首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
It has been proposed that heterogeneity in natural killer (NK)-cell phenotype and function can be achieved through distinct thymic and bone marrow pathways of NK-cell development. Here, we show a link between Notch signaling and the generation of intracellular CD3epsilon (cyCD3)-expressing NK cells, a cell population that can be detected in vivo. Differentiation of human CD34(+) cord blood progenitors in IL-15-supplemented fetal thymus organ culture or OP9-Delta-like 1 (DL1) coculture resulted in a high percentage of cyCD3(+) NK cells that was blocked by the gamma-secretase inhibitor DAPT. The requirement for Notch signaling to generate cyCD3(+) NK cells was further illustrated by transduction of CD34(+) cord blood (CB) cells with either the active intracellular part of Notch or the dominant-negative mutant of mastermind-like protein 1 that resulted in the generation of NK cells with respectively high or low frequencies of cyCD3. Human thymic CD34(+) progenitor cells displayed the potential to generate cyCD3(+) NK cells, even in the absence of Notch/DL1 signaling. Peripheral blood NK cells were unable to induce cyCD3 expression after DL1 exposure, indicating that Notch-dependent cyCD3 expression can only be achieved during the early phase of NK-cell differentiation.  相似文献   

2.
Thymic plasmacytoid dendritic cells (pDCs) are located predominantly in the medulla and at the corticomedullary junction, the entry site of bone marrow-derived multipotential precursor cells into the thymus, allowing for interactions between thymic pDCs and precursor cells. We demonstrate that in vitro-generated pDCs stimulated with CpG or virus impaired the development of human autologous CD34(+)CD1a(-) thymic progenitor cells into the T-cell lineage. Rescue by addition of neutralizing type I interferon (IFN) antibodies strongly implies that endogenously produced IFN-alpha/beta is responsible for this inhibitory effect. Consistent with this notion, we show that exogenously added IFN-alpha had a similar impact on IL-7- and Notch ligand-induced development of thymic CD34(+)CD1a(-) progenitor cells into T cells, because induction of CD1a, CD4, CD8, and TCR/CD3 surface expression and rearrangements of TCRbeta V-DJ gene segments were severely impaired. In addition, IL-7-induced proliferation but not survival of the developing thymic progenitor cells was strongly inhibited by IFN-alpha. It is evident from our data that IFN-alpha inhibits the IL-7R signal transduction pathway, although this could not be attributed to interference with either IL-7R proximal (STAT5, Akt/PKB, Erk1/2) or distal (p27(kip1), pRb) events.  相似文献   

3.
4.
5.
6.
7.
T-cell precursors that undergo productive rearrangements at the T-cell receptor (TCR) beta locus are selected for proliferation and further maturation, before TCRalpha expression, by signaling through a pre-TCR composed of the TCRbeta chain paired with a pre-TCRalpha (pTalpha) chain. Such a critical developmental checkpoint, known as beta-selection, results in progression from CD4(-) CD8(-) double negative (DN) to CD4(+) CD8(+) double positive (DP) TCRalphabeta(-) thymocytes. In contrast to mice, progression to the DP compartment occurs in humans via a CD4(+) CD8(-) intermediate stage. Here we show that the CD4(+) CD8(-) to CD4(+) CD8(+) transition involves the sequential acquisition of the alpha and beta chains of CD8 at distinct maturation stages. Our results indicate that CD8alpha, but not CD8beta, is expressed in vivo in a minor subset of DP TCRalphabeta(-) thymocytes, referred to as CD4(+) CD8alphaalpha(+) pre-T cells, mostly composed of resting cells lacking cytoplasmic TCRbeta chain (TCRbeta(ic)). In contrast, expression of CD8alphabeta heterodimers was selectively found on DP TCRalphabeta(-) thymocytes that express TCRbeta(ic) and are enriched for cycling cells. Interestingly, CD4(+) CD8alphaalpha(+) pre-T cells are shown to be functional intermediates between CD4(+) CD8(-) TCRbeta(ic)(-) and CD4(+) CD8alphabeta(+) TCRbeta(ic)(+) thymocytes. More importantly, evidence is provided that onset of CD8beta and TCRbeta(ic) expression are coincident developmental events associated with acquisition of CD3 and pTalpha chain on the cell surface. Therefore, we propose that the CD4(+) CD8alphaalpha(+) to CD4(+) CD8alphabeta(+) transition marks the key control point of pre-TCR-mediated beta-selection in human T-cell development.  相似文献   

8.
Notch signaling is absolutely required for beta-selection during mouse T-cell development, both for differentiation and proliferation. In this report, we investigated whether Notch has an equally important role during human T-cell development. We show that human CD34(+) thymocytes can differentiate into CD4(+)CD8beta(+) double positive (DP) thymocytes in the absence of Notch signaling. While these DP cells phenotypically resemble human beta-selected cells, they lack a T-cell receptor (TCR)-beta chain. Therefore, we characterized the beta-selection checkpoint in human T-cell development, using CD28 as a differential marker at the immature single positive CD4(+)CD3(-)CD8alpha(-) stage. Through intracellular TCR-beta staining and gene expression analysis, we show that CD4(+)CD3(-)CD8alpha(-)CD28(+) thymocytes have passed the beta-selection checkpoint, in contrast to CD4(+)CD3(-)CD8alpha(-)CD28(-) cells. These CD4(+)CD3(-)CD8alpha(-)CD28(+) thymocytes can efficiently differentiate into CD3(+)TCRalphabeta(+) human T cells in the absence of Notch signaling. Importantly, preselection CD4(+)CD3(-)CD8alpha(-)CD28(-) thymocytes can also differentiate into CD3(+)TCRalphabeta(+) human T cells without Notch activation when provided with a rearranged TCR-beta chain. Proliferation of human thymocytes, however, is clearly Notch-dependent. Thus, we have characterized the beta-selection checkpoint during human T-cell development and show that human thymocytes require Notch signaling for proliferation but not for differentiation at this stage of development.  相似文献   

9.
SPA-1 (signal-induced proliferation associated gene-1) functions as a suppressor of myeloid leukemia by negatively regulating Rap1 signaling in hematopoietic progenitor cells (HPCs). Herein, we showed that transplantation of HPCs expressing farnesylated C3G (C3G-F), a Rap1 guanine nucleotide exchange factor, resulted in a marked expansion of thymocytes bearing unique phenotypes (CD4/CD8 double positive [DP] CD3(-) TCRbeta(-)) in irradiated recipients. SPA-1(-/-) HPCs expressing C3G-F caused a more extensive expansion of DP thymocytes, resulting in lethal T-cell acute lymphoblastic leukemia (T-ALL) with massive invasion of clonal T-cell blasts into vital organs. The C3G-F(+) blastic thymocytes exhibited constitutive Rap1 activation and markedly enhanced expression of Notch1, 3 as well as the target genes, Hes1, pTalpha, and c-Myc. All the T-ALL cell lines from C3G-F(+) SPA-1(-/-) HPC recipients expressed high levels of Notch1 with characteristic mutations resulting in the C-terminal truncation. This proliferation was inhibited completely in the presence of a gamma-secretase inhibitor. Transplantation of Rag2(-/-) SPA-1(-/-) HPCs expressing C3G-F also resulted in a marked expansion and transformation of DP thymocytes. The results suggested that deregulated constitutive Rap1 activation caused abnormal expansion of DP thymocytes, bypassing the pre-T-cell receptor and eventually leading to Notch1 mutations and Notch-dependent T-ALL.  相似文献   

10.
OBJECTIVE: The aim of this study was to determine whether expression of the CD86 costimulatory molecule in acute myeloid leukemia (AML) can identify blast cells committed to the monocytic/dendritic lineage. MATERIAL AND METHODS: One hundred ten consecutive AML patients observed at diagnosis were studied by flow cytometry. In selected experiments, in vitro cultures with CD34(+)CD86(+) or CD34(-)CD86(+) blasts were performed in the presence of granulocyte-macrophage colony-stimulating actor (GM-CSF) with or without tumor necrosis factor-alpha (TNF-alpha) or GM-CSF + interleukin-4 (IL-4), respectively, to induce a dendritic differentiation, documented by morphologic and immunophenotypic assays. T-cell alloreactivity to CD86(+) AML cells and leukemic dendritic cells (AML-DC) was tested in mixed leukocyte cultures and anti-leukemic cytotoxic assays. RESULTS: CD86 was expressed in 54% AML, whereas CD80 and CD1a were only occasionally positive. CD86(+) AML samples included M5 and M4, but also 47% M0-M1 FAB types, and were more frequently CD14(+) (p < 0.00001) and CD34(-) (p = 0.00005) than CD86(-)AML. Six different patterns of CD86(+) AML were identified, according to CD34 or CD14 total or partial coexpression. Four samples enriched in CD34(+)CD86(+) AML cells differentiated into AML-DC CD86(+), CD80(+), CD40(+), CD11c(+), HLA-DR(++), CD14(+/-) that also were CD1a(+) or CD83(+), after 6 days of in vitro culture with GM-CSF +/- TNF-alpha. CD34(-)CD86(+) AML cells differentiated into AML-DC after 3 to 5 days (n = 5 experiments), and trisomy 8 was found in two AML and AML-DC samples by fluorescence in situ hybridization analysis. Finally, AML-DC induced more potent allo-T-cell proliferation, cytokine release, and anti-leukemic cytotoxicity than CD86(+) blasts. CONCLUSIONS: In AML, CD86 is a marker of monocytic/dendritic lineage. Because CD86(+) blasts may differentiate into DC rapidly, CD86(+)AML patients could be optimal candidates for immunotherapy studies, both in autologous and allogeneic settings.  相似文献   

11.
Recent studies have identified several populations of progenitor cells in the human thymus. The hematopoietic precursor activity of these populations has been determined. The most primitive human thymocytes express high levels of CD34 and lack CD1a. These cells acquire CD1a and differentiate into CD4(+)CD8(+) through CD3(-)CD4(+)CD8(-) and CD3(-)CD4(+) CD8alpha+beta- intermediate populations. The status of gene rearrangements in the various TCR loci, in particular of TCRdelta and TCRgamma, has not been analyzed in detail. In the present study we have determined the status of TCR gene rearrangements of early human postnatal thymocyte subpopulations by Southern blot analysis. Our results indicate that TCRdelta rearrangements initiate in CD34(+)CD1a- cells preceding those in the TCRgamma and TCRbeta loci that commence in CD34(+)CD1a+ cells. Furthermore, we have examined at which cellular stage TCRbeta selection occurs in humans. We analyzed expression of cytoplasmic TCRbeta and cell-surface CD3 on thymocytes that lack a mature TCRalphabeta. In addition, we overexpressed a constitutive-active mutant of p56(lckF505) by retrovirus-mediated gene transfer in sequential stages of T-cell development and analyzed the effect in a fetal thymic organ culture system. Evidence is presented that TCRbeta selection in humans is initiated at the transition of the CD3(-)CD4(+)CD8(-) into the CD4(+)CD8alpha+beta- stage.  相似文献   

12.
To better characterize human dendritic cells (DCs) that originate from lymphoid progenitors, the authors examined the DC differentiation pathways from a novel CD7(+)CD45RA(+) progenitor population found among cord blood CD34(+) cells. Unlike CD7(-)CD45RA(+) and CD7(+)CD45RA(-) progenitors, this population displayed high natural killer (NK) cell differentiation capacity when cultured with stem cell factor (SCF), interleukin (IL)-2, IL-7, and IL-15, attesting to its lymphoid potential. In cultures with SCF, Flt3 ligand (FL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-alpha (standard condition), CD7(+)CD45RA(+) progenitors expanded less (37- vs 155-fold) but yielded 2-fold higher CD1a(+) DC percentages than CD7(-)CD45RA(+) or CD7(+)CD45RA(-) progenitors. As reported for CD34(+)CD1a(-) thymocytes, cloning experiments demonstrated that CD7(+)CD45RA(+) cells comprised bipotent NK/DC progenitors. DCs differentiated from CD7(-)CD45RA(+) and CD7(+)CD45RA(+) progenitors differed as to E-cadherin CD123, CD116, and CD127 expression, but none of these was really discriminant. Only CD7(+)CD45RA(+) or thymic progenitors differentiated into Lag(+)S100(+) Langerhans cells in the absence of exogenous transforming growth factor (TGF)-beta 1. Analysis of the DC differentiation pathways showed that CD7(+)CD45RA(+) progenitors generated CD1a(+)CD14(-) precursors that were macrophage-colony stimulating factor (M-CSF) resistant and CD1a(-)CD14(+) precursors that readily differentiated into DCs under the standard condition. Accordingly, CD7(+)CD45RA(+) progenitor-derived mature DCs produced 2- to 4-fold more IL-6, IL-12, and TNF-alpha on CD40 ligation and elicited 3- to 6-fold higher allogeneic T-lymphocyte reactivity than CD7(-)CD45RA(+) progenitor-derived DCs. Altogether, these findings provide evidence that the DCs that differentiate from cord blood CD34(+)CD7(+)CD45RA(+) progenitors represent an original population for their developmental pathways and function. (Blood. 2000;96:3748-3756)  相似文献   

13.
14.
Human natural killer (NK) cell development is a step-by-step process characterized by phenotypically identified stages. CD161 is a marker informative of the NK cell lineage commitment, whereas CD56, CD117, and CD94/NKG2A contribute to define discrete differentiation stages. In cells undergoing in vitro differentiation from CD34(+) umbilical cord blood (UCB) progenitors, LFA-1 expression allowed to discriminate between immature noncytolytic CD161(+)CD56(+)LFA-1(-) and more differentiated cytolytic CD161(+)CD56(+)LFA-1(+) NK cells. CD161(+)CD56(+)LFA-1(-) NK cells produce large amounts of CXCL8 after phorbol myristate acetate (PMA) or cytokine treatment. Remarkably, CXCL8 mRNA expression was also detected in fresh stage III immature NK cells isolated from tonsils and these cells expressed CXCL8 protein on PMA stimulation. Within in vitro UCB-derived CD161(+)CD56(+)LFA-1(-) NK cells, CXCL8 release was also induced on antibody-mediated cross-linking of NKp44 and CD161. Such unexpected activating function of CD161 was confined to the CD161(+)CD56(+)LFA-1(-) subset, because it did not induce cytokine release or CD107a expression in CD161(+)CD56(+)LFA-1(+) cells or in mature peripheral blood NK cells. Anti-CXCL8 neutralizing antibody induced a partial inhibition of NK cell differentiation, which suggests a regulatory role of CXCL8 during early NK cell differentiation. Altogether, these data provide novel information that may offer clues to optimize NK cell maturation in hematopoietic stem cell transplantation.  相似文献   

15.
Hao QL  Zhu J  Price MA  Payne KJ  Barsky LW  Crooks GM 《Blood》2001,97(12):3683-3690
The earliest stages of lymphoid commitment from human pluripotent hematopoietic stem cells have not been defined. A clonogenic subpopulation of CD34(+)CD38(-) cord blood cells were identified that expressed high levels of the CD7 antigen and possessed only lymphoid potential. CD34(+)CD38(-)CD7(+) (CD7(+)) cells uniformly coexpressed CD45RA and HLA-DR; c-kit and Thy-1 expression was absent to low. Clonal analysis demonstrated that single CD7(+) cells could generate B cells, natural killer cells, and dendritic cells but were devoid of myeloid or erythroid potential. In contrast, control CD34(+)CD38(-)CD7(-) (CD7(-)) cells generated both lymphoid and myelo-erythroid cells. The lymphoid potential (generation of lymphoid progeny in bulk and single cell cultures) of CD7(+) cells was equivalent to that of the pluripotent CD7(-) cells. RNA expression studies showed that CD7(+) cells expressed PU.1 and GATA-3, but did not express Pax-5, terminal deoxynucleotide transferase, or CD3epsilon. In contrast to the previously described murine common lymphoid progenitor, the alpha chain of the receptor for interleukin-7 was not detected by fluorescence-activated cell sorting analysis or RNA polymerase chain reaction in CD7(+) cells. These studies identify a clonogenic lymphoid progenitor with both B-cell and natural killer cell lineage potential with a molecular profile that suggests a developmental stage more primitive than previously identified lymphoid progenitors. The CD7(+) phenotype distinguishes primitive human lymphoid progenitors from pluripotent stem cells, thus allowing the study of regulation of early human lymphopoiesis and providing an alternative to pluripotent stem cells for genetic manipulation and transplantation. (Blood. 2001;97:3683-3690)  相似文献   

16.
Hao QL  George AA  Zhu J  Barsky L  Zielinska E  Wang X  Price M  Ge S  Crooks GM 《Blood》2008,111(3):1318-1326
The identity and lineage potential of the cells that initiate thymopoiesis remain controversial. The goal of these studies was to determine, at a clonal level, the immunophenotype and differentiation pathways of the earliest progenitors in human thymus. Although the majority of human CD34(+)lin(-) thymocytes express high levels of CD7, closer analysis reveals that a continuum of CD7 expression exists, and 1% to 2% of progenitors are CD7(-). CD34(+)lin(-) thymocytes were fractionated by CD7 expression and tested for lineage potential in B-lymphoid, T-lymphoid, and myeloid-erythroid conditions. Progressive restriction in lineage potential correlated with CD7 expression, that is, the CD7(hi) fraction produced T and NK cells but lacked B and myelo-erythroid potential, the CD7(int) (CD10(+)) fraction produced B, T, and NK cells, but lacked myelo-erythroid potential. The CD7(-) fraction produced all lymphoid and myelo-erythroid lineages and expressed HSC-associated genes. However, CD34(+)lin(-)CD7(-) thymocytes also expressed early T lymphoid genes Tdt, pTalpha, and IL-7Ralpha and lacked engraftment capacity, suggesting the signals that direct lymphoid commitment and corresponding loss of HSC function are rapidly initiated on arrival of HSC in the human thymus. Thus, differential levels of CD7 identify the progressive stages of lineage commitment in human thymus, initiated from a primitive CD7(-) lympho-myeloid thymic progenitor.  相似文献   

17.
Bu X  Li N  Tian X  Huang P 《Neoplasma》2011,58(4):343-347
Notch signaling may be mechanistically involved the colorectal carcinogenesis. Blocking of Notch signaling by gamma-secretase inhibitor may constitute a novel molecular therapy for cancer. In the present study, we blocked the Notch signaling by DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a gamma-secretase inhibitor) and investigated the effects on the proliferative and invasive potential of human colorectal cancer LS174T cells, a goblet cell-like colorectal cancer cell line which produces high-levels of MUC2 continuously. DAPT inhibited the proliferation and invasion of LS174T cells. Blocking of Notch signaling by DAPT could down-regulate its downstream target gene Hes1, while enhancing the expression of Math1 and MUC2 in LS174T cells. In conclusion, we demonstrated that blocking of Notch signaling by DAPT could inhibit the proliferation and invasion of human colorectal cancer LS174T cells and suggested that gamma-secretase inhibitors may provide a targeted therapy for MUC2-positive colorectal tumors.  相似文献   

18.
19.
D Rondelli  R M Lemoli  M Ratta  M Fogli  F Re  A Curti  M Arpinati  S Tura 《Blood》1999,94(7):2293-2300
CD40 antigen is a costimulatory molecule highly expressed on dendritic cells (DC) and activated B cells, which induces T-cell proliferation through the binding with CD40L receptor. In this study, we evaluated CD40 expression on normal CD34(+) blood cells and functionally characterized CD34(+)CD40(+) and CD34(+)CD40(-) cell subsets. CD40, CD80, and CD86 antigens were constitutively expressed on 3.2% +/- 4.5%, 0%, and 1.8% +/- 1.2% CD34(+) blood cells, respectively. However, after 24 hours in liquid culture with medium alone, or with tumor-necrosis-factor-alpha (TNF-alpha), or with allogeneic mononuclear cells 10.8% +/- 3.8%, 75.3% +/- 15.0% and 53. 7% +/- 17.0% CD34(+) blood cells, respectively, became CD40(+). After incubation for 24 hours with TNF-alpha CD34(+)CD40(+) blood cells expressed only myeloid markers and contained less than 5% CD86(+) and CD80(+) cells. Also, a 24-hour priming with TNF-alpha or ligation of CD40 significantly increased the CD34(+) blood cells alloantigen presenting function. Finally, purified CD34(+)CD40(+) blood cells stimulated an alloreactive T-cell response in MLC, were enriched in granulocytic, monocytic, and dendritic precursors, and generated high numbers of DC in 11-14 d liquid cultures with GM-CSF, SCF, TNF-alpha and FLT-3L. In contrast, CD34(+)CD40(-) cells were poorly immunogenic, contained committed granulocytic and erythroid precursors and early progenitors, and differentiated poorly toward the DC lineage. In conclusion, a short incubation with TNF-alpha allows the selection of CD40(+) blood progenitors, which may be a useful source of DC precursors for antitumor vaccine studies, and also a CD34(+)CD40(-) blood cell fraction that could be exploited in innovative strategies of allogeneic transplantation across HLA barriers.  相似文献   

20.
Because lymphoid progenitors can give rise to natural killer (NK) cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that rare human CD34(+) hematopoietic progenitors develop into NK cells in vitro in the presence of cytokines (interleukin-7, interleukin-15, stem cell factor, and fms-like tyrosine kinase-3 ligand). Adding hydrocortisone and stromal cells greatly increases the frequency of progenitor cells that give rise to NK cells through the recruitment of myeloid precursors, including common myeloid progenitors and granulocytic-monocytic precursors to the NK-cell lineage. WNT signaling was involved in this effect. Cells at more advanced stages of myeloid differentiation (with increasing expression of CD13 and macrophage colony-stimulating factor receptor [M-CSFR]) could also differentiate into NK cells in the presence of cytokines, stroma, and hydrocortisone. NK cells derived from myeloid precursors (CD56(-)CD117(+)M-CSFR(+)) showed more expression of killer immunoglobulin-like receptors, a fraction of killer immunoglobulin-like receptor-positive-expressing cells that lacked NKG2A, a higher cytotoxicity compared with CD56(-)CD117(+)M-CSFR(-) precursor-derived NK cells and thus resemble the CD56(dim) subset of NK cells. Collectively, these studies show that NK cells can be derived from the myeloid lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号