首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelium serves as a selective barrier and controls the exchange of nutrients, hormones, and leukocytes between blood and tissues. Molecular mechanisms contributing to the pathogenesis of endothelial barrier dysfunction remain incompletely understood. Accumulating evidence implicates bone morphogenetic protein (BMP)-modulator BMPER as a key regulator in endothelial biology. Herein, we analyze the impact of BMPER in the control of endothelial barrier function. To assess the role of BMPER in vascular barrier function in mice, we measured the leakage of Evans blue dye from blood into interstitial lung tissue. BMPER+/? mice exhibited a significantly higher degree of vascular leak compared with wild-type siblings. In accordance with our in vivo observation, siRNA-based BMPER knockdown in human umbilical endothelial cells increased endothelial permeability measured by FITC-dextran passage in transwell assays. Mechanistically, BMPER knockdown reduced the expression of VE-cadherin, a pivotal component of endothelial adherens junctions. Conversely, recombinant human BMPER protein upregulated VE-cadherin protein levels and improved endothelial barrier function in transwell assays. The effects of BMPER knockdown on VE-cadherin expression and endothelial permeability were induced by enhanced BMP activity. Supporting this notion, activation of BMP4-Smad-Id1 signaling reduced VE-cadherin levels and impaired endothelial barrier function in vitro. In vivo, Evans blue dye accumulation was higher in the lungs of BMP4-treated C57BL/6 mice compared to controls indicating that BMP4 increased vascular permeability. High levels of BMPER antagonized BMP4-Smad5-Id1 signaling and prevented BMP4-induced downregulation of VE-cadherin and endothelial leakage, suggesting that BMPER exerts anti-BMP effects and restores endothelial barrier function. Taken together, this data demonstrates that BMPER-modulated BMP pathway activity regulates VE-cadherin expression and vascular barrier function.  相似文献   

2.
Branching morphogenesis in the mammalian lung and Drosophila trachea relies on the precise localization of secreted modulators of epithelial growth to select branch sites and direct branch elongation, but the intercellular signals that control blood vessel branching have not been previously identified. We found that VEGF(120/120) mouse embryos, engineered to express solely an isoform of VEGF-A that lacks heparin-binding, and therefore extracellular matrix interaction domains, exhibited a specific decrease in capillary branch formation. This defect was not caused by isoform-specific differences in stimulating endothelial cell proliferation or by impaired isoform-specific signaling through the Nrp1 receptor. Rather, changes in the extracellular localization of VEGF-A in heparin-binding mutant embryos resulted in an altered distribution of endothelial cells within the growing vasculature. Instead of being recruited into additional branches, nascent endothelial cells were preferentially integrated within existing vessels to increase lumen caliber. The disruption of the normal VEGF-A concentration gradient also impaired the directed extension of endothelial cell filopodia, suggesting that heparin-binding VEGF-A isoforms normally provide spatially restricted stimulatory cues that polarize and thereby guide sprouting endothelial cells to initiate vascular branch formation. Consistent with this idea, we found opposing defects in embryos harboring only a heparin-binding isoform of VEGF-A, including excess endothelial filopodia and abnormally thin vessel branches in ectopic sites. We conclude that differential VEGF-A isoform localization in the extracellular space provides a control point for regulating vascular branching pattern.  相似文献   

3.
Cell adhesion molecule vascular endothelial cadherin (VE-cadherin) is the major component of endothelial adherence junctions, maintaining endothelial cell integrity. Studies dealing with constitutive VE-cadherin expression patterns in different pulmonary vessel types (arteries, arterioles, capillaries, venules, veins) or with the influence of physiological factors such as age or sex on VE-cadherin expression have not been published yet. Knowledge of constitutive resp. varying expression patterns not only fundamentally contribute to understanding the role of VE-cadherin in the pathogenesis of pulmonary diseases but also help to develop therapies based on immunotargeting. Hence, endothelial VE-cadherin expression was studied in regular lung tissue. Fifty-eight specimens of regular lung tissue (30 females, 28 males between 1 month and 75 years old) were immunohistochemically stained with an antibody against VE-cadherin. There was strong endothelial expression of VE-cadherin in arteries, arterioles, and capillaries but almost no expression in veins and venules. Neither age nor sex had any influence on the expression pattern or staining intensity. There is a vessel type-specific expression pattern for VE-cadherin in regular human lung tissue, which is not influenced by age or sex. Further studies will have to prove whether this is influenced by pathological conditions, e.g., ARDS.  相似文献   

4.
Vascular endothelial growth factor-receptors (VEGF-Rs) are pivotal regulators of vascular development, but a specific role for these receptors in the formation of heart valves has not been identified. We took advantage of small molecule inhibitors of VEGF-R signaling and showed that blocking VEGF-R signaling with receptor selective tyrosine kinase inhibitors, PTK 787 and AAC 787, from 17-21 hr post-fertilization (hpf) in zebrafish embryos resulted in a functional and structural defect in cardiac valve development. Regurgitation of blood between the two chambers of the heart, as well as a loss of cell-restricted expression of the valve differentiation markers notch 1b and bone morphogenetic protein-4 (bmp-4), was readily apparent in treated embryos. In addition, microangiography revealed a loss of a definitive atrioventricular constriction in treated embryos. Taken together, these data demonstrate a novel function for VEGF-Rs in the endocardial endothelium of the developing cardiac valve.  相似文献   

5.
Adherens junctions of the endothelium play a key role in the maintenance of endothelial permeability and are composed of the vascular endothelial (VE)-cadherin/catenin adhesion complex. We report that following tumour cell (MDA MB231 cells) adherence to the HUVECs, there was a rapid (within 5 min) redistribution of VE-cadherin, resulting in its transient loss from regions of endothelial cell-cell contact. The molecule gradually reorganised within the endothelial cell contacts after this time. It was further shown that the overall expression of VE-cadherin did not change, however, the amount of alpha- and beta-catenins coprecipitated with VE-cadherin markedly decreased after 5 min of tumour cell adhesion to the HUVECs. Immunoprobing of these samples with anti-phosphotyrosine antibodies demonstrated that the tyrosine phosphorylation of VE-cadherin was significantly increased following 5 min of tumour cell adhesion. Together, these results suggest that the adhesion of tumour cells to HUVEC promotes the redistribution of VE-cadherin from interendothelial adherens junctions, an effect that may be attributed to the increase in tyrosine phosphorylation of members of the VE-cadherin/catenin adhesion complex. This, in turn, may increase vascular endothelial permeability and facilitate the transendothelial migration of tumour cells during extravasation.  相似文献   

6.
We have previously reported expression of vascular endothelial growth factor (VEGF)-A and -C in glomerular podocytes and actions of VEGF-A on glomerular endothelial cells (GEnC) that express VEGF receptor-2 (VEGFR-2). Here we define VEGFR-3 expression in GEnC and investigate the effects of the ligand VEGF-C. Renal cortex and cultured GEnC were examined by microscopy, and both cell and glomerular lysates were assessed by Western blotting. VEGF-C effects on trans-endothelial electrical resistance and albumin flux across GEnC monolayers were measured. The effects of VEGF-C156S, a VEGFR-3-specific agonist, and VEGF-A were also studied. VEGF-C effects on intracellular calcium ([Ca2+]i) were measured using a fluorescence technique, receptor phosphorylation was examined by immunoprecipitation assays, and phosphorylation of myosin light chain-2 and VE-cadherin was assessed by blotting with phospho-specific antibodies. GEnC expressed VEGFR-3 in tissue sections and culture, and VEGF-C increased trans-endothelial electrical resistance in a dose-dependent manner with a maximal effect at 120 minutes of 6.8 Ω whereas VEGF-C156S had no effect. VEGF-C reduced labeled albumin flux by 32.8%. VEGF-C and VEGF-A increased [Ca2+]i by 15% and 39%, respectively. VEGF-C phosphorylated VEGFR-2 but not VEGFR-3, myosin light chain-2, or VE-cadherin. VEGF-C increased GEnC monolayer integrity and increased [Ca2+]i, which may be related to VEGF-C-S particular receptor binding and phosphorylation induction characteristics. These observations suggest that podocytes direct GEnC behavior through both VEGF-C and VEGF-A.  相似文献   

7.
8.
Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.  相似文献   

9.
10.
Vascular endothelial growth factor-A (VEGF-A) has recently been recognized as an important neuroprotectant in the central nervous system. Given its position as an anti-angiogenic target in the treatment of human diseases, understanding the extent of VEGF's role in neural cell survival is paramount. Here, we used a model of ischemia-reperfusion injury and found that VEGF-A exposure resulted in a dose-dependent reduction in retinal neuron apoptosis. Although mechanistic studies suggested that VEGF-A-induced volumetric blood flow to the retina may be partially responsible for the neuroprotection, ex vivo retinal culture demonstrated a direct neuroprotective effect for VEGF-A. VEGF receptor-2 (VEGFR2) expression was detected in several neuronal cell layers of the retina, and functional analyses showed that VEGFR2 was involved in retinal neuroprotection. VEGF-A was also shown to be involved in the adaptive response to retinal ischemia. Ischemic preconditioning 24 hours before ischemia-reperfusion injury increased VEGF-A levels and substantially decreased the number of apoptotic retinal cells. The protective effect of ischemic preconditioning was reversed after VEGF-A inhibition. Finally, chronic inhibition of VEGF-A function in normal adult animals led to a significant loss of retinal ganglion cells yet had no observable effect on several vascular parameters. These findings have implications for both neural pathologies and ocular vascular diseases, such as diabetic retinopathy and age-related macular degeneration.  相似文献   

11.
Vascular endothelial growth factor-A (VEGF-A), a main stimulator of endothelial cell proliferation, plays an important role on tumor angiogenesis. Angioimmunoblastic T-cell lymphoma (AITL) show the most prominent vascular component among lymphomas and their prognosis is difficult to predict. To assess the clinical significance of VEGF-A in AITL, VEGF-A gene expression was studied in the tumoral lymph nodes of 24 patients using laser microdissection and quantitative polymerase chain reaction. VEGF-A gene was overexpressed in both microdissected lymphoma and endothelial cells. Increased levels of VEGF-A gene expression in lymphoma cells, as in endothelial cells, were related to extranodal involvement and to short survival time. Accordingly, VEGF-A protein expression was also found in both types of cells in lymph nodes and bone marrows with lymphomatous involvement. Triple immunofluorescent labeling on lymph node sections showed that VEGF-A protein and its receptor VEGF-R1 were coexpressed on endothelial cells of microvessels in the areas of lymphoma invasion. In these areas, ultrastructural study showed dystrophic microvessels. Taken together, the value of VEGF-A gene expression as an adverse prognostic marker in AITL should thus be considered. In addition to lymphoma cells themselves, the vascular component, a critical pathologic characteristic in AITL, also contributes to lymphoma progression.  相似文献   

12.
One of the key molecules promoting angiogenesis is the endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF or VEGF-A), which acts through two high-affinity receptor tyrosine kinases (VEGFR), VEGFR-1 (or Flt-1) and VEGFR-2 (or KDR/Flk-1). It was shown before that a soluble variant of VEGFR-1 (sVEGFR-1) can be generated by differential splicing of the flt-1 mRNA. This soluble receptor is an antagonist to VEGF action, reducing the level of free, active VEGF-A, and therefore, plays a pivotal role in the generation of vascular diseases like pre-eclampsia or intra-uterine growth retardation. Here we show that sVEGFR-1 is produced by cultured human microvascular and macrovascular endothelial cells and a human melanoma cell line. The soluble receptor is mainly complexed with ligands; only 5-10% remains detectable as free, uncomplexed receptor protein. Furthermore, we show the time course of total and free sVEGFR-1 release together with its putative ligands, VEGF-A and placenta growth factor (PIGF), from macrovascular endothelial cells. The release of sVEGFR-1 was quantitatively measured in two different ELISA types. The release of sVEGFR-1 was strongly enhanced by phorbol-ester (PMA); the cells produced up to 22 ng/ml of sVEGFR-1 after 48 hours. The expression of VEGF-A and PIGF was moderately influenced by PMA. We also show a hypoxia-induced increase of sVEGFR-1 expression in cells cultured from placenta, a tissue that has a high flt-1 gene expression. Moreover, we demonstrate that sVEGFR-1 in amniotic fluids acts as a sink for exogenous VEGF165 and PIGF-2. Here, for the first time, to what extent recombinant ligands have to be added to compensate for the sink function of amniotic fluids was analyzed. In conclusion, human endothelial cells produce high levels of sVEGFR-1, which influences the availability of VEGF-A or related ligands. Therefore, sVEGFR-1 may reduce the ligand binding to transmembrane receptors and interfere with their signal transduction.  相似文献   

13.
14.
15.
Cerebral cavernous malformations (CCMs) are a prevalent class of vascular anomalies characterized by thin-walled clusters of malformed blood vessels in the brain. Heritable forms are caused by mutations in CCM1, CCM2 and CCM3, but despite the importance of these factors in vascular biology, an understanding of their molecular and cellular functions remains elusive. Here we describe the characterization of a zebrafish embryonic model of CCM. Loss of ccm1 in zebrafish embryos leads to severe and progressive dilation of major vessels, despite normal endothelial cell fate and number. Vascular dilation in ccm1 mutants is accompanied by progressive spreading of endothelial cells and thinning of vessel walls despite ultrastructurally normal cell-cell contacts. Zebrafish ccm2 mutants display comparable vascular defects. Finally, we show that ccm1 function is cell autonomous, suggesting that it is endothelial cellular morphogenesis that is regulated by CCM proteins during development and pathogenesis.  相似文献   

16.
The objective of this study was to investigate the role of vascular endothelial growth factor-A (VEGF-A) and placental growth factor-2 (PlGF-2) in fetal malformations associated with maternal diabetes. Diabetes was induced in female rats. Diabetic and control female rats were made pregnant. On Day 15 of gestation, rats were sacrificed and embryos and their placentas and membranes were dissected out of the uterine horns. Following morphological examination, embryos and their placentas and membranes were homogenized and used for assayed of VEGF-A and PlGF-2 levels. Embryos of diabetic mothers, exhibited significantly (P < 0.05) shorter crown-to-rump lengths, smaller weights, and heavier placental weights. Experimentally induced maternal diabetes was accompanied by decreased VEGF-A in embryos and associated structures. The levels of PlGF-2 in non-malformed embryos of diabetic gestation and their placentas were significantly (P < 0.05) lower than the average of controls. These results might indicate defective vascularization with a consequent morphological or anatomical anomalies or more subtle biochemical or metabolic changes. In diabetic mothers, a statistically significant (P < 0.05) decrease was noted in the level of VEGF-A in plasma of diabetic rats with a small non-significant decrease in PlGF-2. Like many other diabetic complications, diabetes-induced embryopathies might have vascular origin and correcting the disturbances in these angiogenic factors might help decrease the incidence of malformation in diabetic gestation  相似文献   

17.
目的: 探讨E1A激活基因阻遏子(CREG)诱导的人血管内皮细胞(ECs)单层通透性改变中的作用及机制。方法: 用CREG过表达及CREG表达下调的ECs为模型,Transwell chamber弥散模型观察ECs单层通透性的改变; 荧光倒置显微镜观察细胞骨架肌动蛋白F-actin及黏附连接蛋白VE-cadherin在ECs中的分布和形态学改变;酶联免疫吸附实验(ELISA)检测ECs血管内皮生长因子(VEGF)分泌。结果: CREG过表达的ECs (EO组) 较EN组单层通透性明显增高 (P<0.05);CREG表达下调的ECs(ES组)较EN组单层通透性有所下降(P<0.05)。与EN组相比较,EO组细胞中F-actin排列紊乱,形成大量应力纤维; ES组F-actin则主要呈细丝状分布于细胞周边,中央分布较少。同时,EO组VE-cadherin在细胞周边的正常拉链状结构减少或缺失,细胞间隙增宽;而ES组VE-cadherin在细胞周边呈正常拉链状分布,细胞之间连接紧密。ELISA检测显示EO组细胞上清中VEGF分泌较EN组明显增加(P<0.05);ES组VEGF分泌较EN组减少(P<0.05)。应用VEGF中和抗体阻断后,CREG过表达引起的EO通透性增加的现象明显受到抑制。结论: CREG过表达可能通过VEGF介导的信号途径引起F-actin重构及VE-cadherin减少,使血管内皮细胞单层通透性增加。  相似文献   

18.
目的研究3种不同磁性纳米颗粒对体外培养的血管内皮细胞中活性氧(reactive oxygen species,ROS)水平和细胞间连接的影响,探讨二者之间的关联性。方法将原代人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)随机分为对照组和不同磁性纳米颗粒暴露组。利用动态光散射(dynamic light scattering,DLS)对纳米颗粒的粒径和电势进行表征;采用细胞计数试剂盒(cell counting Kit-8,CCK-8)法测定细胞活性;通过二氯二氢荧光素-乙酰乙酸酯(2',7'-dichlorofluorescin diacetate,DCFH-DA)荧光探针标记和流式细胞术检测细胞中ROS水平;利用普鲁士蓝染色和透射电镜方法观察内皮细胞对磁性纳米颗粒的摄取。对细胞表面血管内皮钙黏蛋白(vascular endothelial cadherin,VE-cadherin)进行免疫荧光标记,在激光共聚焦显微镜下观察细胞间连接,并通过Western blot检测VE-cadherin表达水平。结果磁性纳米颗粒能诱导内皮细胞内ROS水平上升,降低VE-cadherin表达水平,细胞间缝隙增大。抗氧化剂N-乙酰半胱氨酸处理可使ROS水平下降并减少细胞缝隙。由于组分、表面修饰、尺寸等因素不同,磁性纳米颗粒对内皮细胞活性、ROS水平及VE-cadherin产生不同程度的影响。结论不同磁性纳米颗粒对内皮细胞活性氧和细胞间连接的影响不同;在实验所采用的低剂量暴露下可影响内皮细胞连接的完整性。  相似文献   

19.
Vascular endothelial growth factor (VEGF) is a highly specific factor for vascular endothelial cells. Five VEGF-A isoforms (splice variants 121, 145, 165, 189 and 206) are generated as a result of alternative splicing from a single VEGF-A gene. These differ in their molecular weights and in biological properties such as their ability to bind to cell-surface heparan sulfate proteoglycans. Deregulated VEGF-A expression contributes to the development of solid tumors by promoting tumor angiogenesis. More specifically, VEGF-A189 expression is related to angiogenesis and prognosis in certain human solid tumors. VEGF-A189 expression is also related to the xenotransplantability of human cancers into immunodeficient mice in vivo. Consequently, inhibition of VEGF-A or VEGF-A189 signaling regulates the development and metastasis of a variety of tumors. This review focuses on recent studies of the mechanisms by which VEGF-A regulates angiogenesis in the cancer stroma and on our recent findings concerning the potential mechanisms of VEGF-A189 expression on tumor growth and metastasis.  相似文献   

20.
We previously demonstrated that during vascular morphogenesis, retinoic acid (RA) is required for the control of endothelial cell proliferation and capillary plexus remodeling. Herein, we investigate the mechanisms by which RA regulates these processes in the yolk sac. We found that although the enzyme required for RA production during early embryogenesis, retinaldehyde dehydrogenase-2 (Raldh2), was expressed in the visceral endoderm, RA receptors alpha1 and alpha2 were expressed in endothelial cells in the mesoderm, indicating that they are direct targets of RA. In Raldh2(-/-) embryos, there was down-regulation of TGF-beta1, fibronectin (Fn) and integrin alpha5, which was associated with decreased visceral endoderm survival and production of VEGF-A, Indian hedgehog (IHH), and bFGF. Exogenous provision of RA or Fn to Raldh2(-/-) explants in whole mouse embryo culture restored vascular remodeling, visceral endoderm survival, as well as integrin alpha5 expression and its downstream signaling that controls endothelial growth. Exogenous provision of visceral endoderm-derived factors (VEGF-A, IHH, and bFGF) failed to rescue endothelial cell proliferative control but collectively promoted vascular remodeling, suggesting that these processes are independently regulated via a signaling hierarchy downstream of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号