首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
1. The present study was designed to determine the effect of sleep on the tonic output to respiratory muscle and on the level of chemical respiratory stimulation required to produce rhythmic respiratory output. 2. Chronically implanted electrodes recorded expiratory (triangularis sterni) and inspiratory (diaphragm and parasternal intercostal) electromyographic (EMG) activities in three trained dogs during wakefulness and sleep. The dogs were mechanically hyperventilated via an endotracheal tube inserted into a permanent tracheostomy. During the studies, a cold block of the cervical vagus nerves was maintained to avoid the complicating effects of vagal inputs on respiratory drive and rhythm. 3. During wakefulness, steady-state hypocapnia (partial pressure of CO2, PCO2 = 30 mmHg) abolished inspiratory EMG activity, resulting in apnoea, but the expiratory muscle became tonically active. Compared to wakefulness, the level of the tonic expiratory EMG activity was decreased in non-REM (non-rapid eye movement) sleep (median decrease = 34%, P = 0.005) and was further decreased in REM sleep (median decrease = 78%, P < 0.0001). During REM sleep, the tonic expiratory EMG activity was highly variable (mean coefficient of variation = 39% compared to 7% awake, P < 0.0001) and in some periods of REM, bursts of inspiratory EMG activity and active breathing movements were observed despite the presence of hypocapnia. 4. During constant mechanical hyperventilation, progressive increases in arterial PCO2 (in hyperoxia) were produced by rebreathing. Measurement of the CO2 threshold for the onset of spontaneous breathing showed that this threshold was not different between wakefulness and non-REM sleep (mean difference = 0.1 mmHg from paired observations, 95% confidence interval for the difference = -1.0 to +1.1 mmHg, P = 0.898). 5. The results show that sleep reduces the tonic output to respiratory muscles but does not increase the CO2 threshold for the generation of rhythmic respiratory output. These observations suggest that changes in the tonic drives to the respiratory motoneurones may be a principal mechanism by which changes in sleep-wake states produce changes in respiratory output.  相似文献   

2.
Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep–wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep–wake states. We quantified lingual EMG in successive 10 s intervals of continuous 2 h recordings (1–3 p.m.). We found that sleep–wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS.  相似文献   

3.
Langevin B  Petitjean T  Philit F  Robert D 《Sleep》2000,23(Z4):S204-S208
Decrease of respiratory muscle capacities in neuromuscular disease can lead to chronic respiratory failure with permanent alveolar hypoventilation. Respiratory centers elaborate a strategy of breathing dedicated to prevent overt respiratory muscles fatigue. This strategy may worsen chronic hypercapnia. During sleep, ventilation decreases because a lessening in respiratory centers function. During NREM sleep hypoventilation is only an exacerbation of what is seen during wakefulness. During REM sleep, atonia worsens much more hypoventilation particularly when diaphragmatic function is impaired. The effects of atonia are amplified by a very low reactivity of respiratory centers. Nocturnal mechanical ventilation improves nocturnal hypoventilation and daytime arterial blood gases (ABG). Mechanism of improvement in ABG and how nocturnal hypoventilation and diurnal hypoventilation interact, are still a matter of debate.  相似文献   

4.
Drive to the human respiratory muscles   总被引:1,自引:0,他引:1  
The motor control of the respiratory muscles differs in some ways from that of the limb muscles. Effectively, the respiratory muscles are controlled by at least two descending pathways: from the medulla during normal quiet breathing and from the motor cortex during behavioural or voluntary breathing. Neurophysiological studies of single motor unit activity in human subjects during normal and voluntary breathing indicate that the neural drive is not uniform to all muscles. The distribution of neural drive depends on a principle of neuromechanical matching. Those motoneurones that innervate intercostal muscles with greater mechanical advantage are active earlier in the breath and to a greater extent. Inspiratory drive is also distributed differently across different inspiratory muscles, possibly also according to their mechanical effectiveness in developing airway negative pressure. Genioglossus, a muscle of the upper airway, receives various types of neural drive (inspiratory, expiratory and tonic) distributed differentially across the hypoglossal motoneurone pool. The integration of the different inputs results in the overall activity in the muscle to keep the upper airway patent throughout respiration. Integration of respiratory and non-respiratory postural drive can be demonstrated in respiratory muscles, and respiratory drive can even be observed in limb muscles under certain circumstances. Recordings of motor unit activity from the human diaphragm during voluntary respiratory tasks have shown that depending on the task there can be large changes in recruitment threshold and recruitment order of motor units. This suggests that descending drive across the phrenic motoneurone pool is not necessarily consistent. Understanding the integration and distribution of drive to respiratory muscles in automatic breathing and voluntary tasks may have implications for limb motor control.  相似文献   

5.
Postural effects on pharyngeal protective reflex mechanisms   总被引:5,自引:0,他引:5  
STUDY OBJECTIVES: Pharyngeal muscle dilators are important in obstructive sleep apnea pathogenesis because the failure of protective reflexes involving these muscles yields pharyngeal collapse. Conflicting results exist in the literature regarding the responsiveness of these muscles during stable non-rapid eye movement sleep. However, variations in posture in previous studies may have influenced these findings. We hypothesized that tongue protruder muscles are maximally responsive to negative pressure pulses during supine sleep, when posterior tongue displacement yields pharyngeal occlusion. DESIGN: We studied all subjects in the supine and lateral postures during wakefulness and stable non-rapid eye movement sleep by measuring genioglossus and tensor palatini electromyograms during basal breathing and following negative pressure pulses. SETTING: Upper-airway physiology laboratory of Sleep Medicine Division, Brigham and Women's Hospital. SUBJECTS/PARTICIPANTS: 17 normal subjects. MEASUREMENTS AND RESULTS: We observed an increase in genioglossal responsiveness to negative pressure pulses in sleep as compared to wakefulness in supine subjects (3.9 percentage of maximum [%max] +/- 1.1 vs 4.4 %max +/- 1.0) but a decrease in the lateral decubitus position (4.1 %max +/- 1.0 vs 1.5 %max +/- 0.4), the interaction effect being significant. Despite this augmented reflex, collapsibility, as measured during negative pressure pulses, increased more while subjects were in the supine position as compared with the lateral decubitus position. While the interaction between wake-sleep state and position was also significant for the tensor palatini, the effect was weaker than for genioglossus, although, for tensor palatini, baseline activity was markedly reduced during non-rapid eye movement sleep as compared with wakefulness. CONCLUSION: We conclude that body posture does have an important impact on genioglossal responsiveness to negative pressure pulses during non-rapid eye movement sleep. We speculate that this mechanism works to prevent pharyngeal occlusion when the upper airway is most vulnerable to collapse eg, during supine sleep.  相似文献   

6.
Thomas RJ  Terzano MG  Parrino L  Weiss JW 《Sleep》2004,27(2):229-234
OBJECTIVES: To define the clinical and polysomnographic features of a distinct variant of obstructive sleep-disordered breathing that is remarkably mild during rapid eye movement (REM) sleep. DESIGN: Observational study and evaluation of polysomnographic and clinical records. SETTING: American Academy of Sleep Medicine-accredited multidisciplinary sleep disorders center and laboratory. PATIENTS: 35 medication-free subjects with clinical and polysomnographic severe obstructive sleep-disordered breathing selected for dominance of 1 of 2 disordered breathing patterns. INTERVENTIONS: Positive airway pressure titration. MEASUREMENTS AND RESULTS: Nasal pressure was used to score respiratory events. Sleep was scored by both the standard criteria and cyclic alternating pattern (CAP), and the distribution of respiratory events was tabulated and analyzed. A distinct clinical and polysomnographic syndrome emerged, CAP-dominant sleep-disordered breathing, characterized by severe relatively short cycle obstructive events during non-REM sleep that were mild in REM sleep. Characteristics include lower body mass index, fewer apneas, and a lower hypoxic burden as reflected by frequency and severity of nocturnal oxygen saturation. During positive pressure titration, a remarkable respiratory instability emerged selectively during CAP, in contrast to stability during REM sleep. This partial treatment failure was associated with persistent clinical symptoms. CONCLUSIONS: This variant of sleep apnea may reflect a dominant component of respiratory instability and periodic breathing coupled with upper-airway obstruction. Its existence questions the conventional practice of calculating global respiratory indexes. Besides positive airway pressure, measures to treat periodic breathing may be required.  相似文献   

7.
Children with achondroplasia are at risk of sleep-disordered breathing. The aim of the study was to evaluate lung function and sleep-disordered breathing in children with achondroplasia. An interview, clinical examination, lung function tests with blood gases, and a polygraphic sleep study were obtained as part of routine annual evaluation in consecutive children with achondroplasia. We included 30 children (median age 3.0 years, range: 0.4-17.1) over a period of 21 months. Habitual snoring and witnessed apneas were observed in 77% and 33% of the patients, respectively. Prior to the sleep study, 10/29 (34%) patients had undergone upper airway surgery and 5/29 (17%) craniocervical decompression operation. Arterial blood gases were abnormal in two (7%) patients. Sleep findings were abnormal in 28/30 (93%) patients. Eleven (37%) patients had an apnea index≥1?event/hr and 26 (87%) had an apnea-hypopnea index≥5?events/hr. The ≥3% desaturation index was >5/hr in 22 (73%) patients. Sixteen (53%) patients had a minimal pulse oximetry<90% but only two (7%) patients had a maximal transcutaneous carbon dioxide pressure>50?mmHg during sleep. As a consequence, the following therapeutic interventions were performed: upper airway surgery in four patients and noninvasive positive pressure ventilation (NPPV) in five other patients, resulting in an improvement in sleep studies in all nine patients. Systematic sleep studies are recommended in children with achondroplasia because of the high prevalence of sleep-disordered breathing. Upper airway surgery and NPPV are effective treatments of sleep-disordered breathing.  相似文献   

8.
Menopause and aging cause hormonal changes with respiratory consequences. The aim of the present study was to investigate the physiological changes in respiration during wakefulness and sleep across menopause in non-patient population using non-invasive measurements of blood and tissue gases. The arterial oxyhemoglobin saturation (SaO2), heart rate, end-tidal partial carbon dioxide tension (EtCO2) and transcutaneous partial carbon dioxide tension (TcCO2) were measured during wakefulness and sleep in thirteen pairs of BMI-matched pre- and postmenopausal women. Postmenopausal women had lower SaO2 during sleep than during wakefulness, whereas premenopausal women maintained their wakefulness SaO2 levels also during sleep. EtCO2 levels did not change either between wakefulness and sleep or between premenopausal and postmenopausal groups. TcCO2 levels increased from wakefulness to sleep in both groups and the increase was greater in the postmenopausal group. The impact of sleep on the non-invasive measurements of blood and tissue gases is stronger in postmenopausal women.  相似文献   

9.
STUDY OBJECTIVES: The objective was to evaluate the responsiveness of upper airway muscles to hypercapnia with and without intrapharyngeal negative pressure during non-rapid eye movement (NREM) sleep and wakefulness. DESIGN: We assessed the genioglossal muscle response to CO2 off and on continuous positive airway pressure (CPAP) (to attenuate negative pressure) during stable NREM sleep and wakefulness in the supine position. SETTING: Laboratory of the Sleep Medicine Division, Brigham and Women's Hospital. PATIENTS OR PARTICIPANTS: Eleven normal healthy subjects. INTERVENTIONS: During wakefulness and NREM sleep, we measured genioglossal electromyography (EMG) on and off CPAP at the normal eupneic level and at levels 5 and 10 mm Hg above the awake eupneic level. MEASUREMENTS AND RESULTS: We observed that CO2 could increase upper-airway muscle activity during NREM sleep and wakefulness in the supine position with and without intrapharyngeal negative pressure. The application of nasal CPAP significantly decreased genioglossal EMG at all 3 levels of PETCO2 during NREM sleep (13.0 +/- 4.9% vs. 4.6 +/- 1.6% of maximal EMG, 14.6 +/- 5.6% vs. 7.1 +/- 2.3% of maximal EMG, and 17.3 +/- 6.3% vs. 10.2 +/- 3.1% of maximal EMG, respectively). However, the absence of negative pressure in the upper airway did not significantly affect the slope of the pharyngeal airway dilator muscle response to hypercapnia during NREM sleep (0.72 +/- 0.30% vs. 0.79 +/- 0.27% of maximal EMG per mm Hg PCO2, respectively, off and on CPAP). CONCLUSIONS: We conclude that both chemoreceptive and negative pressure reflex inputs to this upper airway dilator muscle are still active during stable NREM sleep.  相似文献   

10.
Discharge patterns of human genioglossus motor units during sleep onset   总被引:1,自引:0,他引:1  
STUDY OBJECTIVES: Multiunit electromyogram recordings of genioglossus have demonstrated an abrupt reduction in the muscle's activity at sleep onset. Recent evidence from single motor unit recordings indicates that the human genioglossus muscle consists of motor units with a variety of discharge patterns. The aim of the present study was to determine the effect of sleep onset on the activity of individual motor units as a function of their particular discharge pattern. DESIGN: Genioglossus activity was assessed using intramuscular fine-wire electrodes via a percutaneous approach. Sleep onsets (alpha-to-theta transitions) were identified and the genioglossus electromyogram recordings analyzed for single motor unit activity. SETTING: Sleep research laboratory. PARTICIPANTS: Sleep and respiratory data were collected in 8 healthy subjects (6 men). MEASUREMENTS AND RESULTS: One hundred twenty-seven motor units were identified: 23% inspiratory phasic, 45% inspiratory tonic, 4% expiratory phasic, 9% expiratory tonic, 16% tonic, and 3% other. Approximately 50% of inspiratory units (phasic and tonic) ceased activity entirely at sleep onset, whereas those inspiratory units that continued to be active showed a reduction in the proportion of each breath over which they were active. However, the rate of discharge of inspiratory units during the period they did fire was not altered. In contrast, tonic and expiratory units were unaffected by sleep onset, maintaining their discharge pattern over the alpha-to-theta transition. CONCLUSIONS: Central control of inspiratory motoneuron output differs from that of tonic and expiratory units during sleep onset, suggesting that the maintenance of airway patency during sleep may become more reliant on the stiffening properties of tonic and expiratory modulated motor units.  相似文献   

11.
Postural tone is reduced during slow-wave sleep (SWS) and absent during rapid eye movement sleep (REMS). In obstructive sleep apnea subjects, upper airway dilating muscles, including those of the tongue, show a similar pattern; this contributes to sleep-related airway obstructions. However, in healthy subjects, state-dependent changes in the activity of pharyngeal muscles are variable. In seven chronically instrumented Sprague-Dawley rats, an animal model used to study sleep and sleep-disordered breathing, we quantified lingual and postural muscle activity across the sleep-wake states by measuring the root mean square levels of the electromyograms (EMG) in successive 10s intervals collected during 2h of recording at a constant circadian time (1-3p.m.). The nuchal EMG was low and steady during SWS and further reduced with occasional twitches during REMS. In contrast, the mean lingual EMG during SWS was only 5.9+/-1.6% (S.E.) of its mean in wakefulness, and during REMS, it increased to 46+/-15% (S.E.) (p<0.03) due to the appearance of phasic bursts, the intensity of which progressively increased. The lingual and nuchal activities also had different time courses during state transitions. In obstructive sleep apnea subjects, the sleep-wake changes in the activity of pharyngeal muscles may become similar to those in postural muscles as a result of pharyngeal tone adaptations to the disorder.  相似文献   

12.
Pharyngeal dilator muscles are clearly important in the pathogenesis of obstructive sleep apnoea syndrome. Substantial data support the role of a local negative pressure reflex in modifying genioglossal activation across inspiration during wakefulness. Using a model of passive negative pressure ventilation, we have previously reported a tight relationship between varying intrapharyngeal negative pressures and genioglossal muscle activation (GGEMG) during wakefulness. In this study, we used this model to examine the slope of the relationship between epiglottic pressure ( P epi) and GGEMG, during stable NREM sleep and the transition from wakefulness to sleep. We found that there was a constant relationship between negative epiglottic pressure and GGEMG during both basal breathing (BB) and negative pressure ventilation (NPV) during wakefulness (slope GGEMG/ P epi 1.86 ± 0.3 vs. 1.79 ± 0.3 arbitrary units (a.u.) cmH2O−1). However, while this relationship remained stable during NREM sleep during BB, it was markedly reduced during NPV during sleep (2.27 ± 0.4 vs. 0.58 ± 0.1 a.u. cmH2O−1). This was associated with a markedly higher pharyngeal airflow resistance during sleep during NPV. At the transition from wakefulness to sleep there was also a greater reduction in peak GGEMG seen during NPV than during BB. These data suggest that while the negative pressure reflex is able to maintain GGEMG during passive NPV during wakefulness, this reflex is unable to do so during sleep. The loss of this protective mechanism during sleep suggests that an airway dependent upon such mechanisms (as in the patient with sleep apnoea) will be prone to collapse during sleep.  相似文献   

13.
Sleep loss in elderly volunteers   总被引:4,自引:0,他引:4  
M A Carskadon  W C Dement 《Sleep》1985,8(3):207-221
Sleep, performance, and sleepiness were assessed in 10 elderly volunteers (8 women, 2 men; aged 61-77 years) before, during, and after 38 h of sleep loss. Recovery night 1 sleep showed increased total sleep and stages 3 and 4 sleep and decreased stage 1 sleep, wakefulness, brief arousals, and latency to stages 3 and 4 sleep. An increase in stage 4 sleep persisted to the second recovery night. Increased arousal threshold was suggested by a lengthening of respiratory events and a reduction in arousals associated with leg movements. Performance was impaired during sleep loss, associated with an increased tendency to fall asleep. Reported sleepiness increased, except in three subjects who denied sleepiness. Latency to sleep onset declined. All measures returned to basal values after a night of sleep. Sleep in one volunteer failed to respond to sleep loss. With this exception, the response was similar to that reported in younger volunteers, although shorter-lived.  相似文献   

14.
Brainstem catecholamine (CA) neurones have wide projections and an arousal-state-dependent activity pattern. They are thought to modulate the processing of sensory information and also participate in the control of breathing. Mice with lethal genetic defects that include CA neurones have abnormal respiratory control at birth. Also the A6 region (locus coeruleus), which contains CA neurones sensitive to CO2 in vitro , is one of many putative central chemoreceptor sites. We studied the role of CA neurones in the control of breathing during sleep and wakefulness by specifically lesioning them with antidopamine β-hydroxylase–saporin (DBH-SAP) injected via the 4th ventricle. After 3 weeks there was a 73–84% loss of A5, A6 and A7 tyrosine hydroxylase (TH) immunoreactive (ir) neurones along with 56–60% loss of C1 and C2 phenyl ethanolamine- N -methyltransferase (PNMT)-ir neurones. Over the 3 weeks, breathing frequency decreased significantly during air and 3 or 7% CO2 breathing in both wakefulness and non-REM (NREM) sleep. The rats spent significantly less time awake and more time in NREM sleep. REM sleep time was unaffected. The ventilatory response to 7% CO2 was reduced significantly in wakefulness at 7, 14 and 21 days (−28%) and in NREM sleep at 14 and 21 days (−26%). Breathing variability increased in REM sleep but not in wakefulness or NREM sleep. We conclude that CA neurones (1) promote wakefulness, (2) participate in central respiratory chemoreception, (3) stimulate breathing frequency, and (4) minimize breathing variability in REM sleep.  相似文献   

15.
Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow–sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow–sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow–sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.  相似文献   

16.
Obstructive sleep apnoea (OSA) is characterised by repetitive collapse of the upper airway during sleep owing to a sleep-related decrement in upper airway muscle activity with consequent failure of the pharyngeal dilator muscles to oppose the collapsing pressure that is generated by the diaphragm and accessory muscles during inspiration. The causes of upper airway obstruction during sleep are multi-factorial but there is evidence implicating intrinsic upper airway muscle function and impaired central regulation of the upper airway muscles in the pathophysiology of OSA. The condition is associated with episodic hypoxia due to recurrent apnoea. However, despite its obvious importance very little is known about the effects of episodic hypoxia on upper airway muscle function. In this review, we examine the evidence that chronic intermittent hypoxia can affect upper airway muscle structure and function and impair CNS control of the pharyngeal dilator muscles. We review the literature and discuss results from our laboratory showing that episodic hypoxia/asphyxia reduces upper airway muscle endurance and selectively impairs pharyngeal dilator EMG responses to physiological stimulation. Our observations lead us to speculate that episodic hypoxia--a consequence of periodic airway occlusion--is responsible for progression of OSA through impairment of the neural control systems that regulate upper airway patency and through altered respiratory muscle contractile function, leading to the establishment of a vicious cycle of further airway obstruction and hypoxic insult that chronically exacerbates and perpetuates the condition. We conclude that chronic intermittent hypoxia/asphyxia contributes to the pathophysiology of sleep-disordered breathing.  相似文献   

17.
STUDY OBJECTIVE: Female hormones, specifically progesterone, that peak in the luteal phase may play a significant role in protecting premenopausal women from sleep-disordered breathing. The influence of female hormones on upper airway resistance during sleep was investigated during the follicular and luteal phases of normal menstrual cycles. SETTING: Hospital-based sleep laboratory. DESIGN AND PARTICIPANTS: Healthy women with verified ovulatory cycles and without sleep complaints were recruited into the study. Sleep and upper airway resistance data (mean +/- SD) were collected on 2 nights from 11 women (21-49 years of age [28 +/- 9 years], body mass index of 22.8 +/- 3.6 kg/m2), once during the follicular phase (day 6-11) and once in the luteal phase (day 19-23) in random order. MEASUREMENTS AND RESULTS: Nasal resistance, standardized to a flow rate of 0.3 L/second, measured using posterior active rhinomanometry immediately prior to the sleep study, did not differ between the 2 phases. The respiratory disturbance index tended to be higher in the follicular phase than in the luteal phase and was above 5 per hour for 3 women in the follicular phase. Upper airway resistance, controlled for flow rate and body position, was calculated for 50 random breaths during wakefulness, stage 1, stage 2, slow-wave, and rapid eye movement sleep. During wake and stage 2 sleep, upper airway resistance was significantly higher in the follicular phase than in the luteal phase, as was the overall upper airway resistance combined for wake and across all sleep stages. Combining data from the 2 nights, compared to wake, upper airway resistance increased in stage 2, slow-wave, and rapid eye movement sleep. CONCLUSIONS: Within the menstrual cycle, upper airway resistance is lower in the luteal compared with the follicular phase.  相似文献   

18.
STUDY OBJECTIVES: Complex sleep apnea is defined as sleep disordered breathing secondary to simultaneous upper airway obstruction and respiratory control dysfunction. The objective of this study was to assess the utility of an electrocardiogram (ECG)-based cardiopulmonary coupling technique to distinguish obstructive from central or complex sleep apnea. DESIGN: Analysis of archived polysomnographic datasets. SETTING: A laboratory for computational signal analysis. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The PhysioNet Sleep Apnea Database, consisting of 70 polysomnograms including single-lead ECG signals of approximately 8 hours duration, was used to train an ECG-based measure of autonomic and respiratory interactions (cardiopulmonary coupling) to detect periods of apnea and hypopnea, based on the presence of elevated low-frequency coupling (e-LFC). In the PhysioNet BIDMC Congestive Heart Failure Database (ECGs of 15 subjects), a pattern of "narrow spectral band" e-LFC was especially common. The algorithm was then applied to the Sleep Heart Health Study-I dataset, to select the 15 records with the highest amounts of broad and narrow spectral band e-LFC. The latter spectral characteristic seemed to detect not only periods of central apnea, but also obstructive hypopneas with a periodic breathing pattern. Applying the algorithm to 77 sleep laboratory split-night studies showed that the presence of narrow band e-LFC predicted an increased sensitivity to induction of central apneas by positive airway pressure. CONCLUSIONS: ECG-based spectral analysis allows automated, operator-independent characterization of probable interactions between respiratory dyscontrol and upper airway anatomical obstruction. The clinical utility of spectrographic phenotyping, especially in predicting failure of positive airway pressure therapy, remains to be more thoroughly tested.  相似文献   

19.
SUMMARY  During REM sleep, a powerful postsynaptic inhibition of spinal motoneurons induces a generalized muscle hypotonia. Despite this inhibition, it has been shown that by transcranial magnetic stimulation of the brain (TMS), muscle responses of normal amplitude can be evoked in small hand muscles of humans. Tonic innervation during sleep is different in postural vs. limb muscles, and the spinal inhibition differs during tonic vs. phasic REM episodes. Both phenomena may affect muscle responses to TMS. In this study, muscle responses of 14 healthy subjects were compared to TMS in abductor digiti minimi, lumbar erector spinae, trapezius, and diaphragm during phasic and tonic REM sleep. In all four muscles, the amplitudes of the muscle responses were extremely variable, ranging for example in trapezius from -100% to +473% as compared to wakefulness. There was no systematic difference between the muscles. Moreover, no differences were found for TMS during phasic REM events compared to tonic REM sleep. Thus, responses to TMS during REM sleep may be preserved, with a decreased or increased amplitude. As a likely explanation, the cortical excitability and/or the spinal inhibition fluctuates during REM sleep in humans.  相似文献   

20.
This study tested the hypothesis that cholinoceptive regions of the medial pontine reticular formation (mPRF), long known to play a role in regulating the sleep cycle, can also causally alter the respiratory cycle. In 4 cats, sleep and wakefulness were polygraphically recorded while simultaneous measures were taken of rate of breathing, tidal volume, minute ventilation, respiratory cycle timing, and end-tidal CO2 concentration. Respiration during naturally occurring rapid eye movement (REM) sleep was compared to breathing during wakefulness and during the REM sleep-like state (D Carb) caused by mPRF microinjections of the cholinergic agonist carbachol. The results demonstrate for the first time that non-respiratory regions of the cholinoceptive mPRF can cause statistically significant state-dependent alterations in respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号