首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent study, we showed that lymphocytes of obese Italian children/adolescents displayed levels of double strand breaks (DSB), assayed as serine 139‐phosphorylated histone H2AX (γ‐H2AX), about eightfold higher than normal weight controls, and that 30% of this damage‐generated micronuclei. These findings suggested that obese children could be at increased risk of obesity‐mediated cancer later in life. We therefore aimed to assess the level of γ‐H2AX in a genetic animal model of obesity (Zucker rat) to identify a genotoxic/carcinogenic risk in some organs. The DSB marker was studied in 3‐ to 4‐week‐old rats and in 9‐ to 13‐week‐old rats. Paraffin‐embedded sections of heart, thyroid, liver, pancreas, lung, kidney, esophagus, and gut from the fa?/fa? (obese) and the fa+/fa? (lean) control animals were processed for immunohistochemistry detection of γ‐H2AX. Pancreas (0.0624 ± 0.0195), lung (0.1197 ± 0.0217), esophagus (0.1230 ± 0.0351), kidney (0.1546 ± 0.0149), and gut (0.1724 ± 0.0352) of 9‐ to 13‐week‐old obese rats showed a higher proportion of γ‐H2AX‐positive nuclei, than their lean counterparts (0.0092 ± 0.0033, 0.0416 ± 0.0185, 0.0368 ± 0.0088, 0.0686 ± 0.0318, and 0.0703 ± 0.0239, respectively). No difference was seen in the 3‐ to 4‐week‐old age group with regard to obesity, indicating that the DNA damage increased with older age of the rats. We hypothesize that the organs of the obese animals showing high levels of DSB could represent target tissues for the development of obesity‐related cancers. Environ. Mol. Mutagen. 58:477–484, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
3.
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double‐strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double‐strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted. Environ. Mol. Mutagen. 56:491–504, 2015. © Wiley Periodicals, Inc.  相似文献   

4.
Whether interleukin (IL)‐17 promotes a diabetogenic response remains unclear. Here we examined the effects of neutralization of IL‐17 on the progress of adoptively transferred diabetes. IL‐17‐producing cells in non‐obese diabetic (NOD) mice were identified and their role in the pathogenesis of diabetes examined using transfer and co‐transfer assays. Unexpectedly, we found that in vivo neutralization of IL‐17 did not protect NOD–severe combined immunodeficiency (SCID) mice against diabetes transferred by diabetic splenocytes. In NOD mice, γδ+ T cells were dominated by IL‐17‐producing cells and were found to be the major source of IL‐17. Interestingly, these IL‐17‐producing γδ T cells did not exacerbate diabetes in an adoptive transfer model, but had a regulatory effect, protecting NOD mice from diabetes by up‐regulating transforming growth factor (TGF)‐β production. Our data suggest that the presence of IL‐17 did not increase the chance of the development of diabetes; γδ T cells protected NOD mice from diabetes in a TGF‐β‐dependent manner, irrespective of their role as major IL‐17 producers.  相似文献   

5.
《Immunology》2017,151(1):43-55
Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation‐induced hepatitis is unknown. In this study, using HBV transgenic (HBs‐Tg) and HBs‐Tg T‐cell receptor‐δ‐deficient (TCR‐δ−/−) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon‐γ (IFN‐γ) levels and more extensive necrosis. γδ T‐cell deficiency resulted in elevated IFN‐γ in CD4+ T cells but not in natural killer or natural killer T cells. The depletion of CD4+ T cells and neutralization of IFN‐γ reduced liver damage in HBs‐Tg and HBs‐Tg‐TCR‐δ−/− mice to a similar extent. Further investigation revealed that HBs‐Tg mice showed an enhanced interleukin‐17 (IL‐17) signature. The administration of exogenous IL‐23 enhanced IL‐17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs‐Tg mice, but not in HBs‐Tg‐TCR‐δ−/− mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A‐induced hepatitis by inhibiting IFN‐γ production from CD4+ T cells and are indispensable for IL‐23‐mediated protection against Con A‐induced hepatitis in HBs‐Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation‐induced liver damage.  相似文献   

6.
7.
Tsang J Y S, Mendoza P, Lam C C F, Yu A M C, Putti T C, Karim R Z, Scolyer R A, Lee C S, Tan P H & Tse G M
(2012) Histopathology  61, 667–674 Involvement of α‐ and β‐catenins and E‐cadherin in the development of mammary phyllodes tumours Aims: Phyllodes tumours (PT) are rare but clinically important fibroepithelial tumours of the breast. β‐Catenin, a key component in Wnt signalling, has been shown to be important in the development of PT. It also functions as a component of the cadherin complex, which may therefore be implicated in PT pathogenesis. By assessing stromal α‐catenin, β‐catenin and E‐cadherin expression in 158 PT cases using immunohistochemistry and examining associations with clinicopathological features, we aimed to determine the role of these proteins in PT pathogenesis. Methods and results: Cytoplasmic β‐catenin correlated with α‐catenin expression. A significantly higher expression of both markers was observed in borderline than in benign PT (P = 0.003 and <0.001, respectively), but a lower level was found in malignant PT. Cytoplasmic E‐cadherin expression was significantly higher in borderline and malignant than in benign PT (P = 0.001 and 0.012, respectively), but was not correlated with other markers. Both E‐cadherin and α‐catenin showed stronger correlations with histological parameters than β‐catenin. α‐Catenin showed a significant correlation with recurrence (P = 0.005 and 0.016, respectively). Conclusions: α‐ and β‐catenins may be important in the early stages of PT development, while E‐cadherin may be required for malignant development. The correlation of α‐catenin expression with tumour recurrence may be relevant in predicting PT behaviour.  相似文献   

8.
Antagonism of the effects of glucagon as an adjunct therapy with other glucose‐lowering drugs in the chronic treatment of diabetes has been suggested to aggressively control blood glucose levels. Antagonism of glucagon effects, by targeting glucagon secretion or disabling the glucagon receptor, is associated with α‐cell hyperplasia. We evaluated the influence of total glucagon withdrawal on islets of Langerhans using prohormone convertase‐2 knockout mice (PC2‐ko), in which α‐cell hyperplasia is present from a young age and persists throughout life, in order to understand whether or not sustained glucagon deficit would lead to islet tumorigenesis. PC2‐ko and wild‐type (WT) mice were maintained drug‐free, and cohorts of these groups sampled at 3, 12 and 18 months for plasma biochemical and morphological (histological, immunohistochemical, electron microscopical and image analytical) assessments. WT mice showed no islet tumours up to termination of the study, but PC2‐ko animals displayed marked changes in islet morphology from α‐cell hypertrophy/hyperplasia/atypical hyperplasia, to adenomas and carcinomas, these latter being first encountered at 6–8 months. Islet hyperplasias and tumours primarily consisted of α‐cells associated to varying degrees with other islet endocrine cell types. In addition to substantial increases in islet neoplasia, increased α‐cell neogenesis associated primarily with pancreatic duct(ule)s was present. We conclude that absolute blockade of the glucagon signal results in tumorigenesis and that the PC2‐ko mouse represents a valuable model for investigation of islet tumours and pancreatic ductal neogenesis.  相似文献   

9.
10.
11.
12.
Recent studies have revealed IL‐33 as a key factor in promoting antiviral T‐cell responses. However, it is less clear as to how IL‐33 regulates innate immunity. In this study, we infected wild‐type (WT) and IL‐33?/? mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection‐induced IL‐33 expression for robust innate IFN‐γ production in the liver. We first show that IL‐33 deficiency resulted in a marked reduction in the number of IFN‐γ+ γδ T and NK cells, but an increase in that of IL‐17+ γδ T cells at 16 h postinfection. Recombinant IL‐33 (rIL‐33) treatment could reverse such deficiency via increasing IFN‐γ‐producing γδ T and NK cells, and inhibiting IL‐17+ γδ T cells. We also found that rIL‐33‐induced type 2 innate lymphoid cells were not involved in T‐cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN‐γ and TNF‐α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL‐33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL‐33 in regulating innate IFN‐γ‐production and DC function during viral hepatitis.  相似文献   

13.
14.
To highlight whether γ‐cyclodextrins (CDs) facilitate propargylamine monosubstituted β‐CDs (PA‐β‐CDs) as end stoppers to get threaded onto a distal azide terminated poly(2‐hydroxyethylmethacrylate) (PHEMA) homopolymer (PH‐46‐2N3) to create linear and hyperbranched polyrotaxanes (PRs) via the in situ copper‐catalyzed azide/alkyne cycloaddition (CuAAC), PH‐46‐2N3 is self‐assembled with a varying amount of γ‐CDs in water and then subjected the CuAAC with PA‐β‐CDs to end‐cap the resulting γ‐CD‐PHEMA polypseudorotaxanes (PPRs) into the γ‐CD‐PHEMA PRs. It demonstrates that γ‐CDs cannot promote PA‐β‐CDs to be entrapped on the PHEMA chain most likely due to their different cavity size and molecular framework and linear PRs are always formed with up to 29% γ‐CD coverage ratio along the PHEMA axis thereof.  相似文献   

15.
16.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

17.
The γδ T cells represent a minor unique T‐cell subpopulation long been considered as innate‐like immune cells. They are found in increased numbers in tissues from various inflammatory conditions. Their role in chronic hepatitis, however, is still discussed controversially. Fresh frozen tissues from 50 patients (18 cases hepatitis B infection, 25 hepatitis C, three cases with co‐infection of hepatitis B and C and four patients with autoimmune hepatitis) were investigated. Immunohistochemistry with primary antibodies detecting αβ and γδ TCR was used to evaluate their incidence and distribution in the different histological structures of the liver. The inflammatory infiltrate in all cases of chronic hepatitis was dominated by αβ T cells and was mainly localized in the portal tracts with formation of an interface hepatitis (95.3%αβ T cells; 4.7%γδ T cells). There were neither significant differences between inflammatory infiltrate nor the amount or percentage of γδ T cells between hepatitis B, C or autoimmune hepatitis. No accumulation of γδ T cells could be observed in cases of chronic hepatitis of different etiologies. The immune‐mediated phenomena in chronic hepatitis are dominated by αβ T cells. Thus, the adapted immune system is responsible for the inflammatory processes in chronic hepatitis.  相似文献   

18.
γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)‐CD40 signaling by γδ T cells induces protective immunity against the blood‐stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T‐cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1+ cells, we saw that Vγ1+ γδ T cells were important for the control of PbXAT infection. Splenic Vγ1+ γδ T cells preferentially expand and express CD40L, and both Vγ1+ and Vγ4+ γδ T cells produce IFN‐γ during infection. Although expression of CD40L on Vγ1+ γδ T cells is maintained during infection, the IFN‐γ positivity of Vγ1+ γδ T cells is reduced in late‐phase infection due to γδ T‐cell dysfunction. In Plasmodium‐infected IFN‐γ signaling‐deficient mice, DC activation is reduced, resulting in the suppression of γδ T‐cell dysfunction and the dampening of γδ T‐cell expansion in the late phase of infection. Our data suggest that Vγ1+ γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1+ γδ T‐cell response is dependent on IFN‐γ‐activated DCs.  相似文献   

19.
20.
Radiation exposure is a serious threat to biomolecules, particularly DNA, proteins and lipids. Various exogenous substances have been reported to protect these biomolecules. In this study we explored the effect of pre‐treatment with G‐002M, a mixture of three active derivatives isolated from the rhizomes of Podophyllum hexandrum, on DNA damage response in irradiated human blood leukocytes. Blood was collected from healthy male volunteers, preincubated with G‐002M and then irradiated with various doses of radiation. Samples were analyzed using flow cytometry to quantify DNA double strand break (DSB) biomarkers including γ‐H2AX, P53BP1 and levels of ligase IV. Blood samples were irradiated in vitro and processed to determine time and dose‐dependent kinetics. Semiquantitative RT‐PCR was performed at various time points to measure gene expression of DNA‐PKcs, Ku80, ATM, and 53BP1; each of these genes is involved in DNA repair signaling. Pre‐treatment of blood with G‐002M resulted in reduction of γ‐H2AX and P53BP1 biomarkers levels and elevated ligase IV levels relative to non‐G‐002M‐treated irradiated cells. These results confirm suppression in radiation‐induced DNA DSBs. Samples pre‐treated with G‐002M and then irradiated also showed significant up‐regulation of DNA‐PKcs and Ku80 and downregulation of ATM and 53BP1 gene expressions, suggesting that G‐002M plays a protective role against DNA damage. The protective effect of G‐002M may be due to its ability to scavange radiation‐induced free radicals or assist in DNA repair. Further studies are needed to decipher the role of G‐002M on signaling molecules involved in radiation‐induced DNA damage repair pathways. Environ. Mol. Mutagen. 55:436–448, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号