首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
Primary congenital glaucoma (PCG) is responsible for a significant proportion of childhood blindness in Tunisia. Early prevention based on genetic diagnosis is therefore required. This study sought to determine the frequency of CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) mutations in 18 PCG patients, recruited from Central and Southern of Tunisia. Genomic DNA was extracted and the coding regions of CYP1B1 were analysed by direct sequencing. A phylogenetic network of CYP1B1 haplotypes was drawn using the median‐joining algorithm. Sequence analysis revealed a “tetra‐allelic mutation” (two novel mutations, p.F231I and p.P437A in the homozygous state) in one patient. The healthy members of his family carried those variations on the same allele. Two previously described mutations p.G61E and c.535delG were also identified in the homozygous state in seven and two probands, respectively. Seven single‐nucleotide polymorphisms were identified and used to generate haplotypes. Our results showed that the CYP1B1 mutations were present in 55% of Tunisian PCG patients’ alleles. Haplotype analysis allowed us to define the proto‐haplotype and to confirm historical migratory flows. Establishment of PCG genetic aetiology in Tunisia will improve genetic diagnosis and counselling.  相似文献   

2.
Generalized arterial calcifications of infancy (GACI) is caused by mutations in ENPP1. Other ENPP1‐related phenotypes include pseudoxanthoma elasticum, hypophosphatemic rickets, and Cole disease. We studied four children from two Bedouin consanguineous families who presented with severe clinical phenotype including thrombocytopenia, hypoglycemia, hepatic, and neurologic manifestations. Initial working diagnosis included congenital infection; however, patients remained without a definitive diagnosis despite extensive workup. Consequently, we investigated a potential genetic etiology. Whole exome sequencing (WES) was performed for affected children and their parents. Following the identification of a novel mutation in the ENPP1 gene, we characterized this novel multisystemic presentation and revised relevant imaging studies. Using WES, we identified a novel homozygous mutation (c.556G > C; p.Gly186Arg) in ENPP1 which affects a highly conserved protein domain (somatomedin B2). ENPP1‐associated genetic diseases exhibit phenotypic heterogeneity depending on mutation type and location. Follow‐up clinical characterization of these families allowed us to revise and detect new features of systemic calcifications, which established the diagnosis of GACI, expanding the phenotypic spectrum associated with ENPP1 mutations. Our findings demonstrate that this novel ENPP1 founder mutation can cause a fatal multisystemic phenotype, mimicking severe congenital infection. This also represents the first reported mutation affecting the SMB2 domain, associated with GACI.  相似文献   

3.
Glaucoma is a leading cause of irreversible blindness in Canada. Congenital glaucoma usually manifests during the first years of life and is characterised by severe visual loss and autosomal recessive inheritance. Two disease loci, on chromosomes 1p36 and 2p21, have been associated with various forms of congenital glaucoma. A branch of a large six generation family from a consanguineous Amish community in south western Ontario was affected with congenital glaucoma and was studied by linkage and mutational analysis to identify the glaucoma related genetic defects. Linkage analysis using the MLINK component of the LINKAGE package (v 5.1) showed evidence of linkage to the 2p21 region (Zmax=3.34, θ=0, D2S1348 and D2S1346). Mutational analysis of the primary candidate gene, CYP1B1, was done by direct cycle sequencing, dideoxy fingerprinting analysis, and fragment analysis. Two different disease causing mutations in exon 3, 1410del13 and 1505G→A, both segregated with the disease phenotype. The two different combinations of these alleles appeared to result in a variable expressivity of the phenotype. The compound heterozygote appeared to have a milder phenotype when compared to the homozygotes for the 13 bp deletion. The congenital glaucoma phenotype for this large inbred Amish family is the result of mutations in CYP1B1 (2p21). The molecular information derived from this study will be used to help identify carriers of the CYP1B1 mutation in this community and optimise the management of those at risk of developing glaucoma.


Keywords: congenital glaucoma; CYP1B1; gene; genetic counselling  相似文献   

4.
Coffin-Siris syndrome (CSS, OMIM#135900) is a rare congenital disorder associated with neurodevelopmental and dysmorphic features. The primary cause of CSS is pathogenic variants in any of 9 BAF chromatin-remodeling complex encoding genes or the genes SOX11 and PHF6. Herein, we performed whole-exome sequencing (WES) and a series of analyses of growth-related, auditory, and radiological findings in two probands with syndromic sensorineural hearing loss and inner ear malformations who exhibited distinctive facial features, intellectual disability, growth retardation, and fifth finger malformation. Two de novo variants in the SOX11 gene (c.148A>C:p.Lys50Asn; c.811_814del:p.Asn271Serfs*10) were detected in these probands and were identified as pathogenic variants as per ACMG guidelines. These probands were diagnosed as having CSS based upon clinical and genetic findings. This is the first report of CSS caused by variants in SOX11 gene in Chinese individuals. Deleterious SOX11 variants can result in sensorineural hearing loss with inner ear malformation, potentially extending the array of phenotypes associated with these pathogenic variants. We suggest that both genetic and clinical findings be considered when diagnosing syndromic hearing loss.  相似文献   

5.
In our previous studies, mutations in known candidate genes were detected in approximately 50% of Chinese patients with various forms of retinal degeneration. The next stage, identifying additional causative mutations in patients with various forms of genetic eye diseases based on whole exome sequencing of 1220 samples, revealed frequent homozygous or compound heterozygous null mutations in ALMS1, which are known to associate with Alström syndrome as well as individuals diagnosed with Leber congenital amaurosis (LCA) or early‐onset severe cone–rod dystrophy (CORD) without signs of systemic phenotypes except that one had a congenital heart abnormity. Sanger sequencing, co‐segregation analysis and analysis of normal individuals identified a total of 13 null mutations in ALMS1 in 11 probands, including 4 probands with homozygous mutations and 7 with compound heterozygous mutations. Follow‐up examinations revealed absent or mild systemic manifestations of Alström syndrome in those available: 9 of 15 patients in 11 families. These findings not only expand the spectrum of phenotypes associated with ALMS1 mutations but also suggest that ALMS1 should be regarded as a candidate causative gene in patients diagnosed with isolated LCA and early‐onset severe CORD.  相似文献   

6.
Although whole‐exome sequencing (WES) is the gold standard for the diagnosis of neurodevelopmental disorders (NDDs), it remains expensive for some genetic centers. Commercialized panels comprising all OMIM‐referenced genes called “medical exome” (ME) constitute an alternative strategy to WES, but its efficiency is poorly known. In this study, we report the experience of 2 clinical genetic centers using ME for diagnosis of NDDs. We recruited 216 consecutive index patients with NDDs in 2 French genetic centers, corresponded to the daily practice of the units and included non‐syndromic intellectual disability (NSID, n = 33), syndromic ID (NSID = 122), pediatric neurodegenerative disorders (n = 7) and autism spectrum disorder (ASD, n = 54). We sequenced samples from probands and their parents (when available) with the Illumina TruSight One sequencing kit. We found pathogenic or likely pathogenic variants in 56 index patients, for a global diagnostic yield of 25.9%. The diagnosis yield was higher in patients with ID as the main diagnosis (32%) than in patients with ASD (3.7%). Our results suggest that the use of ME is a valuable strategy for patients with ID when WES cannot be used as a routine diagnosis tool.  相似文献   

7.
Heterotaxy and congenital heart defects associated with pathogenic variants in the PKD1L1 gene (autosomal visceral heterotaxy type 8, MIM 617205) has been reported in only four individuals from three unrelated families. We describe a further family with two affected fetuses and novel compound heterozygous pathogenic variants in PKD1L1.PKD1L1 has been shown to function in the ciliary sensation of nodal flow at the embryo primitive node and in the restriction of NODAL signalling to the left lateral.plate mesoderm, mechanisms involved in the development of laterality in vertebrates.Individuals affected with this autosomal recessive condition have variable thoracic and abdominal situs. Features of CHD and other anomalies vary between and within families.  相似文献   

8.
Congenital cataracts are a significant cause of lifelong visual loss. They may be isolated or associated with microcornea, microphthalmia, anterior segment dysgenesis (ASD) and glaucoma, and there can be syndromic associations. Genetic diagnosis is challenging due to marked genetic heterogeneity. In this study, next‐generation sequencing (NGS) of 32 cataract‐associated genes was undertaken in 46 apparently nonsyndromic congenital cataract probands, around half sporadic and half familial cases. We identified pathogenic variants in 70% of cases, and over 68% of these were novel. In almost two‐thirds (20/33) of these cases, this resulted in new information about the diagnosis and/or inheritance pattern. This included identification of: new syndromic diagnoses due to NHS or BCOR mutations; complex ocular phenotypes due to PAX6 mutations; de novo autosomal‐dominant or X‐linked mutations in sporadic cases; and mutations in two separate cataract genes in one family. Variants were found in the crystallin and gap junction genes, including the first report of severe microphthalmia and sclerocornea associated with a novel GJA8 mutation. Mutations were also found in rarely reported genes including MAF, VIM, MIP, and BFSP1. Targeted NGS in presumed nonsyndromic congenital cataract patients provided significant diagnostic information in both familial and sporadic cases.  相似文献   

9.
Analysis of CYP1B1 in primary congenital glaucoma (PCG) patients from various ethnic populations indicates that allelic heterogeneity is high, and some mutations are population specific. No study has previously reported the rate or spectrum of CYP1B1 mutations in Australian PCG patients. The aim of this study is to determine the frequency of CYP1B1 mutations in our predominately Caucasian, Australian cohort of PCG cases. Thirty-seven probands were recruited from South-Eastern Australia, along with 100 normal control subjects. Genomic DNA was extracted and the coding regions of CYP1B1 analysed by direct sequencing. Sequence analysis identified 10 different CYP1B1 disease-causing variants in eight probands (21.6%). Five subjects were compound heterozygotes, two subjects heterozygous and one homozygous for CYP1B1 mutations. Three missense mutations are novel (D192Y, G329D, and P400S). None of the novel mutations identified were found in normal controls. One normal control subject was heterozygous for the previously reported CYP1B1 R368H mutation. Six previously described probable polymorphisms were also identified. Mutations in CYP1B1 account for approximately one in five PCG cases from Australia. Our data also supported the high degree of allelic heterogeneity seen in similar studies from other ethnic populations, thereby underscoring the fact that other PCG-related genes remain to be identified.  相似文献   

10.
Holoprosencephaly (HPE) is the most common congenital cerebral malformation, characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been associated with HPE and are often inherited from an unaffected parent, underlying complex genetic bases. It is now emerging that HPE may result from a combination of multiple genetic events, rather than from a single heterozygous mutation. To explore this hypothesis, we undertook whole exome sequencing and targeted high‐throughput sequencing approaches to identify mutations in HPE subjects. Here, we report two HPE families in which two mutations are implicated in the disease. In the first family presenting two foetuses with alobar and semi‐lobar HPE, we found mutations in two genes involved in HPE, SHH and DISP1, inherited respectively from the father and the mother. The second reported case is a family with a 9‐year‐old girl presenting lobar HPE, harbouring two compound heterozygous mutations in DISP1. Together, these cases of digenic inheritance and autosomal recessive HPE suggest that in some families, several genetic events are necessary to cause HPE. This study highlights the complexity of HPE inheritance and has to be taken into account by clinicians to improve HPE genetic counselling.  相似文献   

11.
Intellectual developmental disorder with dysmorphic facies and ptosis (IDDDFP) (MIM#617333) is an autosomal dominant disorder characterized by delayed psychomotor development, intellectual disability (ID), and dysmorphic facial features due to pathogenic variations in the Bromodomain- and PHD Finger-Containing Protein (BRPF1) (MIM#602410) gene. Herein, we report the first Turkish patients with IDDDFP. Additionally, the patients had hematopoietic disorders such as anemia and thrombocytopenia, which have not been previously described in IDDDFP patients. Genetic testing using Whole Exome Sequencing (WES) revealed a novel heterozygous c.1433G > A; p.W478* (NM_004634.3) pathogenic variant on exon 3 of the BRPF1 gene. The patients demonstrated classical features of IDDDFP such as intellectual disability, developmental delay, ptosis, micro and retrognathia, and dysmorphic facial features, in addition to the anemia and thrombocytopenia. Apart from the variant in BRPF1, no additional genomic changes were detected by WES and chromosomal microarray analysis (CMA). Hopefully, our novel report on the hematopoietic anomalies of our patients due to BRPF1 will expand upon the clinical spectrum of IDDDFP, encourage further studies about BRPF1-hematopoietic system relations, and affect the diagnostic and therapeutic schemes of hematopoietic system disorders.  相似文献   

12.
Aplasia cutis congenita (ACC) is a heterogeneous group of disorders characterized by localized or widespread absence of skin. ACC can occur isolated or as part of a syndrome. Here we report two consanguineous families, each with two affected offspring. Affected individuals showed widespread ACC while the skin in between had a normal appearance. Ears and nose of the four patients were underdeveloped, otherwise there were no unusual physical characteristics and no internal organ anomalies. “Whole” exome sequencing (WES) of the mother of Family 1 yielded a pathogenic heterozygote variant in ITGB4. The father and healthy offspring were heterozygous for the same variant. WES of the mother of Family 2 yielded a variant in PLEC1. The father and grandmother, who had a history of two offspring with fatal ACC, were heterozygous for the same variant. PLEC1 and ITGB4 have both been previously been reported in association with ACC. We compare findings in earlier reported individuals with variants in ITGB4 and PLEC1, and provide a short summary of other entities going along with ACC.  相似文献   

13.
Neurofibromatosis type I (NF1) is a relatively common genetic disorder characterized by neurocutaneous lesions, neurofibromas, skeletal anomalies, iris hamartomas, and predisposition to other tumors. NF1 results from heterozygous loss‐of‐function mutations in neurofibromin (NF1), and diagnosis is most often made using clinical diagnostic criteria. Cardiac manifestations of NF1 include congenital heart disease (such as valvar pulmonary stenosis), left ventricular hypertrophy, and adult‐onset pulmonary hypertension. Prenatal features of NF1 are often nonspecific and diagnoses are infrequently made prenatally without a known family history. Herein, we report the first case, to the best of our knowledge, of fetal cardiomyopathy as the presenting feature in NF1 and review NF1‐related left ventricular hypertrophy. NF1 should be considered in the differential diagnosis for fetuses with cardiomyopathy, even in the absence of a known family history of the condition.  相似文献   

14.
We report a female patient with craniofrontonasal syndrome (CFNS) who in addition showed other cranial and extracranial midline defects including partial corpus callosum agenesis, ocular melanocytosis, pigmentary glaucoma, duplex collecting system, uterus didelphys, and septate vagina. She was found to have a novel pathogenic variant in exon 5 of EFNB1, c.646G>T (p.Glu216*) predicted to cause premature protein truncation. From our review, we found at least 39 published CFNS patients with extracranial midline defects, comprising congenital diaphragmatic hernia, congenital heart defects, umbilical hernia, hypospadias, and less frequently, sacrococcygeal teratomas, and internal genital anomalies in females. These findings support that the EFNB1 mutations have systemic consequences disrupting morphogenetic events at the extracranial midline. Though these are not rigorously included as midline defects, we found at least 10 CFNS patients with congenital anomalies of the kidney and urinary tract, all females. Additionally, uterus didelphys and ocular melanocytosis observed in our patient are proposed also as a previously unreported EFNB1‐related midline defects. In addition, this case may be useful for considering the intentional search for genitourinary anomalies in future patients with CFNS, which will be helpful to define their frequency in this entity.  相似文献   

15.
Wilson's disease (WD) is an autosomal recessive disorder caused by ATP7B mutations. Subjects with only one mutation may show clinical signs and individuals with biallelic changes may remain asymptomatic. We aimed to achieve a conclusive genetic diagnosis for 34 patients clinically diagnosed of WD. Genetic analysis comprised from analysis of exons to WES (whole exome sequencing), including promoter, introns, UTRs (untranslated regions), besides of study of large deletions/duplications by MLPA (multiplex ligation-dependent probe amplification). Biallelic ATP7B mutations were identified in 30 patients, so that four patients were analyzed using WES. Two affected siblings resulted to be compound heterozygous for mutations in CCDC115, which is involved in a form of congenital disorder of glycosylation. In sum, the majority of patients with a WD phenotype carry ATP7B mutations. However, if genetic diagnosis is not achieved, additional genes should be considered because other disorders may mimic WD.  相似文献   

16.
Ng WY, Pasutto F, Bardakjian TM, Wilson MJ, Watson G, Schneider A, Mackey DA, Grigg JR, Zenker M, Jamieson RV. A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family. Fraser syndrome (FS) and microphthalmia syndromic 9 (MCOPS9) are autosomal recessive conditions with distinct, and some overlapping features affecting the ocular, respiratory and cardiac systems. Mutations in FRAS1 and FREM2 occur in FS, and mutations in STRA6 occur in MCOPS9. We report two sibships, in the same family, where four deceased offspring had ocular, respiratory and cardiac abnormalities. Two sibs with microphthalmia had syndactyly and laryngeal stenosis, suggesting a clinical diagnosis of FS. Our results indicate that they were compound heterozygotes for novel FRAS1 mutations, p.Cys729Phe and p.Leu3813Pro. The other two sibs, first cousins to the first sib pair, had anophthalmia, lung hypoplasia and cardiac anomalies, suggesting a retrospective diagnosis of MCOPS9. Our results indicate compound heterozygous STRA6 mutations, a novel frameshift leading to p.Tyr18* and a p.Thr644Met mutation. The one surviving individual from these sibships is heterozygous for the p.Tyr18*STRA6 mutation and has bilateral ocular colobomata and microphthalmia. This work emphasises the need for careful phenotypic characterisation to determine genes for assessment in ocular syndromic conditions. It also indicates that heterozygous STRA6 mutations may rarely contribute to microphthalmia and coloboma.  相似文献   

17.
Mutations in the PPIL1 gene have been linked to type 14 pontocerebellar hypoplasia (PCH14); however, prenatal clinical characteristics of PCH14 caused by mutations in the PPIL1 gene have not been reported. This study reports the first prenatal case of PCH14 diagnosed by whole-exome sequencing (WES). Two fetuses with severe microcephaly and cerebral dysplasia, along with their parents, underwent WES. The effects of the discovered PPIL1 variants on PPIL1 protein function were investigated using bioinformatics tools. WES revealed two compound heterozygous missense mutations in PPIL1, c.376C > G (p.His126Asp) and c.392G > T (p.Arg131Leu), inherited from the mother and father, respectively. The co-segregation of PPIL1 mutations in this family was confirmed using Sanger sequencing, identifying two PCH14-affected fetuses. Bioinformatics analysis revealed that these mutations could disrupt the formation of hydrogen bonds, altering the structural stability of the PPIL1 protein. This study is the first to define the clinical characteristics of PCH14 during pregnancy and reports a novel heterozygous missense variant, expanding the PCH14-related mutational spectrum of PPIL1.  相似文献   

18.
19.
Exome sequencing is a powerful tool in prenatal and postnatal genetics and can help identify novel candidate genes critical to human development. We describe seven unpublished probands with rare likely pathogenic variants or variants of uncertain significance that segregate with recessive disease in TBC1D32, including four fetal probands in three unrelated pedigrees and three pediatric probands in unrelated pedigrees. We also report clinical comparisons with seven previously published patients. Index probands were identified through an ongoing prenatal exome sequencing study and through an online data sharing platform (Gene Matcher™). A literature review was also completed. TBC1D32 is involved in the development and function of cilia and is expressed in the developing hypothalamus and pituitary gland. We provide additional data to expand the phenotype correlated with TBC1D32 variants, including a severe prenatal phenotype associated with life-limiting congenital anomalies.  相似文献   

20.
Neu–Laxova syndrome (NLS) is a lethal autosomal recessive microcephaly syndrome associated with intrauterine growth restriction (IUGR) and multiple congenital anomalies. Clinical features include central nervous system malformations, joint contractures, ichthyosis, edema, and dysmorphic facial features. Biallelic pathogenic variants in either the PHGDH or PSAT1 genes have been shown to cause NLS. Using exome sequencing, we aimed to identify the underlying genetic diagnosis in three fetuses (from one family) with prenatal skin edema, severe IUGR, micrognathia, renal anomalies, and arthrogryposis and identified a homozygous c.1A>C (p.Met1?, NM_006623.3) variant in the PHGDH gene. Loss of the translation start codon is a novel genetic mechanism for the development of NLS. Prenatal diagnosis of NLS is challenging and few reports describe the fetal pathology. Fetal neuropathologic examination revealed: delayed brain development, congenital agenesis of the corticospinal tracts, and hypoplasia of the hippocampus, cerebellum and brainstem. Each pregnancy also showed increased nuchal translucency (NT) or cystic hygroma. While NLS is rare, it may be a cause of recurrent increased NT/cystic hygroma. This finding provides further support that cystic hygroma has many different genetic causes and that exome sequencing may shed light on the underlying genetic diagnoses in this group of prenatal patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号