首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of parity on the dopaminergic function of rats were studied. Striatal and hypothalamic levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) as well as serum prolactin (PRL) levels of 7-days primigravid and multigravid rats were compared. Brains and trunk blood were collected from 1200–1400 h on day 7 of pregnancy and assayed for monoamines and their metabolites, and prolactin, respectively. Multigravid rats showed a significant increase in striatal and hypothalamic dopamine levels. A tendency to increase in striatal DOPAC levels was also observed in multigravid rats. Levels of other neurotransmitters and metabolites were not statistically different. Haloperidol (1 mg/kg) treatment induced a significant increase in multigravid 5-HT striatal levels. There was no statistical difference among primigravid and multigravid serum PRL levels after either saline or haloperidol treatment. These data suggest that prior parity produces a shift in dopaminergic activity in multigravid rats.  相似文献   

2.
The effects of an IP injection of the monoamine uptake inhibitor fluoxetine on the extracellular concentration of serotonin (5-HT), dopamine (DA), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens of awake and freely moving rats were examined using a push-pull perfusion technique. Baseline values of 5-HT, 5-HIAA, DA, DOPAC and HVA in the perfusates were approximately 0.07, 13, 0.8, 49 and 12 pmol/hr, respectively. The IP administration of 5 and 10 mg/kg fluoxetine dose-dependently elevated the amounts of 5-HT 3- and 13-fold, respectively, in the push-pull perfusate, with the maximum reached within one hour after drug administration. Moreover, 10 mg/kg fluoxetine also significantly decreased the levels of 5-HIAA in the perfusate as much as 50% within 2-3 hours. On the other hand, no significant effect of 5 or 10 mg/kg fluoxetine was observed on the contents of DA, DOPAC and HVA in the push-pull perfusates. The data indicate that fluoxetine, in accord with its role as a 5-HT uptake inhibitor, increases the physiologically active pool of 5-HT in the nucleus accumbens under in vivo conditions.  相似文献   

3.
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.  相似文献   

4.
The administration of a single dose of (+)-amphetamine sulfate (9.2 mg/kg) to rats treated with iprindole hydrochloride (10 mg/kg) produced marked decreases in the striatal concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) one week after drug administration. Significant changes were not observed in striatal 5-hydroxyindoleacetic acid (5-HIAA) nor in norepinephrine, DA, DOPAC, HVA, and 5-HIAA concentrations in frontal cortex and a limbic forebrain sample containing primarily nucleus accumbens and olfactory tubercles. In time-course experiments, decreases in striatal DA were apparent by 12 h after amphetamine plus iprindole administration and persisted for at least 4 weeks. Decreases in striatal DOPAC and HVA followed a similar time course, except decreases in these parameters were observed at 6 h as well. The administration of amfonelic acid, a potent DA uptake inhibitor, up to 8 h but not at 12 h after amphetamine administration prevented the decreases in striatal DA, DOPAC and HVA at one week after the administration of the drug to iprindole-treated rats. These data indicate that the actions of amphetamine which are necessary and sufficient for the production of long-term decreases in striatal DA, DOPAC and HVA are dependent upon the integrity of the neuronal uptake mechanism for DA and occur within 12 h after the administration of amphetamine to iprindole-treated rats. Although amfonelic acid prevented the long-term effects of amphetamine on striatal DA neurons, it did not alter the decrease in DOPAC produced by amphetamine at 6 h after the administration of amphetamine plus iprindole. This finding suggests that the ability of amfonelic acid to prevent the long-term effects of amphetamine on striatal DA neurons in iprindole-treated rats is not due to a blockade of the entry of amphetamine into the neuron and, thus, suggests that the access of amphetamine to the inside of the neuron is not sufficient for the production of its long-term, possibly neurotoxic, effects on striatal DA neurons.  相似文献   

5.
Since ascorbic acid (AA) reportedly suppresses tolerance to and dependence on morphine in humans and rodents, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), AA, dehydroascorbic acid (DHAA), uric acid, xanthine, hypoxanthine, glutamate and γ-amino-butyric acid (GABA) were determined by high-pressure liquid chromatography (HPLC) in the striatum and in the limbic forebrain of the rat following morphine treatment (single or repeated) and withdrawal. Single morphine administration (20 mg/kg s.c.) increased DOPAC + HVA/DA, 5-HIAA/5-HT and DHAA/AA ratios, uric acid levels, and decreased xanthine, hypoxanthine, glutamate and GABA levels in both regions. 3-MT levels were decreased in the striatum and increased in the limbic forebrain. After 7 days of morphine treatment, striatal DOPAC + HVA/DA and DHAA/AA ratios and uric acid levels were still higher and striatal and limbic xanthine levels still lower than in controls, while all other parameters were in the range of control values in both regions. Morphine treatment also increased the glutamate/GABA ratio in the striatum. In all morphine-treated rats, individual striatal DOPAC + HVA/DA and DHAA/AA ratio values were directly correlated. After a 48 h withdrawal period, both striatal AA oxidation and glutamate/GABA ratio further increased; limbic 3-MT levels further decreased, while all other parameters did not differ from control values. We conclude that: (i) tolerance to morphine-induced increase in hypoxanthine, xanthine and AA oxidation develops in the limbic forebrain faster than in the striatum; (ii) the morphine-induced increase in striatal and limbic AA oxidation may be considered a consequence of increased formation of reactive oxygen species due to increased DA, hypoxanthine and xanthine oxidative metabolism; (iii) a striatal excitotoxic imbalance characterizes the withdrawal state and may be taken into account to explain the further increase in striatal AA oxidation.  相似文献   

6.
Serotonin (5-HT)(1A) receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT(1A) receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohe xanecarboxamide trihydrochloride (WAY100635), a selective 5-HT(1A) receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT(2A)/D(2) receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0. 03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01-1.0 mg/kg), potent D(2) receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1-0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT(2A) receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT(1A) receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT(2A) receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

7.
The effect of two calcium antagonists, nimodipine and flunarizine, on striatal dopamine (DA) metabolism in rats was compared. Flunarizine (5-20 mg/kg i.p.) caused a dose-dependent increase in the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) in the caudate nucleus. Following the 20 mg/kg dose, DOPAC levels were maximally elevated by about 50% from 2 to 12 hrs after treatment. On the contrary, nimodipine at the dose of 20 mg/kg i.p. produced a modest decrease in DOPAC levels. Neither calcium antagonist modified DA content. However, both nimodipine and flunarizine, at the dose of 20 mg/kg, markedly reduced the accumulation of DOPAC in the caudate nucleus induced by haloperidol (1 mg/kg). It is suggested that flunarizine, but not nimodipine, has a neuroleptic-like action, whereas the two calcium antagonists have in common the ability to attenuate the hyperactivity of DA neurons.  相似文献   

8.
Kuroki T  Dai J  Meltzer HY  Ichikawa J 《Brain research》2000,872(1-2):204-207
R(+)-8-OH-DPAT (0.05, but not 0.025, 0.1, 1 mg/kg), a 5-HT(1A) receptor agonist, decreased l-3,4-dihydroxyphenylalanine (DOPA) accumulation in rat striatum following NSD-1015, an l-aromatic amino acid decarboxylase inhibitor. Amphetamine (1 mg/kg) increased striatal DOPA accumulation, an effect attenuated by R(+)-8-OH-DPAT (0.05 mg/kg). However, both amphetamine (1 mg/kg) and R(+)-8-OH-DPAT (0.05 mg/kg) decreased cortical DOPA accumulation; there were no additional decreases from their combination. Neither amphetamine (1 mg/kg), R(+)-8-OH-DPAT (0.05 mg/kg), or the combination, significantly affected DOPA accumulation in the nucleus accumbens. The significance of and possible mechanisms for these findings are discussed.  相似文献   

9.
The effects of chronic oral nicotine administration on the pineal melatonin and brain transmitter monoamines were studied in male CBA mice, which possess a clear daily rhythm of melatonin secretion. On the 50th day of nicotine administration, pineal melatonin as well as cerebral dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined at various times. The chronic nicotine treatment did not alter the timing of the pineal melatonin peak, which occurred at 10 h after the light offset. However, in mice drinking nicotine solution, the nocturnal pineal melatonin levels were lower than in control mice drinking tap water. The chronic nicotine treatment increased the striatal DA, DOPAC, HVA and 5-HIAA levels, the hypothalamic NE, MHPG and 5-HIAA and the cortical MHPG. Most prominent effects of nicotine were found at 8 h after the light offset, when the striatal levels of DA and HVA, hypothalamic NE and MHPG as well as cortical MHPG were significantly elevated in the nicotine-treated mice compared with the control mice. No direct correlation between nicotine's effects on brain transmitter monoamines and on pineal melatonin levels was apparent. The results suggest that chronic nicotine treatment slightly suppresses the melatonin production but does not alter the daily rhythm of pineal melatonin in mice maintained on a light-dark cycle. However, the results indicate that nicotinic receptors might be involved in the regulation of pineal function.  相似文献   

10.
Neurological improvement in brain-tumor patients treated with dexamethasone (DEX) precedes a reduction in peritumor brain edema. In the study reported here, levels of noradrenaline (NA), dopamine (DA) and 5-hydroxytryptamine (5-HT), homovanillic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA) and tissue water content were measured in grey and white matter adjacent to a 9L glioma in the cat to study DEX-neurotransmitter interactions as possible mechanisms for the acute neurological effects of DEX. Tumor-bearing and control cats were treated or not treated with DEX (0.25 mg/kg IV, 0.25 mg/kg IM) with 0.25 mg/kg IM repeated once (DEX 1) or 3 times (DEX 2) 6 hr apart. In control animals DEX 1 treatment led to significant decreases in concentration of DOPAC; DEX 2 treatment led to increases in HVA and 5-HIAA. Peritumor grey matter from untreated tumor-bearing animals had decreased levels of NA and DA and the metabolite DOPAC with no changes in 5-HT and 5-HIAA. DEX 2 but not DEX 1 resulted in a normalization (increase) in peritumor levels of DA and DOPAC. Neither dose of DEX reduced white matter edema. These findings suggest that the acute beneficial effect of DEX on neurological status may be due to alleviation of neurotransmitter amine and metabolite depletion.  相似文献   

11.
Offspring of wild and sea-ranched (domesticated) sea trout (Salmo trutta) originating from the same river, were reared under identical hatchery conditions from the time of fertilization. At one year of age individual fish were exposed to two standardized stressors; transfer to a novel environment, with or without a simultaneous predator exposure. Blood plasma concentrations of glucose and cortisol were analyzed along with brain levels of dopamine (DA), 3,4-hydroxyphenylacetic acid (DOPAC, a major DA metabolite), serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5 HIAA, a major 5-HT metabolite). Transfer to a novel environment, alone as well as in combination with predator exposure, resulted in elevated plasma concentrations of glucose and cortisol. Moreover, exposure to these stressors resulted in elevated brain levels of 5-HT and 5-HIAA, as well as elevated brain 5-HIAA/5-HT and DOPAC/DA ratios. Wild trout displayed significantly higher post stress plasma glucose levels than domesticated fish. Similarly, following stress, brain 5-HIAA/5-HT and DOPAC/DA ratios were significantly higher in wild than in domesticated fish. These differences were not caused by differences in brain levels of 5-HIAA and DOPAC, but instead by differences in brain 5-HT and DA concentrations. These results suggest that domestication results in attenuated stress responses in trout, and that alterations in brain monoamine neurotransmission are part of this effect.  相似文献   

12.
It has been hypothesized that neocortical damage is accompanied by secondary changes in other brain areas (the shock or diaschisis of von Monakow), which contributes to initial non-specific behavioral depression. The relation between behavioral changes and dopamine (DA), serotonin (5-HT), and their metabolites, measured with intracerebral microdialysis in freely moving rats and by tissue assay postmortem, was examined during postsurgical recovery from unilateral hemidecortications. Rats were tested for rotational asymmetry and extracellular concentration of DA was measured both during rest and after amphetamine (1.5 mg/kg). It was found that: (1) during the first few postsurgical days the hemidecorticate rats rotated ipsilateral to their lesions after amphetamine but thereafter on tests given up to 121 days postsurgery there was no asymmetry in rotation; (2) there were no asymmetries in the concentration of DA or its metabolites at any time after surgery; (3) the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) was elevated acutely for a few days following surgery; (4) during the first 3 postoperative days, both baseline extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) and amphetamine-induced DA release were significantly elevated bilaterally. These findings demonstrate that the acute behavioral asymmetry in rotation produced by hemidecortication is not related to unilateral changes in striatal DA activity and its metabolites. Thus, the behavioral asymmetries might be related to other striatal changes (i.e. 5-HIAA) or other damage, such as to the corticospinal projections of the lesioned hemisphere. Nevertheless, unilateral lesions did produce acute bilateral increases in DA levels, which may be a correlate of generalized neural shock produced by the lesion.  相似文献   

13.
Topographic distribution of dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) was determined in rat striatum using high-pressure liquid chromatography (HPLC) with electrochemical detection. The ratios of DOPAC:DA and 5-HIAA:5-HT were calculated as indices of turnover of DA and 5-HT. There was a rostro-caudal gradient for both DA and 5-HT, with DA highest in rostral striatum and 5-HT highest in caudal striatum (P less than 0.01). DA concentrations in the coronal plane showed a homogeneous distribution except at the level of the globus pallidus. DOPAC also showed a rostro-caudal gradient and concentrations were significantly increased in the nucleus accumbens (P less than 0.01). DOPAC:DA ratios were significantly increased in both the nucleus accumbens and the ventromedial striatum as compared to the remaining striatal punches. 5-HT was more heterogeneously distributed in the coronal plane with concentrations highest in the ventromedial and the ventrolateral quadrants, where they were 2-3-fold higher than in dorsal striatum (P less than 0.01). Concentrations of 5-HIAA were highest in the nucleus accumbens and ventromedial striatum but HIAA-5-HT ratios were highest in the dorsolateral striatum (P less than 0.01). DA turnover is therefore highest in limbic innervated (n. accumbens and ventromedial) striatum while 5-HT turnover is highest in sensorimotor innervated (dorsolateral) striatum. These findings provide further evidence for functional compartmentalization within the striatum.  相似文献   

14.
The effects of two diketopiperazines, Cyclo (His-Pro) (CHP) and Cyclo (Asp-Phe) (CAP), on striatal extracellular levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were examined using in vivo microdialysis in anaesthetized rats. Treatment with neither CHP (0.1–10 mg/kg IP and 0.3 mg/kg IV) nor CAP (0.1–10 mg/kg IP and 10 mg/kg PO) significantly changed the efflux of DA, DOPAC, HVA, or 5-HIAA when compared to the effects of treatment with saline. Our results suggest that systemic administration of CHP or CAP alone does not modify striatal dopaminergic neurotransmission. The previous findings of enhanced DA release by systemic administration of thyrotropin releasing hormone (TRH) are probably not explained by formation of CHP from TRH.  相似文献   

15.
Serotonin3 (5-HT3) receptors can affect motor control through an interaction with the nigrostriatal dopamine (DA) neurons, but the neurochemical basis for this interaction remains controversial. In this study, using in vivo microdialysis, we assessed the hypothesis that 5-HT3 receptor-dependent control of striatal DA release is conditioned by the degree of DA and/or 5-HT neuron activity and the means of DA release (impulse-dependent vs. impulse-independent). The different DA-releasing effects of morphine (1 and 10 mg/kg), haloperidol (0.01 mg/kg), amphetamine (1 and 2.5 mg/kg), and cocaine (10 and 20 mg/kg) were studied in the striatum of freely moving rats administered selective 5-HT3 antagonists ondansetron (0.1 mg/kg) or MDL 72222 (0.03 mg/kg). Neither of the 5-HT3 antagonists modified basal DA release by itself. Pretreatment with ondansetron or MDL 72222 reduced the increase in striatal DA release induced by 10 mg/kg morphine but not by 1 mg/kg morphine, haloperidol, amphetamine or cocaine. The effect of 10 mg/kg morphine was also prevented by intrastriatal ondansetron (1 microm) administration. Reverse dialysis with ondansetron also reduced the increase in DA release induced by the combination of haloperidol and the 5-HT reuptake inhibitor citalopram (1 mg/kg). Considering the different DA and 5-HT-releasing properties of the drugs used, our results demonstrate that striatal 5-HT3 receptors control selectively the depolarization-dependent exocytosis of DA only when central DA and 5-HT tones are increased concomitantly.  相似文献   

16.
BACKGROUND: Ziprasidone (Zeldox) is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic receptors and transporters and potent agonist activity at serotonin 5-HT(1A) receptors. 5-HT(1A) receptor agonism may be an important feature in ziprasidone's clinical actions because 5-HT(1A) agonists increase cortical dopamine release, which may underlie efficacy against negative symptoms and reduce dopamine D(2) antagonist-induced extrapyramidal side effects. This study investigated the in vivo 5-HT(1A) agonist activity of ziprasidone by measuring the contribution of 5-HT(1A) receptor activation to the ziprasidone-induced cortical dopamine release in rats. METHODS: Effects on dopamine release were measured by microdialysis in prefrontal cortex and striatum. The role of 5-HT(1A) receptor activation was estimated by assessing the sensitivity of the response to pretreatment with the 5-HT(1A) antagonist, WAY-100635. For comparison, the D(2)/5-HT(2A) antagonists clozapine and olanzapine, the D(2) antagonist haloperidol, the 5-HT(2A) antagonist MDL 100,907 and the 5-HT(1A) agonist 8-OHDPAT were included. RESULTS: Low doses (<3.2 mg/kg) of ziprasidone, clozapine, and olanzapine increased dopamine release to approximately the same extent in prefrontal cortex as in striatum, but higher doses (> or =3.2 mg/kg) resulted in an increasingly preferential effect on cortical dopamine release. The 5-HT(1A) agonist 8-OHDPAT produced a robust increase in cortical dopamine (DA) release without affecting striatal DA release. In contrast, the D(2) antagonist haloperidol selectively increased striatal DA release, whereas the 5-HT(2A) antagonist MDL 100,907 had no effect on cortical or striatal DA release. Prior administration of WAY-100635 completely blocked the cortical DA increase produced by 8-OHDPAT and significantly attenuated the ziprasidone- and clozapine-induced cortical DA increase. WAY-100635 pretreatment had no effect on the olanzapine-induced DA increase. CONCLUSIONS: The preferential increase in DA release in rat prefrontal cortex produced by ziprasidone is mediated by 5-HT(1A) receptor activation. This result extends and confirms other in vitro and in vivo data suggesting that ziprasidone, like clozapine, acts as a 5-HT(1A) receptor agonist in vivo, which may contribute to its activity as an antipsychotic with efficacy against negative symptoms and a low extrapyramidal side effect liability.  相似文献   

17.
In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model (i.e., 134 microg 6-OHDA at 3 d postbirth plus 71 microg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphetamine sulfate (AMPH) and m-chlorophenylpiperazine di HCl (mCPP), to specific changes in extraneuronal (i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min (i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by approximately 225% and approximately 450%, respectively--and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH- and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.  相似文献   

18.
BACKGROUND: Central serotonin2C (5-HT2C) receptors are known to play a role in the mechanism of action of the antipsychotic drugs (APDs) clozapine and haloperidol. However, evidence for the involvement of the constitutive activity of 5-HT2C receptors in the dopamine (DA)ergic effects of APDs is lacking in vivo. METHODS: Using in vivo microdialysis in halothane-anesthetized rats, we assessed the ability of selective 5-HT2C compounds to modulate the release of DA induced by haloperidol and clozapine in the nucleus accumbens and striatum. RESULTS: Both APDs induced a dose-dependent increase in accumbal and striatal DA extracellular levels. The effect of .01 mg/kg haloperidol was potentiated by the 5-HT2C inverse agonist SB 206553 (5 mg/kg) but unaltered by the 5-HT2C antagonists SB 243213 and SB 242084 (1 mg/kg). Conversely, the effect of 1 mg/kg clozapine, a dose able to reverse the decrease in DA outflow induced by the 5-HT2C agonist Ro 60-0175 (3 mg/kg), was unaffected by SB 206553 but blocked by SB 243213 (1 mg/kg) and SB 242084 (.3 and 1 mg/kg). CONCLUSIONS: These results show that clozapine and haloperidol differentially alter the constitutive activity of 5-HT2C receptors and suggest that clozapine behaves as a 5-HT2C inverse agonist in vivo.  相似文献   

19.
Ichikawa J  Li Z  Dai J  Meltzer HY 《Brain research》2002,956(2):349-357
Preferential increases in both cortical dopamine (DA) and acetylcholine (ACh) release have been proposed to distinguish the atypical antipsychotic drugs (APDs) clozapine, olanzapine, risperidone and ziprasidone from typical APDs such as haloperidol. Although only clozapine and ziprasidone are directly acting 5-HT(1A) agonists, WAY100635, a selective 5-HT(1A) antagonist, partially attenuates these atypical APD-induced increases in cortical DA release that may be due to combined 5-HT(2A) and D(2) blockade. However, WAY100635 does not attenuate clozapine-induced cortical ACh release. The present study determined whether quetiapine, iloperidone and melperone, 5-HT(2A)/D(2) antagonist atypical APDs, also increase cortical DA and ACh release, and whether these effects are related to 5-HT(1A) agonism. Quetiapine (30 mg/kg), iloperidone (1-10 mg/kg), and melperone (3-10 mg/kg) increased DA and ACh release in the medial prefrontal cortex (mPFC). Iloperidone (10 mg/kg) and melperone (10 mg/kg), but not quetiapine (30 mg/kg), produced an equivalent or a smaller increase in DA release in the nucleus accumbens (NAC), respectively, compared to the mPFC, whereas none of them increased ACh release in the NAC. WAY100635 (0.2 mg/kg), which alone did not affect DA or ACh release, partially attenuated quetiapine (30 mg/kg)-, iloperidone (10 mg/kg)- and melperone (10 mg/kg)-induced DA release in the mPFC. WAY100635 also partially attenuated quetiapine (30 mg/kg)-induced ACh release in the mPFC, but not that induced by iloperidone (10 mg/kg) or melperone (10 mg/kg). These results indicate that quetiapine, iloperidone and melperone preferentially increase DA release in the mPFC, compared to the NAC via a 5-HT(1A)-related mechanism. However, 5-HT(1A) agonism may be important only for quetiapine-induced ACh release.  相似文献   

20.
The effects of chronic nicotine and its withdrawal on locomotor activity and brain monoamines were studied using a new animal model of administering nicotine in the drinking water to male NMRI mice as the sole source of fluid. Locomotor activity as well as cerebral concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), noradrenaline (NA) and 3-methoxy-4-hydroxyphenylethyleneglycol (MOPEG) were measured post mortem on the 50th day of nicotine administration or at 12-14 or 23-25 h after withdrawal. On the 50th day of drug administration the chronically nicotine-treated mice were more active than the control mice drinking tap water and after withdrawal from nicotine the locomotor activity dropped to the level of the controls. In chronically nicotine-treated mice the striatal concentrations of DOPAC, HVA and 5-HIAA, hypothalamic 5-HIAA and NA as well as cortical NA were elevated. The concentrations of DOPAC, HVA and 5-HIAA reversed to control levels within 23-25 h after withdrawal from nicotine. The nicotine-induced elevation of the hypothalamic NA concentration was still significant at 23-25 h after withdrawal. At 12-14 h after withdrawal the hypothalamic concentration of MOPEG was increased. In conclusion, our findings on locomotor activity suggest that administration of nicotine in the drinking water to mice for several weeks seems to be a relevant method to study nicotine dependence. Furthermore, the alterations found in cerebral DA, NA and 5-HT metabolism during chronic nicotine administration indicate that all three cerebral transmitter monoamines might be involved in nicotine dependence and withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号