首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to examine the role of 5-HT3 receptors in spontaneous and K+-evoked acetylcholine (ACh) release from rat entorhinal cortex and striatal slices. The 5-HT3 receptor antagonists ondansetron and granisetron (0.01–10 μM) produced a concentration-dependent increase in both spontaneous and K+-evoked [3H]ACh release in the two brain regions studied. The release of ACh was Ca2+-dependent and tetrodotoxin-sensitive. 5-HT3 receptor agonists, such as 2-methyl-5-HT and 1-phenylbiguanide, at concentrations up to 1 μM, did not show any intrinsic effect on [3H]ACh release in both rat brain regions. However, 2-methyl-5-HT, 1 μM, fully blocked the ondansetron-induced enhancement in both basal and K+-evoked ACh release, suggesting that 5-HT3 through 5-HT3 receptor activation, tonically inhibits ACh release. The possible implication of interposed inhibitory systems in ACh release after 5-HT3 receptor blockade was subsequently analyzed. While the effect of ondansetron was not modified by haloperidol or naloxone, the GABAA receptor antagonist bicuculline produced a marked potentiation of ACh release in the entorhinal cortex but not in the striatum. The results suggest that in this cortical area 5-HT activates 5-HT3 receptors located on GABAergic neurons which in turn inhibit cholinergic function.  相似文献   

2.
In vivo microdialysis and electrophysiological techniques were used to elucidate the role of the 5-HT2 receptor family on the control of mesolimbic dopaminergic system exerted by serotonin (5-HT). Administration of RO 60-0175 (1 mg/kg, i.p.), a selective 5-HT2C receptor agonist, significantly decreased dopamine (DA) release by 26±4% (below baseline) 60 min after injection. Moreover, RO 60-0175 (80–320 μg/kg, i.v.) dose-dependently decreased the basal firing rate of DA neurons in the ventral tegmental area (VTA), reaching its maximal inhibitory effect (53.9±15%, below baseline) after the dose of 320 μg/kg. The selective 5-HT2C receptor antagonist SB 242084 completely blocked the inhibitory action of RO 60-0175 on accumbal DA release and on the firing rate of VTA DA cells. On the contrary, both (±)-DOI, a mixed 5-HT2A/2C receptor agonist, and the selective 5-HT2B agonist BW 723C86, did not affect either DA release in the nucleus accumbens or the firing rate of VTA DA cells. Taken together, these data confirm that central 5-HT system exerts an inhibitory control on the mesolimbic DA system and that 5-HT2C receptors are involved in this effect.  相似文献   

3.
The petrosal ganglion supplies chemoafferent pathways via the glossopharyngeal (IXth) nerve to peripheral targets which release various neurotransmitters including serotonin (5-HT). Here, we combined rapid 5-HT application with patch clamp, whole-cell recording to investigate whether 5-HT receptors are expressed on isolated petrosal neurons (PN), cultured from 7–12 day-old rat pups. In responsive cells, the dominant effect of 5-HT was a rapid depolarization associated with a conductance increase in 43% of the neurons (53/123); however, in a minority population (6%; 8/123), 5-HT caused membrane depolarization associated with a conductance decrease. In the former group, 5-HT produced a transient inward current (I5-HT) in neurons voltage-clamped near the resting potential (-60 mV); the effect was mimicked by the 5-HT3 receptor-specific agonist, 2-methyl-5-HT, suggesting it was mediated by 5-HT3 receptors. Further, I5-HT was selectively inhibited by the 5-HT3 receptor-specific antagonist MDL72222 (1–10 μM), but was unaffected by either 5-HT1/5-HT2 receptor antagonist, spiperone, or by 5-HT2 receptor-specific antagonist, ketanserin (50–100 μM). I5-HT displayed moderate inward rectification and had a mean reversal potential (±S.E.M.) of −4.3±6.6 mV (n=6). Application of 5-HT (dose range: 0.1–100 μM) produced a dose–response curve that was fitted by the Hill equation with EC50=3.4 μM and Hill coefficient=1.6 (n=8). The activation phase of I5-HT (10 μM 5-HT at −60 mV) was well fitted by a single exponential with mean (±S.E.M.) time constant of 45±30 ms (n=6). The desensitization phase of I5-HT was best fitted by a single exponential with mean (±S.E.M.) time constant of 660±167 ms (n=6). Fluctuation analysis yielded an apparent mean single-channel conductance (±S.E.M) of 2.7±1.5 pS (n=4) at −60 mV. In the minority (6%) population of neurons which responded to 5-HT with a conductance decrease, the depolarization was blocked by the 5-HT2 receptor antagonist, ketanserin (50 μM). Taken together, these results suggest that 5-HT3 receptors are the major subtype expressed by rat petrosal neurons, and therefore are candidates for facilitating chemoafferent excitation in response to 5-HT released from peripheral targets.  相似文献   

4.
The role of the serotonin (5-HT)1A receptor in the regulation of acetylcholine (ACh) release in the hippocampus was investigated using an in vivo microdialysis technique and a sensitive radioimmunoassay specific for ACh. The mean (±S.E.M.) basal ACh contents in the hippocampal perfusate of conscious, freely moving rats was 60 ± 4 (n = 29) and 3691 ± 265 fmol/30 min (n = 31), respectively, in the absence and presence of physostigmine (Phy) in the perfusion fluid. Systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.5 mg/kg, s.c.), a 5-HT1A agonist, significantly enhanced ACh release both in the presence and absence of Phy. Local application of 8-OH-DPAT (3–30 μM) into the hippocampus through the microdialysis probe significantly potentiated ACh release only in the presence of Phy, whereas no significant effect was observed in its absence. Pretreatment with NAN-190 (3 mg/kg, i.p.), a 5-HT1A antagonist, eliminated the increasing effect of systemically applied 8-OH-DPAT on ACh release, while NAN-190 alone had no effect on basal ACh release either in the absence or presence of Phy. Consistent with the time course of ACh release, systemic administration of 8-OH-DPAT evoked hyperlocomotion, which was reversed by NAN-190. However, local hippocampal application of 8-OH-DPAT did not affect the locomotor activity of the rats. These findings suggest that at least two different sites are involved in the 8-OH-DPAT-induced increase in the release of ACh in the rat hippocampus in vivo.  相似文献   

5.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors.  相似文献   

6.
In 16-week-old Sprague-Dawley rats lightly anesthetized with pentobarbital, 5-HT (3–96 μg/kg, i.v.;n = 6) produced distinct pseudaffective responses and a dose-dependent (slope= 17.2 ± 6.8s/log10dose) inhibition of the tail-flick (TF) reflex (ED50 = 32.6 ± 9.2 μg/kg). In the same rats, a 1:1 combination of α-methyl 5-HT (a 5-HT2 receptor selective agonist) and 2-methyl 5-HT (a 5-HT3 receptor selective agonist) (3–192 μg/kg, i.v.), produced the same profile of pseudaffective responses and also resulted in a dose-dependent (slope= 34.0± 7.0s/log2dose) inhibition of the TF reflex (ED50 = 88.4 ± 20.5 μg/kg). In contrast, administration of α-methyl 5-HT (3–192 μg/kg, i.v.) or 2-methyl 5-HT (3–192 μg/kg, i.v.) alone did not produce any pseudaffective responses or any change in TF latency from baseline. In conscious 16-week-old male Sprague-Dawley rats, administration of 5-HT (48 μg/kg, i.v.;n = 5), or a 1:1 combination of α-methyl 5-HT and 2-methyl 5-HT (total dose= 120 μg/kg, i.v.;mn = 5), resulted in a passive avoidance behavior assessed in a step-down paradigm (slopes= 139.7 ± 58.2and154.9 ± 63.9s/trial, respectively), and the same profile of distinct pseudaffective responses exhibited by the lightly pentobarbital-anesthetized rats. However, administration of either α-methyl 5-HT (96 μg/kg, i.v.;n = 4) or 2-methyl 5-HT (96 μg/kg, i.v.;n = 4), while producing significant 5-HT receptor-mediated cardiovascular responses, produced a learned behavior not different from saline (0.25 ml, i.v.;n = 6) (slopes= 7.6 ± 2.5, 6.3 ± 1.8and7.4 ± 3.6s/trial, respectively). These results are consistent with the hypothesis that the peripheral nociceptive responses to i.v. 5-HT requires dual activation of 5-HT2 and 5-HT3 receptor subtypes.  相似文献   

7.
We have studied effects of 5-hydroxytryptamine 1A (5-HT1A) receptor-selective compounds on the extracellular noradrenaline (NA) level in the hippocampus of rats using microdialysis and on their locomotor activity. A selective 5-HT1A receptor agonist, flesinoxan (5 mg/kg, i.p.) increased the extracellular NA level in the hippocampus, and increased the locomotor activity. Both responses were blocked by pretreatment with a 5-HT1A receptor antagonist, WAY100635 (1 mg/kg, i.p.) and an α2 adrenoceptor agonist, clonidine (50 μg/kg, i.p.). Bilateral intrahippocampal injection of flesinoxan (200 nmol in 2 μl, respectively) increased the locomotor activity of rats and the intrahippocampal perfusion of flesinoxan (1 mM, 2 μl/min) increased the extracellular NA level in the hippocampus. Bilateral intrahippocampal injections of a small amount of WAY100635 (0.1 nmol in 2 μl, respectively) blocked the flesinoxan (5 mg/kg, i.p.)-induced hyperactivity. Flesinoxan (5 mg/kg, i.p.) did not significantly influence the level of serotonin or its major metabolite in the hippocampus, or dopamine or its metabolites in the striatum. In conclusion, these behavioral as well as pharmacological results indicate that postsynaptic 5-HT1A receptor activation by flesinoxan increase the extracellular NA level in the hippocampus, which may be the cause of the increase of the locomotor activity.  相似文献   

8.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade.  相似文献   

9.
The interaction between serotonin (5-HT)1A and nicotinic cholinergic reptors in the regulation of spatial navigation behavior in the Morris water maze (WM) test was studied. Pretraining intraperitoneal (i.p.) injections of a combination of subthreshold doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (a 5-HT1A receptor agonist) at 30 μg/kg and mecamylamine (a nicotinic cholinergic receptor antagonist) at 2500 μg/kg greatly impaired WM navigation to a hidden platform and slightly, but not statistically significantly, impaired WM navigation to a visible platform. Post-training i.p. injections of this combination had no effect on WM navigation performance. Serotonin depletion induced byp-chlorophenylalanine (PCPA) increased the performance impairing action of pretraining injected combination of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg. In trained rats combined injections of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg given pretraining had no effect on the navigation to a hidden platform located in a familiar or in a novel position. Pretraining trial injected combination of hexamethonium 2000 μg/kg (a peripherally acting nicotinic antagonist) and 8-OH-DPAT 30 μg/kg had no effect on navigation. These data suggest that a combined treatment with a 5-HT1a receptor agonist and a nicotinic cholinergic receptor antagonist more severely impair non-mnemonic acquisition performance processes than consolidation and retrieval processes.  相似文献   

10.
The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)3 receptors on cardiopulmonary afferents mediating the Bezold–Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT3-receptor agonists, phenylbiguanide (100 μg/kg, i.v.) or 2-methyl-5-HT (100 μg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 μg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by -S-nitrosocysteine (10 μmol/kg, i.v.) were similar before and after the injections of the 5-HT3 receptor agonists. These findings suggest that tachyphylaxis to 5-HT3 receptor agonists may be due to the desensitization of 5-HT3 receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.  相似文献   

11.
Serotonin type 2A (5-HT2A) receptor-mediated neurotransmitter is known to activate hypothalamic–pituitary–adrenal (HPA) axis, regulate sleep–awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT2A receptors in the regulation of the sleep–awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT2A receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (±)-1-(2,5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT2A/2C agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT2A/2C antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 μg, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel1 receptor subtype antagonist luzindole (5 μg, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT2A agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT2A mediated activation of HPA axis.  相似文献   

12.
The neurosteroid 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP) induced catalepsy in mice is modified by dopaminergic, adenosinergic and GABAergic agents. In light of serotonergic agents being implicated in antipsychotic-induced catalepsy and their ability to increase brain neurosteroid content, the present study was undertaken to investigate the effect of various 5-HT agents on catalepsy induced by 3α,5α-THP in mice. Pretreatment with selective serotonin reuptake inhibitor, fluoxetine (5 mg/kg, i.p.), 5-HT releaser, fenfluramine (10 mg/kg, i.p.), 5-HT1A receptor agonist, 8-OH-DPAT (0.3 mg/kg, s.c.), 5-HT1B/1C receptor agonist, TFMPP (3 mg/kg, i.p.), 5-HT2A/1C receptor agonist, DOI (1.5 mg/kg, s.c.) and 5-HT3 agonist, 2-methylserotonin (5 mg/kg, i.p.) potentiated the catalepsy induced by exogenous administration of 3α,5α-THP. Furthermore, FGIN 1–27, an MDR agonist that increases endogenous content of 3α,5α-THP although per se failed to exhibit any cataleptic effect but enhanced the cataleptic response in combination with these serotonergic agents. The potentiating action of 5-HT1A, 5-HT2A/1C or 5-HT3 receptor agonist on 3α,5α-THP induced catalepsy was not blocked by prior administration of sub-effective dose (1 mg/kg, s.c.) of their respective receptor antagonists pindolol, ritanserin or ondansetron or by pretreatment with serotonergic neurotoxin 5,7-DHT (100 μg/mouse, i.c.v.). However this effect of different serotonergic agents was antagonized by the GABAA receptor antagonist, bicuculline (1 mg/kg, i.p.) or the 3α-hydroxysteroid oxidoreductase enzyme inhibitor, indomethacin (5 mg/kg, i.p.). The 5-HT agents enhance neurosteroid-induced catalepsy by increasing GABAergic tone, likely as a consequence of increased brain content of 3α,5α-THP.  相似文献   

13.
Serotonin (5-hydroxytryptamine, 5-HT)1A receptor agonism and 5-HT2A receptor antagonism are components in the action of some of the recently developed antipsychotic drugs, e.g., clozapine and ziprasidone. However, studies of the role of 5-HT1A receptor agonism in the ability of these drugs to modulate dopamine (DA) release in the nucleus accumbens (NAC), which may be relevant to antipsychotic action, are lacking. Thus, we examined the effect of clinically available agents, ipsapirone, a 5-HT1A receptor partial agonist, and the mixed 5-HT1A/1B/β receptor antagonist S(−)-pindolol, on DA release in the NAC compared to the striatum (STR). Ipsapirone produced a biphasic effect; low dose (0.1 mg/kg) decreased, high dose (3 mg/kg) increased and intermediate doses (0.1 and 1 mg/kg) did not change DA release in the NAC, respectively. However, ipsapirone, at all doses (0.3, 1, 3, but not 0.1 mg/kg) increased striatal DA release. S(−)-pindolol (3, 10, but not 1 mg/kg) produced a comparable increase in DA release in the NAC and STR. These results suggest that the ability of lower dose of ipsapirone to decrease DA release in the NAC is more likely to be due to 5-HT1A receptor agonism. On the other hand, the effect of higher dose of ipsapirone on striatal DA release may be due to 5-HT1A receptor antagonism, as is the case with S(−)-pindolol. The mechanism and clinical significance of these results for developing antipsychotic drugs is discussed.  相似文献   

14.
The effects of local application of serotonin (5-HT) on extracellular levels of dopamine (DA) in the nucleus accumbens (N.AACC) were assessed using in vivo microdialysis. At a perfusate flow rate of 0.3 μl/min the baseline dialysate concentration of DA was 2.1 ± 0.7 nM (mean ± S.E.M.; n = 5) and significantly increased to 142 ± 18%, 220 ± 47% and 332 ± 35% of baseline when 0.1 μM, 0.2 μM and 0.4 μM concentrations of 5-HT were included in the perfusate. Perfusate 5-HT concentrations below 0.1 μM had no effect on dialysate DA. The in vivo dialysis efficiency for 5-HT was found to be 39 ± 12%, and thus the concentrations of 5-HT reaching the extracellular space at the surface of the dialysis membrane were estimated to be 40,80 and 160 nM for the 0.1, 0.2 and 0.4 μM 5-HT perfusates, respectively. The serotonin-induced increase in dialysate DA was attenuated by co-perfusion of 0.4 μM 5-HT with 4 μM concentrations of pindolol (a relatively non-specific 5-HT1 antagonist; 151 ± 7% vs. 332 ± 35% baseline dialysate DA for 5-HT/antagonist and 5-HT-only perfusates, respectively), LY 53,857 (a specific 5-HT2 antagonist; 130 ± 17%vs.332 ± 35%) and MDL 7222 (a specific 5-HT3 antagonist; 143 ± 19%vs.332 ± 35%). While the contributions of the 5-HT1 receptor subtype are unclear, the inhibitory efficacy of a highly specific 5-HT2 antagonist and an antagonist specific to 5-HT2 and 5-HT3 receptors suggest that both of these receptor subtypes are involved in the serotonin-induced DA increase in the N. ACC.  相似文献   

15.
The functional regulation by dopamine (DA) receptors of serotonin (5-HT) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. A D1- and D2-receptor-mediated inhibition of nigral 5-HT release was demonstrated in this study. Continuous administration of the D1-receptor agonist CY 208243 (10 μM) through the probe did not alter extracellular DA nor 5-HT from the SN, whereas intranigral administration of the D1-receptor antagonist SCH-23390 HCl (10 μM) significantly increased both DA (to 214%) and 5-HT release (to 168%) from the SN. Co-perfusion of the D1-receptor agonist and antagonist did not change nigral DA nor 5-HT release compared to perfusion of the antagonist alone. The continuous intranigral perfusion of the D2-receptor agonist, (−)-quinpirole HCl (1 μM) significantly decreased both DA and 5-HT release to 71% and 78%, respectively. These decreases were abolished when the D2-receptor antagonist S(−)-sulpiride (10 μM) and the D2-receptor agonist (−)-quinpirole HCl (1 μM) were co-perfused. In contrast, the intranigral perfusion of the DA precursor, -DOPA (5 μM; 1 h), significantly increased nigral and striatal 5-HT release to 202% and 155%, respectively. This enhanced nigral 5-HT release might not be receptor-mediated. The results of the present study suggest a D1 and D2 regulation of nigral 5-HT release, either directly mediated by DA receptors on nigral 5-HT terminals or indirectly by nigral GABA, Glu or Asp. Alternatively, the observed DA–5HT-interaction in the SN might not reflect a local interaction but might involve an interaction at the level of the serotonin cell body region, the dorsal raphe nuclei (DRN).  相似文献   

16.
《Brain research》1997,757(1):205
The role of 5-hydroxytryptamine (5-HT) receptor subtypes in acetylcholine (ACh) release induced by dopamine or neurokinin receptor stimulation was studied in rat striatal slices. The dopamine D1 receptor agonist SKF 38393 potentiated in a tetrodotoxin-sensitive manner the K+-evoked [3H]ACh release while SCH 23390, a dopamine D1 receptor antagonist, had no effect. [3H]ACh release was decreased by the dopamine D2 receptor agonist LY 171555 (quinpirole) and slightly potentiated by the dopamine D2 receptor antagonist haloperidol. The selective neurokinin NK1 receptor agonist [Sar9, met(O2)11]SP also potentiated K+-evoked release of [3H]ACh. GR 82334, a NK1 receptor antagonist, blocked not only the effect of [Sar9, met(O2)11]SP but also the release of ACh induced by the D1 receptor agonist SKF 38393. Among the 5-HT agents studied, only the 5-HT2A receptor antagonists ketanserin and ritanserin were able to reduce the ACh release induced by dopamine D1 receptor stimulation. Mesulergine, a more selective 5-HT2C antagonist, showed an intrinsic releasing effect but did not affect K+-evoked ACh release induced by SKF 38393. Methysergide and methiothepin, mixed 5-HT1/2 antagonists, as well as ondansetron, a 5-HT3 receptor antagonist, showed an intrinsic effect on ACh release, their effects being additive to that of SKF 38393. 5-HT2 receptor agonists were ineffective. However, the 5-HT2 agonist DOI was able to prevent the antagonism by ketanserin of the increased [3H]ACh efflux elicited by SKF 38393, suggesting a permissive role of 5-HT2A receptors. None of the above indicated 5-HT agents was able to reduce the ACh release induced by the selective NK1 agonist. The results suggest that 5-HT2 receptors, probably of the 5-HT2A subtype, modulate the release of ACh observed in slices from the rat striatum after stimulation of dopamine D1 receptors. It seems that this serotonergic control is exerted on the interposed collaterals of substance P-containing neurons which promote ACh efflux through activation of NK1 receptors located on cholinergic interneurons.  相似文献   

17.
Using intracellular recordings, we have studied the action of 5-hydroxytryptamine (5-HT) on slices of human temporal, occipital and frontal cortex maintained in vitro. The recordings were usually made 1.2 to 1.5 mm down from the pial surface, in or around layer III. The action of 5-HT (30–50 μM) was studied on 21 cells (from 12 individuals) which had electrophysiological characteristics of glutamatergic pyramidal neurones. 5-HT depolarised the majority (11) of these cells with a median response of 5 mV. It produced a hyperpolarising response in five neurones (median=−4 mV) and a combined hyperpolarising/depolarising response in two others. No response was detected in three cells. The depolarising response was probably mediated by reducing a resting potassium conductance. Ketanserin (0.1 and 1.0 μM) and spiperone (1 μM) reduced the response indicating that it was likely mediated by 5-HT2A receptors. The hyperpolarising response was associated with the opening of ion channels and was blocked by the selective 5-HT1A receptor antagonist WAY-100635 (100 nM). 5-HT inhibited spontaneous synaptic potentials. This effect was reduced by ketanserin (1 μM) but not by WAY-100635 (100 nM). It is concluded that human neocortical neurones in vitro can be depolarised via 5-HT2A receptors and hyperpolarised via 5-HT1A receptors.  相似文献   

18.
We tested the antinociceptive effect of intrathecal (i.t.) administration of 5-HT and the 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide (mCPBG), in rats submitted to a mechanical noxious stimulus and the influence of the 5-HT3 receptor selective antagonists, tropisetron and granisetron. Both 5-HT and mCPBG (0.01, 0.1, 1, 10, 20 μg/rat) produced a significant dose-dependent antinociception. The lowest active doses were 0.1 and 1 μg for 5-HT and mCPBG, respectively. The effect, observed with 20 μg, was significantly lower with mCPBG (+33±6%) than with 5-HT (+63±7%). For 5-HT-induced antinociception, the minimal inhibitory doses were 0.001 μg/rat for tropisetron and 10 μg/rat for granisetron. In contrast, the same doses of the two antagonists (from 0.1 μg/rat) similarly inhibited the effect of mCPBG. This study provides evidence that contrary to tropisetron, doses of granisetron able to inhibit the effect of a 5-HT3 receptor agonist failed to reduce that of 5-HT. This demonstrates a heterogeneity between 5-HT3 receptor antagonists and questions the true involvement of these receptors in spinal 5-HT-induced antinociception.  相似文献   

19.
The present study demonstrated the antidepressant-like effect of neurosteroid 3α-hydroxy-5α-pregnan-20-one (3α, 5α THP) in mouse forced swim test of depression and its modulation by different serotonergic agents. Pretreatment with the selective serotonin reuptake inhibitor, fluoxetine (5 mg/kg, i.p.), the 5-HT releaser, fenfluramine (10 mg/kg, i.p.), the 5-HT1A receptor agonist, 8-OH-DPAT (0.1 mg/kg, s.c.), the 5-HT1B/1C receptor agonist, TFMPP (4 mg/kg, s.c.) and the 5-HT2A/1C receptor agonist, DOI (2 mg/kg, s.c.) potentiated the antidepressant-like effect of 3α, 5α THP. At these doses the serotonergic agents per se did not modify the duration of immobility. However, fluoxetine (20 mg/kg, i.p.), fenfluramine (20 mg/kg, i.p.) or imipramine (5 or 20 mg/kg, i.p.) not only reduced immobility but also enhanced the antidepressant-like effect of 3α, 5α THP. Such a potentiating effect of the 5-HT1A or the 5-HT2A/1C receptor agonist was not antagonized by the sub-effective dose (0.1 mg/kg, s.c.) of their respective antagonists p-MPPI or ketanserin. Pretreatment with p-CPA (300×3 mg/kg, i.p.), a depleter of 5-HT neuronal store failed to block the influence of fluoxetine and fenfluramine on antidepressant-like effect of 3α, 5α THP. The accelerated effect of 3α, 5α THP in presence of serotonergic agents was antagonized by the GABAA receptor antagonist, bicuculline (1 mg/kg, i.p.) or the 3α-hydroxysteroid oxidoreductase enzyme inhibitor, indomethacin (5 mg/kg, i.p.). These findings for the first time demonstrate that serotonergic agents potentiate the antidepressant-like action of 3α, 5α THP, by enhancing the GABAergic tone as a likely consequence of increased brain content of this neurosteroid.  相似文献   

20.
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号