首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Genetic studies have revealed that Cbl-b plays a negative role in the antigen receptor-mediated proliferation of lymphocytes. However, we show that Cbl-b-deficient DT40 B cells display reduced phospholipase C (PLC)-gamma2 activation and Ca2+ mobilization upon B cell receptor (BCR) stimulation. In addition, the overexpression of Cbl-b in WEHI-231 mouse B cells resulted in the augmentation of BCR-induced Ca2+ mobilization. Cbl-b interacted with PLC-gamma2 and helped the association of PLC-gamma2 with Bruton's tyrosine kinase (Btk), as well as B cell linker protein (BLNK). Cbl-b was indispensable for Btk-dependent sustained increase in intracellular Ca2+. Both NH(2)-terminal tyrosine kinase-binding domain and COOH-terminal half region of Cbl-b were essential for its association with PLC-gamma2 and the regulation of Ca2+ mobilization. These results demonstrate that Cbl-b positively regulates BCR-mediated Ca2+ signaling, most likely by influencing the Btk/BLNK/PLC-gamma2 complex formation.  相似文献   

2.
The B cell adaptor containing src homology 2 domain (BASH; also termed BLNK or SLP-65), is crucial for B cell antigen receptor (BCR)-mediated activation, proliferation, and differentiation of B cells. BCR-mediated tyrosine-phosphorylation of BASH creates binding sites for signaling effectors such as phospholipase Cgamma (PLCgamma)2 and Vav, while the function of its COOH-terminal src homology 2 domain is unknown. We have now identified hematopoietic progenitor kinase (HPK)1, a STE20-related serine/threonine kinase, as a protein that inducibly interacts with the BASH SH2 domain. BCR ligation induced rapid tyrosine-phosphorylation of HPK1 mainly by Syk and Lyn, resulting in its association with BASH and catalytic activation. BCR-mediated activation of HPK1 was impaired in Syk- or BASH-deficient B cells. The functional SH2 domain of BASH and Tyr-379 within HPK1 which we identified as a Syk-phosphorylation site were both necessary for interaction of both proteins and efficient HPK1 activation after BCR stimulation. Furthermore, HPK1 augmented, whereas its kinase-dead mutant inhibited IkappaB kinase beta (IKKbeta) activation by BCR engagement. These results reveal a novel BCR signaling pathway leading to the activation of HPK1 and subsequently IKKbeta, in which BASH recruits tyrosine-phosphorylated HPK1 into the BCR signaling complex.  相似文献   

3.
4.
Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b-deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igalpha, Syk, and phospholipase C (PLC)-gamma2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b-deficient B cells in contrast to the BCRs in Cbl-b-expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.  相似文献   

5.
Integrin-mediated adhesion and B cell antigen receptor (BCR) signaling play a critical role in B cell development and function, including antigen-specific B cell differentiation. Here we show that the BCR controls integrin alpha4beta1 (VLA-4)-mediated adhesion of B cells to vascular cell adhesion molecule-1 and fibronectin. Molecular dissection of the underlying signaling mechanism by a combined biochemical, pharmacological, and genetic approach demonstrates that this BCR-controlled integrin-mediated adhesion requires the (consecutive) activation of Lyn, Syk, phosphatidylinositol 3-kinase, Bruton's tyrosine kinase (Btk), phospholipase C (PLC)gamma2, IP3R-mediated Ca2+ release, and PKC. In contrast, activation of mitogen-activated protein kinase kinase (MEK) or extracellular signal-regulated kinase (ERK) is not required, and simultaneous activation of MEK, ERK, and PKB is not sufficient either. Furthermore, Btk is also involved in the control of integrin-mediated adhesion of preB cells. The control of integrin alpha4beta1-mediated B cell adhesion by the BCR involves cytoskeletal reorganization and integrin clustering. These results reveal a novel function for the BCR and Btk, i.e., regulation of integrin alpha4beta1 activity, thereby providing new insights into the control of B cell development and differentiation, as well as into the pathogenesis of the immunodeficiency disease X-linked agammaglobulineamia (XLA).  相似文献   

6.
Genetic ablation of the Lyn tyrosine kinase has revealed unique inhibitory roles in B lymphocyte signaling. We now report the consequences of sustained activation of Lyn in vivo using a targeted gain-of-function mutation (Lyn(up/up) mice). Lyn(up/up) mice have reduced numbers of conventional B lymphocytes, down-regulated surface immunoglobulin M and costimulatory molecules, and elevated numbers of B1a B cells. Lyn(up/up) B cells are characterized by the constitutive phosphorylation of negative regulators of B cell antigen receptor (BCR) signaling including CD22, SHP-1, and SHIP-1, and display attributes of lymphocytes rendered tolerant by constitutive engagement of the antigen receptor. However, exaggerated positive signaling is also apparent as evidenced by the constitutive phosphorylation of Syk and phospholipase Cgamma2 in resting Lyn(up/up) B cells. Similarly, Lyn(up/up) B cells show a heightened calcium flux in response to BCR stimulation. Surprisingly, Lyn(up/up) mice develop circulating autoreactive antibodies and lethal autoimmune glomerulonephritis, suggesting that enhanced positive signaling eventually overrides constitutive negative signaling. These studies highlight the difficulty in maintaining tolerance in the face of chronic stimulation and emphasize the pivotal role of Lyn in B cell signaling.  相似文献   

7.
Defects in the gene encoding Bruton's tyrosine kinase (Btk) result in a disease called X-linked agammaglobulinemia, in which there is a profound decrease of mature B cells due to a block in B cell development. Recent studies have shown that Btk is tyrosine phosphorylated and activated upon B cell antigen receptor (BCR) stimulation. To elucidate the functions of this kinase, we examined BCR signaling of DT40 B cells deficient in Btk. Tyrosine phosphorylation of phospholipase C (PLC)-gamma 2 upon receptor stimulation was significantly reduced in the mutant cells, leading to the loss of both BCR-coupled phosphatidylinositol hydrolysis and calcium mobilization. Pleckstrin homology and Src-homology 2 domains of Btk were required for PLC-gamma 2 activation. Since Syk is also required for the BCR-induced PLC-gamma 2 activation, our findings indicate that PLC-gamma 2 activation is regulated by Btk and Syk through their concerted actions.  相似文献   

8.
9.
Immunoglobulin (Ig)alpha and Igbeta initiate B cell receptor (BCR) signaling through immune receptor tyrosine activation motifs (ITAMs) that are targets of SH2 domain-containing kinases. To examine the function of Igbeta ITAM tyrosine resides in mature B cells in vivo, we exchanged these residues for alanine by gene targeting (Igbeta(AA)). Mutant mice showed normal development of all B cell subtypes with the exception of B1 cells that were reduced by fivefold. However, primary B cells purified from Igbeta(AA) mice showed significantly decreased steady-state and ligand-mediated BCR internalization and higher levels of cell surface IgM and IgD. BCR cross-linking resulted in decreased Src and Syk activation but paradoxically enhanced and prolonged BCR signaling, as measured by cellular tyrosine phosphorylation, Ca(++) flux, AKT, and ERK activation. In addition, B cells with the ITAM mutant receptor showed an enhanced response to a T-independent antigen. Thus, Igbeta ITAM tyrosines help set BCR signaling threshold by regulating receptor internalization.  相似文献   

10.
Recent data implicating loss of PTP1C tyrosine phosphatase activity in the genesis of the multiple hemopoietic cell defects found in systemic autoimmune/immunodeficient motheaten (me) and viable motheaten (mev) mice suggest that PTP1C plays an important role in modulating intracellular signaling events regulating cell activation and differentiation. To begin elucidating the role for this cytosolic phosphatase in lymphoid cell signal transduction, we have examined early signaling events and mitogenic responses induced by B cell antigen receptor (BCR) ligation in me and mev splenic B cells and in CD5+ CH12 lymphoma cells, which represent the lymphoid population amplified in motheaten mice. Despite their lack of functional PTP1C, me and mev B cells proliferated normally in response to LPS. However, compared with wild-type B cells, cells from the mutant mice were hyperresponsive to normally submitogenic concentrations of F(ab')2 anti- Ig antibody, and they exhibited reduced susceptibility to the inhibitory effects of Fc gamma IIRB cross-linking on BCR-induced proliferation. Additional studies of unstimulated CH12 and wild-type splenic B cells revealed the constitutive association of PTP1C with the resting BCR complex, as evidenced by coprecipitation of PTP1C protein and phosphatase activity with BCR components and the depletion of BCR- associated tyrosine phosphatase activity by anti-PTP1C antibodies. These results suggest a role for PTP1C in regulating the tyrosine phosphorylation state of the resting BCR complex components, a hypothesis supported by the observation that PTP1C specifically induces dephosphorylation of a 35-kD BCR-associated protein likely representing Ig-alpha. In contrast, whereas membrane Ig cross-linking was associated with an increase in the tyrosine phosphorylation of PTP1C and an approximately 140-kD coprecipitated protein, PTP1C was no longer detected in the BCR complex after receptor engagement, suggesting that PTP1C dissociates from the activated receptor complex. Together these results suggest a critical role for PTP1C in modulating BCR signaling capacity, and they indicate that the PTP1C influence on B cell signaling is likely to be realized in both resting and activated cells.  相似文献   

11.
Divergent hypotheses exist to explain how signaling by the B cell receptor (BCR) is initiated after antigen binding and how it is qualitatively altered in anergic B cells to selectively uncouple from nuclear factor kappaB and c-Jun N-terminal kinase pathways while continuing to activate extracellular signal-regulated kinase and calcium-nuclear factor of activated T cell pathways. Here we find that BCRs on anergic cells are endocytosed at a very enhanced rate upon binding antigen, resulting in a large steady-state pool of intracellularly sequestered receptors that appear to be continuously cycling between surface and intracellular compartments. This endocytic mechanism is exquisitely sensitive to the lowering of plasma membrane cholesterol by methyl-beta-cyclodextrin, and, when blocked in this way, the sequestered BCRs return to the cell surface and RelA nuclear accumulation is stimulated. In contrast, when plasma membrane cholesterol is lowered and GM1 sphingolipid markers of membrane rafts are depleted in naive B cells, this does not diminish BCR signaling to calcium or RelA. These results provide a possible explanation for the signaling changes in clonal anergy and indicate that a chief function of membrane cholesterol in B cells is not to initiate BCR signaling, but instead to terminate a subset of signals by rapid receptor internalization.  相似文献   

12.
Bruton's tyrosine kinase is essential for human B cell tolerance   总被引:3,自引:0,他引:3  
Most polyreactive and antinuclear antibodies are removed from the human antibody repertoire during B cell development. To elucidate how B cell receptor (BCR) signaling may regulate human B cell tolerance, we tested the specificity of recombinant antibodies from single peripheral B cells isolated from patients suffering from X-linked agammaglobulinemia (XLA). These patients carry mutations in the Bruton's tyrosine kinase (BTK) gene that encode an essential BCR signaling component. We find that in the absence of Btk, peripheral B cells show a distinct antibody repertoire consistent with extensive secondary V(D)J recombination. Nevertheless, XLA B cells are enriched in autoreactive clones. Our results demonstrate that Btk is essential in regulating thresholds for human B cell tolerance.  相似文献   

13.
The antigen receptors on T and B lymphocytes can transduce both agonist and antagonist signals leading either to activation/survival or anergy/death. The outcome of B lymphocyte antigen receptor (BCR) triggering depends upon multiple parameters which include (a) antigen concentration and valency, (b) duration of BCR occupancy, (c) receptor affinity, and (d) B cell differentiation stages. Herein, using anti- immunoglobulin kappa and lambda light chain antibodies, we analyzed the response of human naive, germinal center (GC) or memory B cells to BCR cross-linking regardless of heavy chain Ig isotype or intrinsic BCR specificity. We show that after CD40-activation, anti-BCR (kappa + gamma) can elicit an intracellular calcium flux on both GC and non-GC cells. However, prolonged BCR cross-linking induces death of CD40- activated GC B cells but enhances proliferation of naive or memory cells. Anti-kappa antibody only kills kappa + GC B cells without affecting surrounding gamma + GC B cells, thus demonstrating that BCR- mediated killing of GC B lymphocytes is a direct effect that does not involve a paracrine mechanism. BCR-mediated killing of CD40-activated GC B cells could be partially antagonized by the addition of IL-4. Moreover, in the presence of IL-4, prestimulation through CD40 could prevent subsequent anti-Ig-mediated cell death, suggesting a specific role of this combination in selection of GC B cells. This report provides evidence that in human, susceptibility to BCR killing is regulated along peripheral B cell differentiation pathway.  相似文献   

14.
The entry of B lymphocytes into secondary lymphoid organs is a critical step in the development of an immune response, providing a site for repertoire shaping, antigen-induced activation and selection. These events are controlled by signals generated through the B cell antigen receptor (BCR) and are associated with changes in the migration properties of B cells in response to chemokine gradients. The chemokine stromal cell-derived factor (SDF)-1alpha is thought to be one of the driving forces during those processes, as it is produced inside secondary lymphoid organs and induces B lymphocyte migration that arrests upon BCR engagement. The signaling pathway that mediates this arrest was genetically dissected using B cells deficient in specific BCR-coupled signaling components. BCR-induced inhibition of SDF-1alpha chemotaxis was dependent on Syk, BLNK, Btk, and phospholipase C (Plc)gamma2 but independent of Ca2+ mobilization, suggesting that the target of BCR stimulation was a protein kinase C (PKC)-dependent substrate. This target was identified as the SDF-1alpha receptor, CXCR4, which undergoes PKC- dependent internalization upon BCR stimulation. Mutation of the internalization motif SSXXIL in the COOH terminus of CXCR4 resulted in B cells that constitutively expressed this receptor upon BCR engagement. These studies suggest that one pathway by which BCR stimulation results in inhibition of SDF-1alpha migration is through PKC-dependent downregulation of CXCR4.  相似文献   

15.
Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.  相似文献   

16.
The recently described ligand-receptor pair, B7h-inducible costimulator (ICOS), is critical for germinal center formation and antibody responses. In contrast to the induced expression of the related costimulatory ligands B7.1 and B7.2, B7h is constitutively expressed on naive B cells and is surprisingly extinguished after antigen engagement and interleukin (IL)-4 cytokine signaling. Although signaling through both B cell receptor (BCR) and IL-4 receptor (R) converge on the extinction of B7h mRNA levels, BCR down-regulation occurs through Ca2+ mobilization, whereas IL-4R down-regulation occurs through a distinct Stat6-dependent pathway. During antigen-specific B cell activation, costimulation through CD40 signaling can reverse both BCR- and IL-4R-mediated B7h down-regulation. These data suggest that the CD40-CD40 ligand signaling pathway regulates B7h expression on activated B cells and may control whether antigen-activated B cells can express B7h and costimulate cognate antigen-activated T cells through ICOS.  相似文献   

17.
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-α/Ig-β heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by exposure of B cells either to antigen or to the tyrosine phosphatase inhibitor pervanadate/H2O2. One of the earliest substrates in B cells is a 65-kD protein, which we identify here as a B cell adaptor protein. This protein, named SLP-65, is part of a signaling complex involving Grb-2 and Vav and shows homology to SLP-76, a signaling element of the T cell receptor. In pervanadate/H2O2-stimulated cells, SLP-65 becomes phosphorylated only upon expression of the BCR. These data suggest that SLP-65 is part of a BCR transducer complex.  相似文献   

18.
19.
Immunological memory is characterized by heightened immunoglobulin (Ig) G antibody production caused in part by enhanced plasma cell formation conferred by conserved transmembrane and cytoplasmic segments in isotype-switched IgG B cell receptors. We tested the hypothesis that the IgG tail enhances intracellular B cell antigen receptor (BCR) signaling responses to antigen by analyzing B cells from Ig transgenic mice with IgM receptors or chimeric IgMG receptors containing the IgG tail segment. The IgG tail segment enhanced intracellular calcium responses but not tyrosine or extracellular signal-related kinase (ERK) phosphorylation. Biochemical analysis and crosses to CD22-deficient mice established that IgG tail enhancement of calcium and antibody responses, as well as marginal zone B cell formation, was not due to diminished CD22 phosphorylation or inhibitory function. Microarray profiling showed no evidence for enhanced signaling by the IgG tail for calcium/calcineurin, ERK, or nuclear factor kappaB response genes and little evidence for any enhanced gene induction. Instead, almost half of the antigen-induced gene response in IgM B cells was diminished 50-90% by the IgG tail segment. These findings suggest a novel "less-is-more" hypothesis to explain how switching to IgG enhances B cell memory responses, whereby decreased BCR signaling to genes that oppose marginal zone and plasma cell differentiation enhances the formation of these key cell types.  相似文献   

20.
Ship is an Src homology 2 domain containing inositol polyphosphate 5-phosphatase which has been implicated as an important signaling molecule in hematopoietic cells. In B cells, Ship becomes associated with Fcγ receptor IIB (FcγRIIB), a low affinity receptor for the Fc portion of immunoglobulin (Ig)G, and is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR)–FcγRIIB coligation. The function of Ship in lymphocytes was investigated in Ship−/− recombination-activating gene (Rag)−/− chimeric mice generated from gene-targeted Ship−/− embryonic stem cells. Ship−/−Rag−/− chimeras showed reduced numbers of B cells and an overall increase in basal serum Ig. Ship−/− splenic B cells displayed prolonged Ca2+ influx, increased proliferation in vitro, and enhanced mitogen-activated protein kinase (MAPK) activation in response to BCR–FcγRIIB coligation. These results demonstrate that Ship plays an essential role in FcγRIIB-mediated inhibition of BCR signaling, and that Ship is a crucial negative regulator of Ca2+ flux and MAPK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号