首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang W  Zhao L  Liu J  Du J  Wang Z  Ruan C  Dai K 《Thrombosis research》2012,130(1):81-91
Cisplatin (cis-diamminedichloroplatinum II) is one of the most widely used anti-tumor agents. However, cisplatin-based chemotherapy is usually accompanied by adverse side effects such as thrombocytopenia, and the mechanism remains unclear. Here we show that cisplatin induced several platelet apoptotic events including up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, mitochondrial translocation of Bax, mitochondrial inner transmembrane potential depolarization, caspase-3 activation and phosphatidylserine (PS) exposure. Cisplatin dose-dependently induced activation of extracellular signal-regulated protein kinase (ERK) in platelets. Caspase-3 inhibitor z-DEVD-fmk dramatically inhibited cisplatin-induced caspase-3 activation and PS exposure without affecting ERK activation. Blockade of the ERK pathway significantly prevented platelet apoptosis. Furthermore, levels of reactive oxygen species (ROS) and Ca2 + were significantly elevated by cisplatin, and scavenging of ROS and Ca2 + obviously inhibited platelet apoptosis induced by cisplatin. In addition, cisplatin did not induce platelet activation, whereas it obviously impaired platelet functions. These data indicate that cisplatin induces platelet apoptosis through the ERK signaling pathway, which might contribute to cisplatin-related haematological toxicity.  相似文献   

2.

Introduction

Downregulation of calsequestrin (CSQ), a major Ca2 + storage protein, may contribute significantly to the hyperactivity of internal Ca2 + ([Ca2 +]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca2 + signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca2 + influx in diabetic platelets.

Materials and methods

Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca2 +]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting.

Results

During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca2 +]i and ADP-induced Ca2 + release were progressively altered in diabetic platelets, while the elevated Ca2 + influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca2 + channel blocker, almost completely abolished ADP-induced Ca2 + influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na+/Ca2 + exchange induced much slower Ca2 + extrusion and more Ca2 + influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca2 +-ATPase inhibition, ionomycin caused greater Ca2 + mobilization and Ca2 + influx in diabetic platelets than in normal platelets.

Conclusions

These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca2 + homeostasis, insufficient Na+/Ca2 + exchange also contributes, at least in part, to the hyperactive Ca2 + response to stimulation in diabetic platelets.  相似文献   

3.
Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity‐dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation‐dependent long‐term depression (LTD). Although it has been established that intracellular Ca2+ and the Gq‐regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca2+ regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca2+ sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N‐[4‐aminobutyl]‐5‐chloro‐2‐naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5‐stimulated activation of extracellular signal‐regulated kinase 1/2 (ERK1/2) and p70‐S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist‐induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca2+/CaM‐dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM–CaMK–ERK1/2 signaling cascade suppressed the mGluR1/5‐stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca2+ and protein upregulation and regulating mGluR1/5‐mediated synaptic modification. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Cytosolic phospholipase A2 is a Ca2+-dependent enzyme that acts on membrane phospholipids to release arachidonic acid, which in platelets is converted to thromboxane A2. Annexin V is a Ca2+-dependent, phospholipid-binding protein, which is proposed to regulate inflammation by inhibiting cytosolic phospholipase A2. Here, we have studied the association of cytosolic phospholipase A2 and annexin V with platelet membranes after thrombin stimulation. In a time-dependent manner, an exact correlation was found between the membrane association of cytosolic phospholipase A2 and annexin V. Calcium from the intracellular stores was sufficient for the relocation of intracellular annexin V and cytosolic phospholipase A2 to platelet membranes. Activation in the presence of arginyl-glycyl-aspartyl-serine (RGDS), which inhibits binding of fibrinogen to its adhesive ligand, does not alter the amount of cytosolic phospholipase A2 or annexin V that binds to membranes. When activation-induced actin polymerisation was prevented by cytochalasin E, the recovery of both annexin V and cytosolic phospholipase A2 remained unchanged. However, complete depolymerisation of the cytoskeleton with DNase I almost abolished the association of cytosolic phospholipase A2 with the membranes, and it completely abolished the relocation of annexin V to platelet membranes. Finally, we show that cytosolic phospholipase A2 can be specifically purified from platelet membranes by affinity chromatography on GST-annexin V and that immunoprecipitation using antibodies against cytosolic phospholipase A2 copurify annexin V and cytosolic phospholipase A2 from activated platelets. These findings suggest that following platelet activation with thrombin, both cytosolic phospholipase A2 and annexin V, relocate to platelet membranes where they interact. An intact cytoskeleton seems to be a prerequisite for the interaction of cytosolic phospholipase A2 and annexin V with platelet membranes. The incorporation of cytosolic phospholipase A2 into the membrane fraction of thrombin-activated platelets parallels that of annexin V, which suggests an interaction between the two proteins.  相似文献   

5.
In this study the effects of nitric oxide (NO) donors on intracellular free calcium ([Ca2+]i) in human platelets was examined. Inhibition of guanylyl cyclase (GC) with either methylene blue or ODQ slightly inhibited the ability of submaximal concentrations of thrombin to increase [Ca2+]i which suggests that a small portion of the thrombin mediated increase in [Ca2+]i was due to an increase in NO and subsequent increase in cGMP and activation of cGMP dependent protein kinase (cGPK). Thrombin predominantly increases [Ca2+]i by stimulating store-operated Ca2+ entry (SOCE). The NO donor GEA3162 was previously shown to stimulate SOCE in some cells. In platelets GEA3162 had no effect to increase [Ca2+]i however it inhibited the ability of thrombin to increase [Ca2+]i and this effect was reversed by ODQ. The addition of low concentrations (2.0 - 20 nM) of the NO donor sodium nitroprusside (SNP) slightly potentiated the ability of thrombin to increase [Ca2+]i whereas higher concentrations (> 200 nM) of SNP inhibited thrombin induced increases in [Ca2+]i. Both of these effects of SNP were reversed by ODQ which implies that they were both mediated by cGPK. Ba2+ influx was stimulated by low concentrations (2.0 nM) of SNP and inhibited by high concentrations (> 200 nM) of SNP and both effects were inhibited by ODQ. Previous studies showed that Ba2+ influx was blocked by the SOCE inhibitors 2-aminoethoxydipheny borate and diethylstilbestrol. It was concluded that low levels of SNP can stimulate SOCE in platelets and this effect may account for the increased aggregation and secretion previously observed with low concentrations of NO donors. Of the proteins known to be involved in SOCE (e.g. stromal interaction molecule 1 (Stim1), Stim2 and Orai1) only Stim2 has cGPK phosphorylation sites. The possibility that Stim2 phosphorylation regulates SOCE in platelets is discussed.  相似文献   

6.
FC Liu  JT Liou  HR Liao  CC Mao  P Yang  YJ Day 《Thrombosis research》2012,130(3):e84-e94
Ondansetron is a 5-HT3 receptor antagonist with potent antiemetic, analgesic, and antiphlogistic effects. Literature concerning 5-HT3 antagonists on platelets is limited. In this report we examined the pharmacological effects of ondansetron on human washed platelets. Platelet aggregation induced by thrombin (0.1 U/mL), collagen (2 μg/mL), arachidonic acid (0.5 mM), ADP (10 μM), or U46619 (2 μM) was observed. The effects of ondansetron on platelet aggregation and ATP release were investigated at different concentrations. Cytosolic Ca2+ influx concentration, TXB2, IP3, and the levels of cAMP and cGMP were monitored, and flow cytometric analysis and immunoblotting were performed to investigate downstream signaling components. Our results showed that ondansetron, in a concentration-dependent manner, inhibited agonist-induced platelet aggregation. At 75 μM, ondansetron significantly attenuated intracellular Ca2+ mobilization, thromboxane B2 formation, and ATP release by human washed platelets activated by thrombin, collagen, or U46619, whereas it only partially attenuated arachidonic acid-driven platelet activation. Administration of ondansetron resulted in attenuated IP3 production in the washed platelets stimulated by thrombin, as determined by reduced IP1 levels, as well as diminished p38 and ERK2 phosphorylation in response to thrombin. No effect of ondansetron on the levels of either cAMP or cGMP in washed platelets was observed. Furthermore, ondansetron-mediated inhibition of platelet aggregation was not impacted by SR 57227A, the 5-HT3 agonist. Thus, rather than involving the 5-HT3-dependent pathway, the negative effect of ondansetron on platelet aggregation is instead manifested through the attenuation of agonist-induced IP3 production and MAPK (p38 and ERK2) phosphorylation that results in suppressed intracellular Ca2+ mobilization, TXB2 formation, and ATP release.  相似文献   

7.
Statins are widely used as hypolipidemic drugs, and have beneficial effects in reducing cardiovascular events. In addition, recent studies on the pleiotropic effects of statins (i.e., simvastatin) reveal that these drugs have many additional anti-atherogenic effects, including antiplatelet activity. The mechanisms may be partly related to activation of peroxisome proliferator-activated receptors (PPARs), which are present in human platelets, and whose activation inhibits platelet aggregation. However, the details of the signaling pathway by which simvastatin inhibits platelet activation via PPARs have not yet been completely established. The aim of this study was to examine the mechanisms by which the PPAR-mediated pathways contribute to the antiplatelet activity of simvastatin. Simvastatin (3-50 μM) induced PPARα and PPARγ activation in a dose-dependent manner in washed platelets. Additionally, simvastatin inhibited collagen-induced platelet aggregation, expression of CD62 and PAC-1, and Ca2 + mobilization. These effects of simvastatin on platelet responses were strongly reduced by adding a selective PPARγ antagonist (GW9662), but not PPARα antagonist (GW6471). Moreover, in the presence of GW9662, simvastatin-mediated increase of cyclic adenosine monophosphate (cAMP) production, vasodilator-stimulated phosphoprotein (VASP) Ser157 phosphorylation and inhibition of Akt phosphorylation were markedly reversed. Furthermore, simvastatin was found to inhibit phosphorylation of mitogen-activated protein kinases (MAPKs, i.e., p38 MAPK, ERK) by increasing the association between PPARγ and the components of MAPKs after platelet activation. Taken together, the present results confirm that simvastatin inhibition of platelet activation is mediated by PPARγ-dependent processes, which involves mediating MAPKs signaling, increase of cAMP formation and VASP Ser157 phosphorylation, inhibition of Akt phosphorylation and intracellular Ca2 + mobilization.  相似文献   

8.
Interaction with circulating platelets is considered an important virulent mechanism for Staphylococcus aureus (S. aureus) bacteria to induce endocarditis, a severe infectious disease with high incidence of systemic thrombosis. It therefore represents an important target for pharmacological intervention. In this study, we found that the clinical isolate S. aureus 30326 induced activation and aggregation of washed human platelets in a fibrinogen-dependent manner and this platelet reactivity was abrogated by crotavirin, a snake venom-derived glycoprotein (GP) IIb/IIIa antagonist, indicating that crotavirin is able to protect platelets from activation and aggregation by S. aureus 30326. When tested at a concentration that prevented the platelet reactivity of S. aureus 30326, crotavirin also interfered with the binding of bacteria to washed human platelets supplemented with fibrinogen. The fibrinogen-binding activity of S. aureus has been shown to be essential for S. aureus to trigger platelet activation and aggregation. Crotavirin failed to affect the fibrinogen binding of S. aureus 30326 and neither did it bind to this microbe, suggesting that the inhibitory action of crotavirin on the S. aureus 30326-platelet interaction resulted from the occupation of platelet GPIIb/IIIa. Taken together, these results demonstrate an important role for GPIIb/IIIa in mediating the interaction of platelets with S. aureus in the presence of fibrinogen and platelet GPIIb/IIIa thus appears to be a new target for the intervention of S. aureus-platelet interaction.  相似文献   

9.
Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca2 +) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca2 + signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca2 + ([Ca2 +]c) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca2 + response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca2 + signaling, which may also be affected by CSR. These age-dependent changes in Ca2 + signaling may increase cellular vulnerability during CSR and contribute to Ca2 + signaling dysregulation, which may ultimately induce cell death.  相似文献   

10.
N Lu  M Zhan  C Gao  G Wu  H Zhang 《Thrombosis research》2012,130(4):e209-e215

Introduction

1-[4-[2-(4-Bromobenzene-sulfonamino)ethyl]phenylsulfonyl]-3-(trans-4-methylcy-clohexyl)urea(I4, CAS865483-06-3); a totally synthetic new sulfonylurea compound, combining the hypoglycemic active structure of Glimepiride (CAS 93479-97-1) and anti-TXA2 receptor (TP) active structure of BM-531(CAS 284464-46-6), was designed and synthesized. Its effects on TXA2 synthesis and TP have not been reported yet.

Aim

To study the inhibitory effects of I4 and its mechanisms of action on TXA2 and TP.

Methods

Platelet aggregation studies were performed on human platelet, rat whole blood platelet and rabbit platelet, platelets aggregation was induced by TP agonist U-46619(stable analog of TXA2, CAS 56985-40-1). Plasma TXB2 and 6-keto-prostaglandin F (6-keto-PGF) were used as markers to determine the effect of I4 on thromboxane synthesis. Fluo-3-AM was used to measure the cytosolic Ca2 + concentrations ([Ca2 +]i) in rabbit platelet. Aorta rings with and without endothelium were prepared and aorta contraction was induced by U-46619. A model of type 2 diabetes mellitus was established by intraperitoneal injection of low dose of streptozocin to rats fed a high-calorie diet. Both normal rats and type 2 diabetic rats were used to assay the inhibitory effect of I4 on platelet aggregation induced by U-46619.

Results

I4 exhibited a higher inhibitory potency than Glimepiride on U-46619 induced platelet aggregation in vitro and in vivo. I4 increased the ratio of plasma PGI2/TXA2 and decreased [Ca2 +]i release from platelet internal stores. In addition, I4 presented a vasorelaxant activity on isolated rat aorta contraction induced by U-46619.Oral administration of I4 (1 ~ 10 mg/kg) markedly and dose-dependently inhibited platelet aggregation in both normal rats and type 2 diabetic rats.

Conclusion

I4 significantly inhibited platelet aggregation induced by U-46619 in vitro and in vivo, and rat aorta contraction. It probably acts by partly blocking TXA2 action, decreasing the platelet intracellular Ca2 +, and increasing the PGI2/TXA2 ratio.  相似文献   

11.
12.
Preparations of lysed synaptosomes exhibit a high affinity Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ accumulation activity, with aKm forCa2+ 0.5 μM, close to the cytosolic concentration of Ca2+. When these membrane suspensions were incubated with cholinergic agonists muscarine or oxotremorine (1–20 μM), both Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake were inhibited in a concentration-dependent fashion. Atropine alone (0.5–1.0 μM) had no effect on either enzyme or uptake activity, but significantly inhibited the actions of both muscarine and oxotremorine. No significant effects by cholinergic agonists or antagonists were seen on fast or slow phase voltage-dependent Ca2+ channels or Na+-Ca2+ exchange. These results suggest that activation of presynaptic muscarinic receptors produce inhibition of two processes required for the buffering of optimal free Ca2+ by the nerve terminal. Activation of presynaptic muscarinic receptors have been reported to reduce the release of ACh from nerve terminals. Alterations in intracellular free Ca2+ may contribute to a reduction in transmitter (ACh) release seen following activation of cholinergic receptors.  相似文献   

13.

Introduction

Thromboxane A2 (TXA2) induces platelet aggregation and vasoconstriction, and agents that inhibit TXA2 production or interaction with receptors may exert potential application in stroke therapy.

Aim

To illustrate the platelet aggregation antagonistic and endothelial protective effect of (E) - 3 - (3 - methoxy - 4 - ((3, 5, 6 - trimethylpyrazin - 2 - yl) methoxy) phenyl) sodium acrylate (MC-002) through TXA2 inhibition and underline mechanisms.

Materials and methods

Platelets aggregation and thoracic aorta ring contraction of rabbits were induced by U46619. Human umbilical vein endothelial cells (HUVECs) were further applied to explore the protective effect of MC-002 on endothelium when exposed to tumor necrosis factor - α (TNF-α). MTT method was used to assess cell damage, and ELISA analysis was exerted to estimate nitrogen monoxide (NO), endothelin-1 (ET-1), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) releasing. Fluorescence spectrophotometry was conducted to determine intracellular calcium concentration ([Ca2 +]i), and western blotting method was applied to evaluate the protein expressions of intracellular adhesion molecule-1 (ICAM-1), P-selectin and nuclear factor-kappa B (NF-κB).

Results and conclusions

TXA2 analog U46619 mediated obvious platelet aggregation and vasoconstriction. MC-002 inhibited platelet aggregation through administration in vivo and incubation with platelet in vitro, and relaxed aorta ring in endothelium dependent manner. MC-002 alleviated cell damage, [Ca2 +]i overload, ET-1 overexcretion and TXB2 activation, but improved NO availability reduction in HUVECs treated with TNF-α. Furthermore, MC-002 downregulated ICAM-1, P-selectin and NF-κB overexpression induced by TNF-α. In conclusion, MC-002 exerted antiplatelet aggregation effect through TXA2 inhibition and relieved inflammatory injury of endothelial cells through NF-κB signal pathway.  相似文献   

14.
Effects of Ca2+ on [3H]5-hydroxytryptamine (5-HT) uptake into rat cortical synaptosomes were studied. The uptake was enhanced in the presence of Ca2+ in Krebs-Ringer medium and the uptake at 0.3–5 mM Ca2+ was 2.4–2.7 times greater than that observed in the absence of Ca2+. The maximal increase at the concentration of 1 mM Ca2+ was achieved after 2 min preincubation. Ca2+-dependent enhancement of the [3H]5-HT uptake reflected an increase in Vmax of the uptake process. However, Kd and Bmax values for [3H]paroxetine were not significantly changed in the presence of 1 mM Ca2+ compared with Ca2+-free condition. On the other hand, uptake was still enhanced after synaptosomes were washed with Ca2+-free medium after preincubation with 1 mM Ca2+. Staurosporine (a protein kinase C inhibitor) and wortmannin (a myosin light chain kinase inhibitor) did not affect Ca2+-dependent enhancement of the uptake, whereas 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-

-tyrosyl]-4-phenylpiperazine (KN-62, inhibitor of Ca2+/calmodulin-dependent kinase II) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, a calmodulin antagonist) significantly reduced it. Moreover, L-type, but not P- or N-type, voltage-dependent Ca2+-channel blockers suppressed enhancement of the uptake. These results indicate that Ca2+-dependent enhancement of [3H]5-HT uptake is mediated by activation of calmodulin-dependent protein kinases, suggesting a possibility of calmodulin-dependent regulation of in vivo 5-HT uptake.  相似文献   

15.
The effect of prostaglandin E1 (PGE1) on platelets is mediated through the PGE1 receptor and the consequent maintenance of the platelet's discoid shape. The effects of PGE1 and dibutyryl cAMP (dbcAMP) on the deformability of human platelets were studied. Deformability tests based upon the micropipette aspiration on the platelets were performed by using pipettes with radii (Rp) of 0.26-0.36 gm. The time course of the extension length (Dp, in μg) of the platelets in response to aspiration with a negative pressure (ΔP) of 5 cm H2 O (ΔP × Rp = 0.15 dynes/cm) was analyzed. PGE1 treatment (0.1 μM) resulted in a decrease of platelet deformability as compared with results obtained for apparently non-activated, control platelets. The deformation index, i.e., Dp/Rp (PGE1 -treated) / Dp/Rp (control), was significantly reduced to 0.90 ± 0.04. DbcAMP treatment also significantly decreased the deformability of platelets and this decrease was dbcAMP dose dependent. In contrast, colchicine- or cytochalasin D-treated platelets increased deformability. PGE1 -treated platelets had a higher [cAMP]i than controls. Platelets treated with PGE1 or dbcAMP showed a reduced [Ca2+]i increment induced by thrombin as compared to non-treated controls. These results indicate that PGE1 and dbcAMP treatment of platelets is accompanied by an enhancement of platelet resistance to deformation. The increased [cAMP]i and low [Ca2+]i after PGE1 treatment may limit the rearrangement of cytoskeleton and thus enhance platelet resistance to deformation.  相似文献   

16.
NK-1 receptor antagonists have shown potential for the clinical treatment of chemotherapy-induced nausea and vomiting, depression and alcoholism. In a recent study, we disclosed the potential for the NK-1 antagonist, LY686017, to treat alcoholism in a clinical population. To assess whether this compound could be utilized as a platform for a brain imaging ligand, we evaluated the binding of [3H]-LY686017 to sections of guinea pig in vitro. In these studies, [3H]-LY686017 bound with a distribution and pharmacology consistent with the NK-1 receptor. Using sections through the region of the caudate nucleus, we obtained a Kd of 0.34 nM and a Bmax of 31.37 fmoles/mg tissue. Based on its high potency and low nonspecific binding in vitro, we initiated studies to evaluate the radioligand as a tool to measure in vivo receptor occupancy. In initial studies, 25 microCi of [3H]-LY686017 was administered via an indwelling jugular catheter and accumulation of radioactivity in the caudate (NK-1 containing tissue) and cerebellum (low NK-1 expression) were assessed. The ratios of caudate to cerebellum radioactivity were optimal 2 h after radioligand administration so this time point was used for subsequent studies. To assess the pharmacological specificity of the radioactivity accumulation, we administered various doses of Aprepitant, a potent NK-1 antagonists 1 h prior to intravenous administration of [3H]-LY686017. Aprepitant produced a dose-dependent reduction in radioactivity in the caudate with an approximate 70% reduction at 10 mg/kg. To image NK-1 receptors, 100 microCi of [3H]-LY686017 was administered and the brains sectioned for autoradiography. In these studies, a characteristic distribution on NK-1 receptors was observed. Based on these results, LY686017 should serve as a suitable chemical platform for future imaging ligand development.  相似文献   

17.
Although the accumulation of the neurotoxic peptide β‐amyloid (Aβ) in the central nervous system is a hallmark of Alzheimer's disease, whether Aβ acts in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that cytosolic Ca2+ dysregulation, induced by a neurotoxic fragment (Aβ25–35), caused apoptosis in a concentration‐dependent manner, leading to cytoplasmic Ca2+ mobilization from extra‐ and intracellular sources, mainly from the endoplasmic reticulum (ER) via IP3 receptor activation. This mechanism was related to Aβ‐mediated apoptosis by the intrinsic pathway because the expression of pro‐apoptotic Bax was accompanied by its translocation in cells transfected with GFP‐Bax. Aβ‐mediated apoptosis was reduced by BAPTA‐AM, a fast Ca2+ chelator, indicating that an increase in intracellular Ca2+ was involved in cell death. Interestingly, the Bax translocation was dependent on Ca2+ mobilization from IP3 receptors because pre‐incubation with xestospongin C, a selective IP3 receptor inhibitor, abolished this response. Taken together, these results provide evidence that Aβ dysregulation of Ca2+ homeostasis induces ER depletion of Ca2+ stores and leads to apoptosis; this mechanism plays a significant role in Aβ apoptotic cell death and might be a new target for neurodegeneration treatments.  相似文献   

18.
Mitochondrial fission mediated by cytosolic dynamin related protein 1 (Drp1) is essential for mitochondrial quality control but may contribute to apoptosis as well. Blockade of Drp1 with mitochondrial division inhibitor 1 (mdivi-1) provides neuroprotection in several models of neurodegeneration and cerebral ischemia and has emerged as a promising therapeutic drug. In oligodendrocytes, overactivation of AMPA-type ionotropic glutamate receptors (AMPARs) induces intracellular Ca2+ overload and excitotoxic death that contributes to demyelinating diseases. Mitochondria are key to Ca2+ homeostasis, however it is unclear how it is disrupted during oligodendroglial excitotoxicity. In the current study, we have analyzed mitochondrial dynamics during AMPAR activation and the effects of mdivi-1 on excitotoxicity in optic nerve-derived oligodendrocytes. Sublethal AMPAR activation triggered Drp1-dependent mitochondrial fission, whereas toxic AMPAR activation produced Drp1-independent mitochondrial swelling. Accordingly, mdivi-1 efficiently inhibited Drp1-mediated mitochondrial fission and did not prevent oligodendrocyte excitotoxicity. Unexpectedly, mdivi-1 also induced mitochondrial depolarization, ER Ca2+ depletion and modulation of AMPA-induced Ca2+ signaling. These off-target effects of mdivi-1 sensitized oligodendrocytes to excitotoxicity and ER stress and eventually produced oxidative stress and apoptosis. Interestingly, in cultured astrocytes mdivi-1 induced nondetrimental mitochondrial depolarization and oxidative stress that did not cause toxicity or sensitization to apoptotic stimuli. In summary, our results provide evidence of Drp1-mediated mitochondrial fission during activation of ionotropic glutamate receptors in oligodendrocytes, and uncover a deleterious and Drp1-independent effect of mdivi-1 on mitochondrial and ER function in these cells. These off-target effects of mdivi-1 limit its therapeutic potential and should be taken into account in clinical studies.  相似文献   

19.

Introduction

Idiopathic pulmonary arterial hypertension (IPAH) is characterized by pulmonary arteriolar narrowing and degeneration associated with in situ thrombosis. We hypothesized that microvascular endothelial injury and apoptosis may be an initiating mechanism in IPAH. Endothelial apoptosis generates endothelial microfragments (EMF), which can activate platelets. Platelets release both VEGF and angiostatin, which depending the balance can inhibit or induce endothelial apoptosis, respectively.

Materials and Methods

We measured EMFs from blood of IPAH patients as index of endothelial cell apoptosis/injury and levels of pro- and anti- EC apoptotic factors found in platelets. EMFs and platelets in blood samples from control subjects and patients with IPAH were measured using a 4-color flow cytometry protocol, and platelet levels of VEGF and angiostatin were determined by ELISAs and immunoblotting.

Results

Compared to controls, IPAH patients exhibited higher numbers of circulating EMFs and more activated/apoptotic platelets. IPAH patients also exhibited higher levels of platelet angiostatin; however, no significant difference was detected in platelet VEGF levels between the two groups.

Conclusions

These results are consistent with an increase in EC dysfunction in patients with IPAH, possibly contributing to the progression of IPAH and its associated thrombosis.  相似文献   

20.

Introduction

Proteinase 3 (PR3) is released from neutrophil azurophilic granules and exerts complex effects on the inflammatory process. PR3 catalyzes the degradation of a number of macromolecules, but the consequences on blood cells are less well defined. In the present study, the effect of PR3 on human platelets was thoroughly investigated.

Methods

The experiments were performed on washed platelets freshly isolated from blood donated by healthy human volunteers. Platelets shape change and aggregation was measured on a Chrono-Log aggregometer. The phosphorylated form of MYPT1 was visualized by immunostaining. Platelet activation was further evaluated by flow cytometry.

Results

PR3 induced platelet shape change but not aggregation. Flow cytometry analysis showed that PR3 induced no P-selectin expression or binding of fibrinogen to the platelets, and it did not change the activation in response to PAR1- or PAR4-activating peptides or to thrombin. Furthermore, Fura-2 measurement and immuno-blotting analysis, respectively, revealed that PR3 stimulated small intracellular Ca2 + mobilization and Thr696-specific phosphorylation of the myosin phosphatase target subunit 1 (MYPT1). Separate treatment of platelets with the Rho/Rho kinase inhibitor Y-27632 and the intracellular Ca2 + chelator BAPTA/AM reduced the shape change induced by PR3 whereas concurrent treatment completely inhibited it.

Conclusion

The data shows that the neutrophil protease PR3 is a direct modulator of human platelets and causes shape change through activation of the Rho/Rho kinase and Ca2 + signaling pathways. This finding highlights an additional mechanism in the complex interplay between neutrophils and platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号