首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silk fibroin scaffolds were studied as a new biomaterial option for tissue-engineered cartilage-like tissue. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on silk, collagen, and crosslinked collagen scaffolds and cultured for 21 days in serum-free chondrogenic medium. Cells proliferated more rapidly on the silk fibroin scaffolds than on the collagen matrices. The total content of glycosaminoglycan deposition was three times higher on silk as compared to collagen scaffolds. Glycosaminoglycan deposition coincided with overexpression of collagen type II and aggrecan genes. Cartilage-like tissue was homogeneously distributed throughout the entire silk scaffolds, while on the collagen and crosslinked collagen systems tissue formation was restricted to the outer rim, leaving a doughnut appearance. Round or angular-shaped cells resided in deep lacunae in the silk systems and stained positively for collagen type II. The aggregate modulus of the tissue-engineered cartilage constructs was more than 2-fold higher than that of the unseeded silk scaffold controls. These results suggest that silk fibroin scaffolds are suitable biomaterial substrates for autologous cartilage tissue engineering in serum-free medium and enable mechanical improvements along with compositional features suitable for durable implants to generate or regenerate cartilage.  相似文献   

2.
Choi YS  Park SN  Suh H 《Biomaterials》2005,26(29):5855-5863
The reconstruction of soft tissue defects remains a challenge in plastic and reconstructive surgery, and a real clinical need exists for an adequate solution. This study was undertaken in order to differentiate mesenchymal stem cells (MSCs) into adipocytes, and to then assess the possibility of constructing adipose tissue via the attachment of MSCs to injectable PLGA spheres. We also designed injectable PLGA spheres for scar-free transplantation. In this study, MSCs and adipo-MSCs (MSCs cultured in adipogenic medium for 7 days) were attached to PLGA spheres and cultured for 7 days, followed by injection into nude mice for 2 weeks. As a result, the difference between lipid accumulation in adipo-MSCs at 1 and 7 days was much higher in vitro than in the MSCs. Two weeks after injection, a massive amount of new tissue was formed in the APLGA group, whereas only a small amount was formed in the MPLGA group. We verified that the newly formed tissue originated from the injected MSCs via GFP testing, and confirmed that the created tissue was actual adipose tissue by oil red O staining and Western blot (PPAR(gamma) and C/EBP(alpha) were expressed only in APLGA groups). Therefore, this study presents an efficient model of adipose tissue engineering using MSCs and injectable PLGA spheres.  相似文献   

3.
Zhou H  Xu HH 《Biomaterials》2011,32(30):7503-7513
Stem cell-encapsulating hydrogel microbeads of several hundred microns in size suitable for injection, that could quickly degrade to release the cells, are currently unavailable. The objectives of this study were to: (1) develop oxidized alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); (2) investigate microbead degradation, cell release, and osteogenic differentiation of the released cells for the first time. Three types of microbeads were fabricated to encapsulate hUCMSCs: (1) Alginate microbeads; (2) oxidized alginate microbeads; (3) oxidized alginate-fibrin microbeads. Microbeads with sizes of about 100-500 μm were fabricated with 1 × 10(6) hUCMSCs/mL of alginate. For the alginate group, there was little microbead degradation, with very few cells released at 21 d. For oxidized alginate, the microbeads started to slightly degrade at 14 d. In contrast, the oxidized alginate-fibrin microbeads started to degrade at 4 d and released the cells. At 7 d, the number of released cells greatly increased and showed a healthy polygonal morphology. At 21 d, the oxidized alginate-fibrin group had a live cell density that was 4-fold that of the oxidized alginate group, and 15-fold that of the alginate group. The released cells had osteodifferentiation, exhibiting highly elevated bone marker gene expressions of ALP, OC, collagen I, and Runx2. Alizarin staining confirmed the synthesis of bone minerals by hUCMSCs, with the mineral concentration at 21 d being 10-fold that at 7 d. In conclusion, fast-degradable alginate-fibrin microbeads with hUCMSC encapsulation were developed that could start to degrade and release the cells at 4 d. The released hUCMSCs had excellent proliferation, osteodifferentiation, and bone mineral synthesis. The alginate-fibrin microbeads are promising to deliver stem cells inside injectable scaffolds to promote tissue regeneration.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects, and healing of bony defects was assessed by radiograph X-ray, microcomputed tomography (muCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies.  相似文献   

5.
6.
Wang Y  Kim UJ  Blasioli DJ  Kim HJ  Kaplan DL 《Biomaterials》2005,26(34):7082-7094
Adult cartilage tissue has limited self-repair capacity, especially in the case of severe damages caused by developmental abnormalities, trauma, or aging-related degeneration like osteoarthritis. Adult mesenchymal stem cells (MSCs) have the potential to differentiate into cells of different lineages including bone, cartilage, and fat. In vitro cartilage tissue engineering using autologous MSCs and three-dimensional (3-D) porous scaffolds has the potential for the successful repair of severe cartilage damage. Ideally, scaffolds designed for cartilage tissue engineering should have optimal structural and mechanical properties, excellent biocompatibility, controlled degradation rate, and good handling characteristics. In the present work, a novel, highly porous silk scaffold was developed by an aqueous process according to these criteria and subsequently combined with MSCs for in vitro cartilage tissue engineering. Chondrogenesis of MSCs in the silk scaffold was evident by real-time RT-PCR analysis for cartilage-specific ECM gene markers, histological and immunohistochemical evaluations of cartilage-specific ECM components. Dexamethasone and TGF-beta3 were essential for the survival, proliferation and chondrogenesis of MSCs in the silk scaffolds. The attachment, proliferation, and differentiation of MSCs in the silk scaffold showed unique characteristics. After 3 weeks of cultivation, the spatial cell arrangement and the collagen type-II distribution in the MSCs-silk scaffold constructs resembles those in native articular cartilage tissue, suggesting promise for these novel 3-D degradable silk-based scaffolds in MSC-based cartilage repair. Further in vivo evaluation is necessary to fully recognize the clinical relevance of these observations.  相似文献   

7.
Human placenta-derived mesenchymal stem cells (hPMSCs) represent a promising source of stem cells. The application of hPMSCs in cartilage tissue engineering, however, was less reported. In this study, hPMSCs were grown in a three-dimensional (3D) environment for cartilage tissue formation in vitro. To select proper scaffolds for 3D culture of mesenchymal stem cells (MSCs), rat adipose-derived MSCs were initially employed to optimize the composition and condition of the 3D environment. The suitability of a poly(D,L-lactide-co-glycolide) (PLGA) precision scaffold previously developed for seeding and culture of primary chondrocytes was tested for MSCs. It was established that MSCs had to be embedded in alginate gel before seeded in the PLGA precision scaffold for cartilage-like tissue formation. The inclusion of nano-sized calcium-deficient hydroxyapatite (nCDHA) and/or a recombinant protein containing arginine-glycine-aspartate (RGD) into the alginate gel enhanced the chondrogenesis for both rat adipose-derived MSCs and hPMSCs. The amount of extracellular matrix such as glycosaminoglycan and type II collagen accumulated during a period of 21 days was found to be the greatest for hPMSCs embedded in the alginate/nCDHA/RGD gel and injected and cultivated in the precision scaffold. Also, histological analyses revealed the lacunae formation and extracellular matrix production from the seeded hPMSCs. Comparing human bone marrow-derived MSCs (hBMSCs) and hPMSCs grown in the previous composite scaffolds, the secretion of glycosaminoglycan was twice as higher for hPMSCs as that for hBMSCs. It was concluded that the alginate/nCDHA/RGD mixed gel in the aforementioned system could provide a 3D environment for the chondrogenesis of hPMSCs, and the PLGA precision scaffold could provide the dimensional stability of the whole construct. This study also suggested that hPMSCs, when grown in a suitable scaffold, may be a good source of stem cells for building up the tissue-engineered cartilage.  相似文献   

8.
Kim DH  Martin DC 《Biomaterials》2006,27(15):3031-3037
The release of the anti-inflammatory agent dexamethasone (DEX) from nanoparticles of poly(lactic-co-glycolic acid) (PLGA) embedded in alginate hydrogel (HG) matrices was investigated. DEX-loaded PLGA nanoparticles were prepared using a solvent evaporation technique and were characterized for size, drug loading, and in-vitro release. The crosslinking density of the HG was studied and correlated with drug release kinetics. The amount of DEX loaded in the nanoparticles was estimated as approximately 13 wt%. The typical particle size ranged from 400 to 600 nm. The in-vitro release of DEX from NPs entrapped in the HG showed that 90% of the drug was released over 2 weeks. The impedance of the NP-loaded HG coatings on microfabricated neural probes was measured and found to be similar to the unmodified and uncoated probes. The in-vivo impedance of chronically implanted electrodes loaded with DEX was maintained at its initial level, while that of the control electrode increased by 3 times after about 2 weeks after implantation until it stabilized at approximately 3 MOmega. This improvement in performance is presumably due to the reduced amount of glial inflammation in the immediate vicinity of the DEX-modified neural probe.  相似文献   

9.
The aim of this study was to examine in vitro the response of human mesenchymal stem cells (hMSCs) on the novel biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine (BG-COL-HYA-PS) composite scaffold for potential use in bone tissue engineering. The initial attachment, the proliferation, migration and differentiation behavior of the cells on the BG-COL-HYA-PS composites were assessed in comparison with those on pure 58sBG, BG-COL, and BG-COL-HYA composites in either growth medium (L-DMEM supplemented with 10% fetal bovine serum) or osteogenic medium (growth medium supplemented with 0.1 microM dexamethasone, 10 mM beta-glycerophosphate, and 50 microM ascorbic acid). HMSCs attached, and subsequently proliferated and migrated on the BG-COL-HYA-PS composites to a significantly higher degree. The alkaline phosphatase (ALP) staining, ALP activity and the expression of the bone associated gene ALP, osteocalcin (OC), and osteopontin (OPN) was also significantly higher in the hMSCs on the BG-COL-HYA-PS scaffolds than those on the BG-COL, BG-COL-HYA composites and the pure 58sBG. These findings suggest that the BG-COL-HYA-PS composite porous scaffolds have high potential for use as scaffolds in bone tissue engineering and repair.  相似文献   

10.
Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and its demonstrated ability to support bone formation both in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASCs), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol (HFIP)), pore sizes (250-500 μm vs. 500-1000 μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes, with decellularized trabecular bone (DCB) included as a "gold standard". The scaffolds were seeded with hASCs and cultured for 7 weeks in osteogenic medium. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400-600 μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes, as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2 and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation.  相似文献   

11.
12.
Aligned nanofibrous scaffolds based on poly(d,l-lactide-co-glycolide) (PLGA) and nano-hydroxyapatite (nano-HA) were synthesized by electrospinning for bone tissue engineering. Morphological characterization using scanning electron microscopy showed that the addition of different amounts of nano-HA (1, 5, 10 and 20wt.%) increased the average fiber diameter from 300nm (neat PLGA) to 700nm (20% nano-HA). At higher concentrations (>or=10%), agglomeration of HA was observed and this had a marked effect at 20% concentration whereby the presence of nano-HA resulted in fiber breaking. Thermal characterization showed that the fast processing of electrospinning locked in the amorphous character of PLGA; this resulted in a decrease in the glass transition temperature of the scaffolds. Furthermore, an increase in the glass transition temperature was observed with increasing nano-HA concentration. The dynamic mechanical behavior of the scaffolds reflected the morphological observation, whereby nano-HA acted as reinforcements at lower concentrations (1% and 5%) but acted as defects at higher concentrations (10% and 20%). The storage modulus value of the scaffolds increased from 441MPa for neat PLGA to 724MPa for 5% nano-HA; however, further increasing the concentration leads to a decrease in storage modulus, to 371MPa for 20% nano-HA. Degradation characteristics showed that hydrophilic nano-HA influenced phosphate-buffered saline uptake and mass loss. The mechanical behavior showed a sinusoidal trend with a slight decrease in modulus by week 1 due to the plasticizing effect of the medium followed by an increase due to shrinkage, and a subsequent drop by week 6 due to degradation.  相似文献   

13.
In the present study, based on a biomimetic approach, novel 3D nanofibrous hybrid scaffolds consisting of poly(epsilon-caprolactone), poly(vinyl alcohol), and chitosan were developed via a multi-jet electrospinning method. The influence of chemical, physical, and structural properties of the scaffolds on the differentiation of mesenchymal stem cells into osteoblasts, and the proliferation of the differentiated cells were investigated. Osteogenically induced cultures revealed that cells were well-attached, penetrated into the construct and were uniformly distributed. The expression of early and late phenotypic markers of osteoblastic differentiation was upregulated in the constructs cultured in osteogenic medium.  相似文献   

14.
This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250 degrees C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds.This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 microm and wall structures with a thickness down to 330 microm. The mechanical strength of dense test parts is up to 22 MPa.  相似文献   

15.
Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.  相似文献   

16.
目的 :探讨经体外扩增、诱导分化的人骨髓间质干细胞(humanbonemarrowmesenchymalstemcells,hMSC)作为组织工程化骨、软骨种子细胞的可行性。方法 :体外分离、培养、扩增hMSC ,以流式细胞仪检测hMSC的表面抗原。诱导hMSC向成骨细胞、软骨细胞分化。以倒置显微镜和电子显微镜观察细胞的形态 ;以组织化学、免疫组织化学和RT PCR ,检测成骨细胞、软骨细胞的特异性标志物。结果 :分离得到的细胞可表达hMSC的特异抗原 ,在体外扩增 15代以上 ,其形态及表面抗原保持不变。成骨诱导培养的细胞上清液中ALP的含量高于对照组 (P <0 .0 5 )。成骨及成软骨诱导的细胞形态均由成纤维样梭形向多边形转变。透射电镜观察可见大量扩张的粗面内质网、高尔基体及线粒体。扫描电镜观察可见经成骨诱导后的细胞表面有钙盐沉积 ,成软骨诱导的细胞表面有胶原样突起。成骨诱导培养后 ,可见碱性磷酸酶 (ALP)染色、Ca结节染色、胶原 Ⅰ (COL Ⅰ )及骨钙素 (osteocalcin ,OC)免疫组化染色阳性 ,同时RT PCR检测COL Ⅰ、OCmRNA表达阳性。成软骨诱导后 ,甲苯胺蓝染色见细胞周围有大量的异染性基质 ,免疫组化和RT PCR检测COL Ⅱ表达阳性。结论 :hMSC在体外可大量扩增。在特定培养液诱导下 ,可向成骨细胞及软骨细胞转化 ,可作为骨、软骨组  相似文献   

17.
Directed stem cell differentiation over three-dimensional porous scaffolds capable of releasing bioactive instructive cues is an important tool in tissue engineering. In this research, we have prepared dexamethasone (Dex)-releasing collagen microbead-functionalized poly(L-Lactide)-collagen hybrid scaffolds as an osteoinductive platform for human bone marrow-derived mesenchymal stem cells (MSCs). The scaffolds were prepared by a combined method of emulsion freeze-drying and porogen-leaching using pre-prepared ice collagen particulates as a porogen material. Dex release from the hybrid scaffolds was studied at 37?°C under shaking condition and the impact of released Dex towards osteogenic lineage differentiation was investigated by 3?week in vitro culture of MSCs. The results showed that hybrid scaffolds had controlled pore structure and interconnected pores deposited with collagen fibers. The hybrid scaffold facilitated cell seeding and the spatial localization of Dex/collagen microbeads facilitated a microgel-assisted spatio-temporal control of Dex release. The released Dex was useful for osteogenic differentiation of MSCs, which was confirmed from the elevated expression of osteogenic-specific gene-encoded proteins. The hybrid scaffolds should be useful for regeneration of a functional bone tissue.  相似文献   

18.
There is a clinical need for new bone replacement materials that combine long implant life with complete integration and appropriate mechanical properties. We have used human mesenchymal stem cells (MSCs) to populate porous apatite-wollastonite (A-W) glass-ceramic scaffolds produced by the layer manufacturing technique, selective laser sintering, to create custom-built bone replacements. Confocal and scanning electron microscopy were used to determine optimal seeding densities and to demonstrate that MSCs adhered and retained viability on the surface of A-W scaffolds over a culture period of 21 days. We found a significant increase in the number of MSCs growing on the scaffolds over 7 days. Using bromodeoxyuridine incorporation we demonstrated that MSCs proliferated on the scaffolds. Using real-time PCR we analyzed the expression of the osteogenic markers alkaline phosphatase, collagen type-I, Cbfa-1, osteocalcin, osteonectin, and osteopontin by MSCs cultured in the absence of osteogenic supplements. The expression of the osteogenic markers by MSCs was equivalent to or significantly greater on A-W scaffolds than on tissue culture plastic. We also identified significantly higher alkaline phosphatase activity on A-W compared to a commercial calcium phosphate scaffold. These results indicate for the first time the biocompatibility and osteo-supportive capacity of A-W scaffolds and their potential as patient-specific bone replacement materials.  相似文献   

19.
Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications.  相似文献   

20.
细胞移植技术治疗软骨损伤已成为一项新兴的组织工程学研究热点.骨髓间充质干细胞由于其具有扩增快、便于分离提纯、可以体外诱导分化成为软骨细胞的特性,有可能成为组织工程化软骨的新型种子细胞.随着骨髓间充质干细胞应用于软骨组织工程研究的深入,结合近年的研究文献和成果,就骨髓间充质干细胞的诱导微环境和诱导方式的研究进展进行综述,探讨骨髓间充质干细胞作为种子细胞在构建组织工程软骨中的优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号