首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Retinopathy is the most frequent microangiopathic complication in diabetes. Many circulating hormones and locally produced mitogenic factors have been involved. Bovine retinal endothelial cells (BRECs) were cultured to investigate if insulin, insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs), and a chronic high-glucose condition could control endothelial cell growth. Specific IGF-I receptors with two binding sites with high (Kd 0.03 nmol/L) and low (Kd 1.3 nmol/L) affinity were found when analyzing families of displacement curves between IGF-I versus IGF-I and IGF-I versus insulin. However, IGFs failed to be mitogenic factors in these cells. This could be explained by an inhibitory effect due to the presence of specific IGFBPs with a molecular weight between 24 and 43 kd. Using Western blot and immunoblot analysis, Northern blot study, and specific radioimmunoassay (RIA), these IGFBPs have been identified as IGFBP-3, -2, -5, and -4. Insulin, which does not bind to IGFBPs, was a potent mitogenic factor in these cells at a high concentration (10 nmol/L), suggesting a cross-reaction to IGF-I receptor. These IGFBPs, except the 24-kd form (IGFBP-4), were modulated by both IGF-I and IGF-II, with a maximum effect at 100 and 10 nmol/L, respectively. This regulation on IGFBPs was IGF-I receptor—independent. In fact, (1) IGFBP mRNA levels were not modified after stimulation with 100 nmol/L IGF-I, (2) 100 nmol/L IGF plus an equimolar concentration of αIR3 did not affect IGFBP production, (3) Des(1–3)IGF-I had no effect on IGFBP modulation, whereas at 10 nmol/L it enhanced BREC thymidine cell incorporation, and (4) 100 nmol/L insulin, which at this concentration can cross-react with the IGF-I receptor, did not modify the IGFBP pattern. Chronic exposure (4 weeks) of BRECs to 25 mmol/L glucose had no effect on cell growth. However, after 3 weeks, we observed a decreased IGFBP detection, and addition of 100 nmol/L IGF-I did not change IGFBP levels and did not modify cell growth. Conversely, BRECs grown in regular medium for 4 weeks showed increased IGFBP production. In conclusion, we showed that conditions mimicking hyperinsulinemia, rather than high levels of IGFs, could regulate BREC growth and that the IGF-I analog, Des(1–3), even with reduced affinity for IGFBPs but in part capable of binding to IGFBP-3, significantly stimulated BRECs growth only at 10 nmol/L. IGF actions are modulated by locally produced endothelial IGFBPs, and in turn, these endothelial IGFBPs are regulated, via an IGF-I receptor—independent mechanism, by the presence of IGFs. The autoregulatory IGF system together with the direct glucose modulation of IGFBPs could contribute in diabetic subjects to the retinal endothelial cell growth and metabolism through local changes in IGF bioavailability.  相似文献   

2.
Human neonatal fibroblasts in monolayer culture secrete insulin-like growth factor-binding proteins (IGFBPs), which may modulate IGF action. To examine whether an increase in extracellular concentrations of IGFBPs in response to IGF-I is due to the release of cell-associated IGFBPs, we measured secreted and cell-associated IGFBP-3 immunologically in fibroblast monolayers treated with IGF-I and IGF analogs with altered affinities for the IGF receptors and IGFBPs. IGFBP-3 in medium conditioned by fibroblasts treated with IGF-I was significantly increased (P < 0.05) compared with that in medium from untreated cultures; concomitantly, cell-associated IGFBP-3 was significantly decreased (P < 0.05). [Ser24]IGF-I (reduced affinity for IGF receptors) also increased secreted IGFBP-3 and decreased cell-associated IGFBP-3. In contrast, IGFBP-3 concentrations in medium conditioned by fibroblasts treated with B-chain IGF-I (reduced affinity for IGFBPs) were not significantly increased, and cell-associated IGFBP-3 was unchanged. Heparin, which releases proteins attached to cell surface proteoglycans, increased medium concentrations of IGFBP-3 and decreased IGFBP-3 binding to fibroblasts. An IGFBP of 29-31 kilodaltons (kDa) showed a pattern of regulation similar to that of IGFBP-3, while a third IGFBP, of 24 kDa, was decreased in IGF-I- and [Ser24]IGF-I-conditioned medium and unchanged by B-chain IGF-I and heparin. Preincubation with transforming growth factor-beta 1 (TGF beta 1), which stimulates fibroblast IGFBP-3 production, or human serum-derived IGFBP-3 did not increase cell-associated IGFBP-3. Analysis of total RNA isolated from fibroblasts revealed that IGFBP-3 mRNA was increased by TGF beta 1, but not by IGF-I. These data suggest that IGFs and TGF beta 1 release fibroblast IGFBPs by distinct mechanisms: IGFs by binding and subsequent release of cell-associated IGFBP-3 and 29- to 31-kDa IGFBP, and TGF beta 1 by increased de novo synthesis of IGFBP-3.  相似文献   

3.
4.
W S Cohick  D R Clemmons 《Endocrinology》1991,129(3):1347-1354
The Madin-Darby bovine kidney cell line was used to examine regulation of insulin-like growth factor binding protein (IGFBP) synthesis by epithelial cells. Ligand and immunoblot analysis of conditioned media indicated that IGFBP-2 was the predominant IGFBP secreted by untreated cells. Treatment with forskolin decreased secretion of IGFBP-2 by 75 +/- 3% and induced the appearance of IGFBP-3 and 24,000 Mr IGFBP. Although insulin alone did not induce the appearance of either band, in the presence of forskolin it increased the IGFBP-3 and 24,000 Mr bands 4.2 +/- 1.1 and 7.3 +/- 0.9-fold, respectively, above the values for forskolin treatment alone. Exposure to forskolin resulted in a 3-fold decrease in the abundance of IGFBP-2 messenger RNA (mRNA), and a 30-fold increase in IGFBP-3 mRNA. An additional 2- to 3-fold increase in IGFBP-3 mRNA was observed when cells were treated with insulin plus forskolin. Treatment with insulin plus forskolin increased cell number 2-fold, compared to small increases (26%) observed with forskolin treatment alone. Since treatment with IGF-I or -II did not result in similar responses to those of insulin, IGF analogs with differing affinities for IGFBP and IGF type I receptor were tested. B-chain IGF-I (decreased affinity for IGFBP) increased cell number and enhanced forskolin's effects on IGFBP-3 secretion and mRNA abundance to the same extent as insulin, whereas [Leu24,1-62]IGF-I (decreased affinity for the type I IGF receptor) did not. Therefore, activation of the type I IGF receptor was required to elicit increases in cell number and IGFBP synthesis and secretion, and the actions of IGF-I and II were likely blocked by binding to the large amounts of IGFBP-2 that were secreted. These results are in direct contrast to studies with human fibroblasts in which IGF-I and [Leu24,1-62]IGF-I stimulate IGFBP-3 secretion, whereas B-chain IGF-I has only a minimal effect. The ability to differentially regulate secretion of different forms of IGFBPs by epithelial cells and the finding that regulation is distinct from that of fibroblasts may have important implications for understanding mechanisms by which IGFs and IGFBPs interact to regulate epithelial cell growth.  相似文献   

5.
Regulatory Actions of Insulin-like Growth Factor-binding Proteins.   总被引:4,自引:0,他引:4  
The six insulin-like growth factor-binding proteins (IGFBPs) are important regulators of insulin-like growth factor (IGF) action. Circulating high molecular weight complexes that contain IGF and IGFBP-3 restrict IGF bioavailability, and excess IGFBPs inhibit IGF action by forming biologically inactive complexes. IGFs can be released from these complexes by proteolysis. Potentiation of IGF activity might occur under specific circumstances, and involves the slow dissociation of IGFs from IGFBP complexes localized in the pericellular space, whose affinity has been reduced by dephosphorylation or association with the cell surface or extracellular matrix. Several IGFBPs or IGFBP fragments also have activities that do not involve IGFs or IGF receptors. The mechanisms by which IGFBPs regulate IGF action and exert their independent actions will be examined.  相似文献   

6.
Silha JV  Murphy LJ 《Endocrinology》2002,143(10):3711-3714
The existence of abundant high affinity binding proteins for the IGFs, the IGF binding proteins (IGFBPs), was first demonstrated more than 40 yr ago in the very early days of somatomedin research. With the development of molecular techniques and transgenic and knockout mouse models, the nature, complexity, and redundancy of the IGFBPs have now started to be elucidated. Indeed the functional role of the circulating IGFs and the originally proposed endocrine somatomedin hypothesis have recently been questioned. The limited reports to date indicate that IGFBP knockout mice have few phenotypic manifestations. In contrast, overexpression of IGFBPs in transgenic mice is associated with manifestations that provide some insight into the physiological role of the binding proteins. The predominant effect of generalized or tissue-specific overexpression of the IGFBPs has been growth inhibition as would be anticipated from inhibition of the actions of IGF-I and -II. In addition, impaired glucose homeostasis and reduced fecundity have been observed in both IGFBP-1- and IGFBP-3-overexpressing transgenic mice. This review examines the data reported to date for transgenic mouse models that overexpress IGFBPs. In addition, data from transgenic mice that overexpress the acid-labile subunit, an important component of the ternary complex, have also been reviewed.  相似文献   

7.
The insulin-like growth factor (IGF) system is an evolutionarily conserved signaling pathway that is composed of two IGF ligands, two IGF receptors, and six IGF binding proteins. Studies in a variety of species suggest that the IGF signaling system plays a fundamental role in regulating embryonic growth and differentiation as well as in maintaining homeostasis in the adults. In extracellular fluids, IGFs are present in a complex with an IGF-binding protein (IGFBP). These IGFBPs are traditionally thought to function as carrier proteins and regulate circulating IGF turnover, transport, and distribution. Locally expressed IGFBPs can also inhibit and/or potentiate IGF activities. Recent studies have shown that some IGFBPs, in particular IGFBP-3 and -5, possess intrinsic biological activities and can act through IGF-independent mechanisms. In this article, we provide a brief overview of our current understanding of the IGF signaling system with particular reference to IGFBPs.  相似文献   

8.
Ligand blot analysis of granulosa cell (GC)-conditioned culture medium revealed several easily measurable insulin-like growth factor (IGF)-binding proteins (IGFBPs), including IGFBP-3 [40-44 kilodaltons (kDa)] and IGFBP-2 (34 kDa). In the present study, IGF-I, in a dose-dependent manner, significantly stimulated the production of these IGFBPs. Insulin, but not IGF-II, mimicked IGF-I's action on IGFBP-3 and -2 production, but was less potent. The synthetic IGF, long R3-IGF-I, which has very low affinity for IGFBPs and only slightly reduced affinity for the IGF-I (type I) receptor, had significantly greater potency in stimulating IGFBP-3 and -2 production compared to IGF-I. Des-(1-3)-IGF-I had similar effects. IGF-I, IGF-II, and the IGF-I analogs, but not insulin, also induced production of an unidentified 30-kDa IGFBP not normally detectable in these cultures. However, in the presence of epidermal growth factor (which was without independent effect on the 30-kDa IGFBP), insulin also induced this 30-kDa IGFBP. By Northern analysis the expression of IGFBP-3 mRNA was found to be significantly stimulated by IGF-I. In summary, insulin stimulated IGFBP-3 and -2 production in a manner that mimics that of IGF-I and the more potent long R3-IGF-I. However, its low potency suggested that IGFBP production is regulated via the IGF-I (type I) receptor. The much higher potency of long R3-IGF-I compared to that of IGF-I suggests that the IGFBPs themselves modulate the action of IGFs by sequestering exogenous IGFs. Thus, one cellular response to IGF stimulation is the production of IGFBPs, which, in turn, reduce or negate the biological activity of the IGFs. The effects of insulin-like peptides are exerted at least in part by increasing levels of mRNA for specific BPs.  相似文献   

9.
The insulin-like growth factors (IGF) stimulate growth in multiple connective tissue cell types. The capacity of IGF-I and -II to access cell surface receptors is controlled by insulin-like growth factor binding proteins (IGFBPs). Connective tissue cells synthesize four of the IGFBPs (IGFBP-2 through -5). Synthesis is controlled by growth hormone and several other growth factors. In addition to regulating synthesis, other variables regulate the abundance of the IGFBPs including specific serine proteases that are produced for each form of IGFBP. Following cleavage, the IGFBPs have reduced affinity for IGF-I and -II, thus allowing release to receptors. Variables that regulate the amount of proteolysis have been shown to regulate IGF action. In addition to being proteolytically cleaved, three forms of IGFBPs (IGFBP-2, -3 and -5) can associate with extracellular matrix (ECM). In the case of IGFBP-5 binding to ECM, its affinity is lowered substantially allowing IGF to better equilibrate with the receptors. This event results in a potentiation of IGF-I action on fibroblasts and smooth muscle cells (SMC). In summary, IGFBPs are important molecules for regulating the bioavailability of IGF-I and -II to receptors. Understanding the variables that regulate their abundance may lead to a better understanding of the factors that regulate IGF action in skeletal tissues.  相似文献   

10.
Insulin-like growth factor binding protein proteolysis.   总被引:3,自引:0,他引:3  
High-affinity interactions between insulin-like growth factors (IGF-I and IGF-II) and insulin-like growth factor-binding proteins (IGFBP-1, -2, -3, -4, -5 and -6) antagonize the binding of IGF to the type 1 IGF receptor. Proteases found in a variety of biological fluids can degrade IGFBP 1-6 into fragments that have a greatly reduced affinity for IGF-I and IGF-II, increasing the concentration of free IGFs at the cell surface and allowing IGFs to bind to and activate the IGF receptor. Therefore, IGFBP proteolysis directly modulates the first step in IGF receptor signaling and thereby indirectly modulates cell survival, mitogenesis and differentiation. Our understanding of IGFBP proteolysis has grown exponentially over the past five years, with the identification of several new IGFBP proteases, a growing appreciation of the potential for IGF-independent actions of IGFBP fragments and the realization that perturbations of IGFBP proteolysis are seen in, and might contribute to, several pathological conditions.  相似文献   

11.
Previous studies demonstrated that IGF-II binds directly to vitronectin (VN), whereas IGF-I binds poorly. However, binding of VN to integrins has been demonstrated to be essential for a range of IGF-I-stimulated biological effects, including IGF binding protein (IGFBP)-5 production, IGF type-1 receptor autophosphorylation, and cell migration. Thus, we hypothesized that a link between IGF-I and VN must occur and may be mediated through IGFBPs. This was tested using competitive binding assays with VN and (125)iodine-labeled IGFs in the absence and presence of IGFBPs. IGFBP-4, IGFBP-5, and nonglycosylated IGFBP-3 were shown to significantly enhance binding of IGF-I to VN, whereas IGFBP-2 and glycosylated IGFBP-3 had a smaller effect. Furthermore, binding studies with analogs indicate that glycosylation status and the heparin-binding domain of IGFBP-3 are important in this interaction. To examine the functional significance of IGFs binding to VN, cell migration in MCF7 cells was measured and found to be enhanced when VN was prebound to IGF-I in the presence of IGFBP-5. The effect required IGF:IGFBP:VN complex formation; this was demonstrated by use of a non-IGFBP-binding IGF-I analog. Together, these data indicate the importance of IGFBPs in modulating IGF-I binding to VN and that this binding has functional consequences in cells.  相似文献   

12.
Cellular actions of the insulin-like growth factor binding proteins   总被引:46,自引:0,他引:46  
In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.  相似文献   

13.
Background The insulin-like growth factor system, which includes insulin-like growth factors (IGF-I and IGF-II), IGF receptors (IGF-IR and IGF-IIR) and IGF binding proteins (IGFBPs), plays an important role in epithelial growth, anti-apoptosis and mitogenesis. There is a growing body of evidence showing that IGFs control growth and proliferation of several types of cancer. This review introduces the latest information on the biology of the IGF system and its pathophysiological role in the development of colorectal cancer.Discussion The growth promoting effects of IGF-I and IGF-II on cancer cells are mediated through the IGF-IR, which is a tyrosine kinase and cancer cells with a strong tendency to metastasise have a higher expression of the IGF-IR. Most of the IGFs in circulation are bound to the IGFBPs, which regulate the bioavailability of the IGFs. All IGFBPs inhibit IGF action by high affinity binding, while some of them also potentiate the effects of IGFs. Colon cancer cells produce specific proteases that degrade the IGFBP so that the IGF will be free to act on the cancer cell in an autocrine manner. Therefore, the IGFBPs play a crucial role in the development of the cancer.Conclusion The current knowledge about the link between IGFs and colon cancer is mainly based on in vitro investigations. Further in vivo study is needed to understand the exact role of the IGF system, especially its binding proteins, so that they can be manipulated for the prevention and treatment of colorectal cancer.  相似文献   

14.
Yan X  Baxter RC  Perbal B  Firth SM 《Endocrinology》2006,147(11):5268-5274
IGF binding proteins (IGFBPs) are a family of structurally homologous proteins that bind IGFs with high affinities and can modulate IGF activity. The IGF binding site has been shown to comprise residues in both the aminoterminal and carboxyterminal domains. In recent years several proteins including members of the CCN (connective tissue growth factor, Cyr61, and nephroblastoma overexpressed) family were recognized as having structural homology in their aminoterminal domains to the IGFBPs. Despite their low or undetectable IGF binding ability, a proposal was made to rename them as IGFBP-related proteins. To test whether the aminoterminal domain of a CCN protein can fulfill the high-affinity IGF binding function of an IGFBP, we created a chimera in which the aminoterminal domain of IGFBP-3 was substituted with the aminoterminal domain of CCN3 (previously known as Nov). The CCN3-IGFBP-3 chimera bound IGFs and inhibited IGF activity very weakly, similar to CCN3 itself. Although structurally similar, the aminoterminal domain of CCN3 is unable to replace the aminoterminal domain of IGFBP-3 in forming a high-affinity IGF-binding site. These results argue against a direct role of CCN3 in the regulation of IGF bioavailability and indicate that the nomenclature of IGFBP-related proteins (which implies functional relationship to the classical IGFBPs) is inappropriate for CCN proteins.  相似文献   

15.
I Ocrant  C T Fay  J T Parmelee 《Endocrinology》1990,127(3):1260-1267
Insulin-like growth factor binding proteins (IGFBP) are thought to modulate the biological actions of the insulin-like growth factors (IGF), including possible regulatory roles in the growth and differentiation of the central nervous system. Extracellular fluids usually contain a mixture of IGFBPs, three of which have been cloned, sequenced, and designated IGFBP-1, -2, and -3. We used Western ligand blotting, immunoprecipitation, and competitive binding analysis to characterize IGFBPs found in fetal and adult rat cerebrospinal fluid (CSF) and IGFBPs produced by cultures of neonatal rat choroid plexus, astrocytes, and C6 glial cells. Pooled rat CSF contains primarily IGFBP-2 (a narrow band at Mr = 29,000), lesser quantities of IGFBP-3 (a multicomponent broad band at Mr = 37,500-43,000), and trace amounts of low mol wt IGFBPs. Conditioned medium from cultures of choroid plexus cells contained a single binding protein corresponding to IGFBP-2, whereas C6 cells made predominately an IGFBP corresponding to IGFBP-3. Astrocytes secreted two IGFBPs corresponding to IGFBP-2 and -3, primarily IGFBP-3. Neonatal CSF contained substantially more binding activity corresponding to IGFBP-2 than did adult CSF. In all samples showing Western ligand binding profiles corresponding to IGFBP-2, identification was established by immunoprecipitation. Competitive binding analysis performed on choroid plexus IGFBP showed preferential high affinity binding for IGF-II compared with that for IGF-I. In conclusion, CSF contains a mixture of distinct IGFBPs, primarily IGFBP-2. The other IGFBPs found in CSF are capable of being synthesized locally within the central nervous system by glial cells and neurons, suggesting that they are not derived from plasma by transport across the blood-brain barrier.  相似文献   

16.
Insulin-like growth factor binding proteins (IGFBPs) are believed to modulate the actions of IGF-I and IGF-II at the cellular level. We have examined, by Western ligand blot analysis, the IGFBP profiles in follicular fluid (FF) from patients with polycystic ovarian syndrome (a disorder of ovarian folliculogenesis), compared to FF from atretic and developing (estrogenic) follicles from normally cycling women. IGFBPs with apparent mol wts (Mr) of 41.5, 38.5, 31, 28, and 24kDa were detected in PCOS FF. The profile of IGFBPs in PCOS FF was indistinguishable from that seen in atretic follicles in cycling women. However, higher levels of the 31, 28, and 24kDa IGFBPs were observed in PCOS FF, compared to healthy, estrogenic follicles. Using specific antisera, the 41.5 and 38.5kDa IGFBPs were identified as IGFBP-3, and the 31kDa IGFBP as IGFBP-2. IGFBP-1, however, was not appreciably detectable in PCOS FF, by Western ligand blotting. Endoglycosidase F treatment of FF decreased the Mr of the 28kDa IGFBP to 24kDa, and neither the 28kDa nor the 24kDa IGFBP was immunoprecipitated by antibodies to IGFBP-1, -2, or -3. Elevated levels of 28kDa and 24kDa IGFBPs in PCOS FF may represent glycosylated and core forms of IGFBP-4. The data presented herein show that in PCOS FF, as well as in FF from atretic follicles from normally cycling women, IGFBP-2 and 28 and 24kDa IGFBPs are present in greater amounts, compared to levels in FF from healthy, developing, estrogenic follicles. One or more of the IGFBP species elevated in atretic and PCOS follicles may bind IGFs in FF, thereby inhibiting IGF action on the granulosa during normal folliculogenesis.  相似文献   

17.
The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth. We hypothesized that intrauterine growth restriction (IUGR) in guinea pigs is mediated by the altered expression of IGFs and/or IGF binding protein (BP) mRNAs in tissues and is related to growth of specific tissues. IUGR was induced by unilateral uterine artery ligation on day 30 of gestation, and fetal plasma, amniotic fluid and tissue samples were collected at 55-57 days (term about 68 days) from paired IUGR and control fetuses (n=6). Western ligand blotting and immunoblotting were used to compare IGFBP levels in plasma and amniotic fluid. Total RNA was extracted from placenta and fetal tissues, and the relative abundance of IGF-II and IGFBP-1-6 mRNA was determined by Northern blotting, using species-specific probes where available. IUGR fetuses had decreased (P<0.01, by Student's t-test) placental weight and body weight with an increase in the brain:liver weight ratio. The principal IGFBPs in fetal plasma migrated at 40-35, 30 and 25 kDa and were identified as IGFBP-3, -2 and -4 respectively. IUGR was associated with elevated plasma IGFBP-2 and IGFBP-4 and reduced IGFBP-3 levels. IGFBPs were detected at low levels in amniotic fluid of control fetuses but at higher levels in IUGR fetuses. In IUGR placentae, there was a small increase in IGFBP-4 mRNA (P<0.05). IGFBP-2 mRNA increased (P<0.001) in liver of IUGR fetuses. IGF-II and IGFBP mRNA expression did not change in fetal muscle. The results are consistent with reduced IGF action, directly or through inhibition by IGFBPs, particularly by circulating and tissue IGFBP-2, as a potential causal factor in decreased growth of the placenta and certain fetal tissues.  相似文献   

18.
In biologic fluids, insulinlike growth factors (IGF-I and IGF-II) are bound to high-affinity insulinlike growth factor binding proteins (IGFBPs) of which seven have now been identified (IGFBPs 1-7). In a variety of biologic fluids, several IGFBPs undergo proteolytic degradation. Such degradation can lead to increased IGF bioavailability at the cell surface, facilitating receptor interactions. Herein, recent data identifying several IGFBP-degrading proteinases and their effects on IGF bioactivity is reviewed, and how IGFBP proteolysis is regulated by IGFs and IGFBPs, as well as how IGFBP cleavage analysis provides insights into the structure and function of IGFBPs, is explored. (Trends Endocrinol Metab 1997;8:299-306). (c) 1997, Elsevier Science Inc.  相似文献   

19.
The insulin-like growth factors (IGFs) are bound to multiple IGF binding proteins (IGFBPs) that are present both in the circulation and in extracellular fluids. There are at least six different IGFBP species that have been fully characterized in terms of molecular structure and amino acid sequence. The tissue distribution and local production of these proteins as well as the regulation of IGFBP production in different tissues have not been elucidated. We have studied the distribution of multiple IGFBP species in protein extracts from human kidney, skeletal muscle, lung, liver and brain by ligand blotting employing [125I]IGF-2 as the radiolabeled hormone. Five distinct IGFBP species with a respective molecular weight of 43, 38, 34, 30 and 20 kDa were detected on the ligand blots in tissues from human fetuses and infants (23 weeks of gestation till 24 months of postnatal age). The 34 kDa species and a 30-32 kDa IGFBP species were predominant in brain, whereas a 30 kDa IGFBP species was mainly detected in skeletal muscle. Immunoblotting experiments using an anti IGFBP-2 antiserum showed that the 34 kDa IGFBP species from human brain was presumably related to IGFBP-2. We conclude that IGFBPs are differentially expressed in different tissues throughout human fetal life and early infancy. Local production or accumulation of the different IGFBPs could modulate IGF action at a local level or alternatively have differential functions during development.  相似文献   

20.
Circulating insulin-like growth factor binding proteins (IGFBPs) play pivotal roles in stabilizing IGFs and regulating their availability to target tissues. In the teleost circulation, three major IGFBPs are typically detected by ligand blotting with molecular masses around 20-25, 28-32 and 40-45 kDa. However, their identity is poorly established and often confused. We previously identified salmon 22- and 41-kDa forms as IGFBP-1 and -2b, respectively. In the present study, we cloned the cDNA of 28-kDa IGFBP from Chinook salmon (Oncorhynchus tshawytscha) as well as rainbow trout (Oncorhynchus mykiss) based on the partial N-terminal amino acid sequence of purified protein and identified it as an ortholog of IGFBP-1. Structural and phylogenetic analyses revealed that the 28-kDa IGFBP is more closely related to human IGFBP-1 and zebrafish IGFBP-1a than the previously identified salmon IGFBP-1 (i.e. 22-kDa IGFBP). We thus named salmon 28- and 22-kDa forms as IGFBP-1a and -1b, respectively. Salmon IGFBP-1a contains a potential PEST region involved in rapid protein turnover and phosphorylation sites typically found in mammalian IGFBP-1, although the PEST and phosphorylation scores are not as high as those of human IGFBP-1. There was a striking difference in tissue distribution patterns between subtypes; Salmon igfbp-1a was expressed in a variety of tissues while igfbp-1b was almost exclusively expressed in the liver, suggesting that IGFBP-1a has more local actions. Direct seawater exposure (osmotic stress) of Chinook salmon parr caused increases in both IGFBP-1s in plasma, while IGFBP-1b appeared to be more sensitive. The presence of two co-orthologs of IGFBP-1 in the circulation in salmon, and most likely in other teleosts, provides a good opportunity to investigate subfunction partitioning of duplicated IGFBP-1 during postnatal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号