL-2 in both C3H/HeN and C3H/HeJ mice. Peritoneal macrophages from C3H/HeJ mice did not produce TNF-alpha in vitro in response to SEB or LPS. However, no significant difference was observed in production of TNF-alpha in response to stimulation in vitro by SEB between C3H/HeN and C3H/HeJ splenic lymphocytes. We have demonstrated that SEB causes lethal toxicity associated with liver injury in LPS-hyporesponsive C3H/HeJ mice and that as the underlying mechanism, the normal T-cell function in these mice still maintained the sensitivity to SEB since the genetic defect of C3H/HeJ mice unresponsive to LPS and SEB is restricted in macrophages/monocytes and does not extend to T cells.  相似文献   

10.
11.
Pathological changes in the connective tissue of the limbs of MRL/1 mice are described. Focal infiltrates of polymorphs or large mononuclear cells, or both, were seen both in synovial lining and subcutaneous tissue. Infiltrates were associated with vasculitis in some cases. Deposits of amorphous material were seen in and around joints and in foot pads. The material was more particulate and refractile than typical 'fibrinoid' and showed a positive Feulgen reaction. It was not surrounded by palisading cells and when seen in synovial tissue was not usually associated with changes in synovial lining cells. No obvious difference was seen between intra-articular and extra-articular lesions. Lesions in subcutaneous tissue occurred exclusively in the foot pads. Lymphocyte infiltration was not prominent at any site and no follicle formation was seen. Of two colonies studied, only one showed a significant increase in lining cell numbers in synovial tissue. Exercised animals had a similar distribution and severity of disease to those of matched controls. All lesions described were distinguishable from non-specific inflammatory lesions in normal control mice and MRL/++ mice on assessment of unmarked sections. The relation between these connective tissue lesions and the changes found in human chronic synovitis is discussed.  相似文献   

12.
13.
14.
Epidemiological studies suggest that elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) predispose an individual to ischemic heart disease or promote plaque progression by inhibiting fibrinolysis. In the present study, loss of PAI-1 in apolipoprotein E (apoE)-deficient (apoE(-/-):PAI-1(-/-)) mice promoted the growth of advanced atherosclerotic plaques, which was due to enhanced extracellular matrix deposition. ApoE(-/-):PAI-1(-/-) plaques also exhibited collagen fiber disorganization and degradation. Immunostaining and bone marrow transplantation revealed that smooth muscle cells, not macrophages, primarily expressed PAI-1 in plaques. Thus, although PAI-1 may promote plaque growth because of its antifibrinolytic properties, the present study reveals a protective role for PAI-1 by limiting plaque growth and preventing abnormal matrix remodeling.  相似文献   

15.
Z Morise  D Granger  J Fuseler  D Anderson    M Grisham 《Gut》1999,45(4):523-528
BACKGROUND: Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy. AIMS: To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice. METHODS: Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury. RESULTS: Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours. CONCLUSION: Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.  相似文献   

16.
Aims/hypothesis  Toll-like receptor 4 (TLR4) is a receptor for saturated fatty acids (SFAs), global deficiency of which has been shown to protect against inflammation, insulin resistance and atherosclerotic lesion formation. Because macrophages express Tlr4 and are important in insulin resistance and atherosclerotic lesion formation due to their infiltration of white adipose tissue (WAT) and the artery wall, respectively, we hypothesised that deficiency of macrophage TLR4 could protect against these disorders. Methods  Bone marrow transplantation of agouti, LDL-receptor deficient (Ay/a; Ldlr −/−) mice with marrow from either C57BL/6 or Tlr4 −/− mice was performed. Recipient mice with Tlr4 +/+ marrow (MθTLR4+/+) or with Tlr4 −/− marrow (MθTLR4−/−) were then placed on one of four diets: (1) low fat; (2) high fat; (3) high fat rich in SFAs (HFSFA); and (4) HFSFA supplemented with fish oil. Results  There were no differences in body composition or plasma lipids between MθTLR4+/+ and MθTLR4−/− mice on any of the diets. However, we observed a decrease in some macrophage and inflammatory markers in WAT of female low fat-fed MθTLR4−/− mice compared with MθTLR4+/+ mice. MθTLR4−/− mice fed low-fat diet also displayed decreased atherosclerotic lesion area. There were no differences in macrophage accrual in WAT or atherosclerosis between MθTLR4+/+ and MθTLR4−/− mice fed any of the high-fat diets. Finally, no difference was seen in insulin sensitivity between MθTLR4+/+ and MθTLR4−/− mice fed the HFSFA diet. Conclusions/interpretation  These data suggest that under certain dietary conditions, macrophage expression of Tlr4 can be an important mediator of macrophage accumulation in WAT and the artery wall. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

17.
BACKGROUND AND AIMS: Activation of the vanilloid receptor subtype 1 (VR-1) results in release of proinflammatory peptides which initiate an inflammatory cascade known as neurogenic inflammation. We investigated its role in an acute model of surgically induced oesophagitis. METHODS: Oesophagitis was induced by pyloric ligation in wild-type and VR-1 deficient mice. A subset of animals were administered the VR-1 antagonist capsazepine, famotidine, or omeprazole one hour before surgery. Five hours after surgery, myeloperoxidase activity (MPO), histological damage scores, intragastric pH, and immunocytochemical analysis of substance P (SP) receptor endocytosis were determined. RESULTS: Oesophagitis induced knockout mice exhibited significantly lower levels of MPO activity, histological damage scores, and SP receptor endocytosis than wild-type mice. Inflammatory parameters were significantly reduced by acid inhibition and capsazepine in wild-type mice. CONCLUSIONS: We conclude that acute acid induced oesophagitis is reduced in animals lacking VR-1. This suggests that acid induced oesophagitis may act through VR-1 and that inhibition of the receptor may reduce inflammation.  相似文献   

18.
BACKGROUND/AIMS: Pharmacological blockade of the renin-angiotensin system (RAS) attenuates liver fibrogenesis in rats. Here, we provide genetic evidence implicating angiotensin type 1 (AT1) receptors in liver fibrogenesis. METHODS: Wild type (WT) and AT1a knockout [AT1a (-/-)] mice were subjected to either sham operation or bile-duct ligation. Fibrosis was assessed by Sirius Red staining and hydroxyproline hepatic content. Fibrogenic and inflammatory cytokines were measured by ELISA. RESULTS: Bile duct ligation-induced elevation of serum liver enzymes was similar in WT and AT1a (-/-) mice. Bile duct ligated WT mice showed inflammatory changes and severe septal fibrosis. In contrast, AT1a (-/-) mice showed minor fibrotic lesions. Collagen accumulation was lower in AT1a (-/-) mice compared to WT mice. The increase in hepatic concentration of TGFbeta1 and pro-inflammatory cytokines was attenuated in AT1a (-/-) mice compared to WT mice. Immunohistochemistry analysis revealed decreased infiltration by inflammatory cells, lipid peroxidation products as well as decreased phosphorylation of c-Jun and p42/44 MAPK in AT1a (-/-) mice compared to AT1 (+/+) mice. CONCLUSIONS: AT1 receptors play an important role in the development of fibrosis. Pharmacological blockade of AT1 receptors appears to be a promising approach to treat liver fibrosis.  相似文献   

19.
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11beta-HSD-1 acts as a functional 11beta-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11beta-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11beta-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11beta-HSD-1 inhibitors may protect against hippocampal function decline with age.  相似文献   

20.
Desialylated low density lipoprotein (LDL) is rapidly taken up and accumulated by both peripheral blood monocytes and cells isolated from human arterial intima consisting predominantly of smooth muscle cells. It is shown that thioglycollate (TG)-elicited mouse macrophages and mouse peritoneal macrophages stimulated with lipopolysaccharide (LPS) show increased expression of a membrane-bound, galactose-specific lectin that could be responsible for this uptake. In LPS-stimulated macrophages accumulation of desialylated LDL is increased ca. 2.6-fold. Accumulation of acetylated LDL in the same cells is reduced, suggesting that the galactose-specific lectin might be responsible for the uptake of desialylated LDL. Transfection of cells with the mouse macrophage Gal/GalNAc-specific lectin (MMGL) increased their capacity to take up asialofetuin (ASF) and, to a smaller extent, desialylated LDL. The uptake of desialylated LDL was small, most likely due to the high k(d) of MMGL for biantennary oligosaccharides as found on LDL, and low concentration of LDL achieved in tissue culture experiments. The data suggest that the expression of galactose-specific lectins can be elevated under inflammatory conditions, and that these receptors could contribute to foam cell formation under conditions of high desialylated LDL concentration, as might be found in arterial intima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号