首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The Salmonella/microsome assay is the most used assay for the evaluation of air particulate matter (PM) mutagenicity and a positive correlation between strain TA98 responses and benzo[a]pyrene (B[a]P) levels in PM has been found. However, it seems that the major causes of PM mutagenicity in this assay are the nitro and oxy‐PAHs. Salmonella YG5161, a 30‐times more responsive strain to B[a]P has been developed. To verify if YG5161 strain was sufficiently sensitive to detect mutagenicity associated with B[a]P mutagenicity, PM samples were collected in Brazil and Sweden, extracted with toluene and tested in the Salmonella/microsome microsuspension assay. PAHs and B[a]P were determined and the extracts were tested with YG5161 and its parental strain TA1538. The extracts were also tested with YG1041 and its parental strain TA98. For sensitivity comparisons, we tested B[a]P and 1‐nitropyrene (1‐NP) using the same conditions. The minimal effective dose of B[a]P was 155 ng/plate for TA1538 and 7 ng/plate for YG5161. Although the maximum tested dose, 10 m3/plate containing 9 ng of B[a]P in the case of Brazilian sample, was sufficient to elicit a response in YG5161, mutagenicity was detected at a dose as low as 1 m3/plate (0.9 ng). This is probably caused by nitro‐compounds that have been shown to be even more potent than B[a]P for YG5161. It seems that the mutagenicity of B[a]P present in PM is not detectable even with the use of YG5161 unless more efficient separation to remove the nitro‐compounds from the PAH extract is performed. Environ. Mol. Mutagen. 55:510–517, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
One level at which persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons PAHs) can exert damage is by causing DNA strand‐breaks or nucleotide base modifications, which, if unrepaired, can lead to embryonic mutations, abnormal development and cancer. In marine ecosystems, genotoxicity is expected to be particularly strong in long‐lived apex predators due to pollutant bioaccumulation. We conducted 32P‐postlabeling analyses optimized for the detection and quantification of aromatic/hydrophobic DNA adducts in the livers of 40 sexually‐mature North Atlantic harbour porpoises (Phocoena phocoena) stranded along the English and Welsh coastlines. We examined hepatic tissue to search for inflammatory and preneoplastic lesions and examine their association with adduct levels. Adducts were found in all porpoises (mean: 17.56 ± 11.95 per 108 nucleotides), and were higher than levels reported for marine vertebrates from polluted sites. The pollutants causing the induced DNA adducts could not be further characterized. Hepatic DNA damage did not correlate with levels of blubber POP concentrations (including total polychlorinated biphenyl [PCBs], dichlorodiphenyltrichloroethane [DDT] and dieldrin); PAH concentrations were not available for the present study. However, DNA damage predicted occurrence of inflammatory and preneoplastic lesions. Further, our data showed a reduction in hepatic DNA adduct levels with age in the 40 animals examined while POP concentrations, particularly PCBs, increased with age. Using a different dataset of 145 mature male harbour porpoises confirmed that higher contaminant levels (total PCBs, DDT and dieldrin) are found in older animals. The reduction in hepatic DNA adduct levels in older animals was in accordance with other studies which show that suppression of hepatic CYP1A enzyme activity at high PCB concentrations might impact on CYP1A‐mediated DNA adduct formation of PAHs which are ubiquitous environmental pollutants and readily metabolized by CYP1A to species binding to DNA. In summary, our study shows that pollutant‐induced DNA damage is prevalent in harbour porpoises from UK waters and may lead to detectable sub‐lethal hepatic damage. Environ. Mol. Mutagen. 59:613–624, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society  相似文献   

3.
Firefighting is regarded as possibly carcinogenic, although there are few mechanistic studies on genotoxicity in humans. We investigated exposure to polycyclic aromatic hydrocarbons (PAH), lung function, systemic inflammation and genotoxicity in peripheral blood mononuclear cells (PBMC) of 22 professional firefighters before and after a 24‐h work shift. Exposure was assessed by measurements of particulate matter (PM), PAH levels on skin, urinary 1‐hydroxypyrene (1‐OHP) and self‐reported participation in fire extinguishing activities. PM measurements indicated that use of personal protective equipment (PPE) effectively prevented inhalation exposure, but exposure to PM occurred when the environment was perceived as safe and the self‐contained breathing apparatuses were removed. The level of PAH on skin and urinary 1‐OHP concentration were similar before and after the work shift, irrespective of self‐reported participation in fire extinction activities. Post‐shift, the subjects had reduced levels of oxidatively damaged DNA in PBMC, and increased plasma concentration of vascular cell adhesion molecule 1 (VCAM‐1). The subjects reporting participation in fire extinction activities during the work shift had a slightly decreased lung function, increased plasma concentration of VCAM‐1, and reduced levels of oxidatively damaged DNA in PBMC. Our results suggest that the firefighters were not exposed to PM while using PPE, but exposure occurred when PPE was not used. The work shift was not associated with increased levels of genotoxicity. Increased levels of VCAM‐1 in plasma were observed. Environ. Mol. Mutagen. 59:539–548, 2018. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m3). Furthermore, DNA damage occurred in broncho‐alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation of 0.67, 2, 6, and 162 µg Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary acute phase response was analyzed by Saa3 mRNA real‐time quantitative PCR. Instillation of the low doses of NPCB induced a slight neutrophil influx one day after exposure. Pulmonary exposure to small doses of NPCB caused an increase in DNA strand breaks in BAL cells and lung tissue measured using the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41–49, 2015. © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society  相似文献   

5.
6.
7.
Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass‐fueled facilities may lead to health problems. In March and August of 2006, airborne PM was collected from a biomass‐fueled facility located in Denmark. In addition, source‐specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components, mutagenic activity, and ability to generate highly reactive oxygen species (hROS) in cell‐free aqueous suspensions. PM collected from the boiler room and the biomass storage hall had higher levels of mutagenic activity, PAHs and metals, and a higher hROS generating potential than the source specific PM. The mutagenic activity was generally more potent without S9 activation, and on the metabolically enhanced strain YG1041, relative to TA98. Significant correlations were found between mutagenicity on YG1041 (without S9) and PAH concentration and mutagenicity on YG1041 (with S9) and hROS generating ability. PM collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass‐fueled facility, which likely includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. Environ. Mol. Mutagen., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Airborne particulate matter (PM) has long been recognized as a potential health hazard and in 2013 was classified as carcinogenic to humans by the International Agency for Research on Cancer. In this study we evaluate and compare mutagenic and genotoxic potencies of PM2.5 collected in three seasons, from 2012 to 2015, in five Italian cities. Mutagenicity was evaluated through the Ames test on TA98 and TA100 strains and, for the measurement of PM clastogenicity, Comet assay was carried out on cultured human lung cells (A549). Organic matter, extracted from urban particulate matter, was also characterized for polycyclic aromatic hydrocarbons (PAHs) and their derivatives content. Samples collected in the colder seasons show the presence of both base pair substitution and frameshift mutagens, with enhanced mutagenic response in the absence of enzyme activation. The highest DNA damage detected with the Comet assay was induced by winter extracts, but different from Salmonella, the relative increase per cubic meter in comet tail for November samples was comparable to July ones. Comparing mutagenicity and genotoxicity with chemical concentrations we found that data from the Salmonella assay correlate with mass concentration and, to a lesser extent, with PAHs, but no association was found with their derivatives, whereas DNA damage correlate only with PAHs measured at one site. These findings demonstrate that to assess the mutagenicity and genotoxicity of complex mixtures it's necessary to use bioassays and that the chemical analysis of pollutants does not take into account the possible inhibitory or synergic effects of exposure. Environ. Mol. Mutagen. 58:719–729, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
The interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus). This review summarizes and evaluates the status of dose–response data for DNA adducts and mutations from recent experimental work with standard mutagenic agents and ethylene oxide and propylene oxide, and the importance for risk assessment. This body of evidence demonstrates that small N7-alkyl/hydroxyalkylguanine adducts are not pro-mutagenic and, therefore, adduct formation alone is not adequate evidence to support a mutagenic mode of action. Quantitative methods for dose–response analysis and derivation of thresholds, benchmark dose (BMD), or other points-of-departure (POD) for genotoxic events are now available. Integration of such analyses of genetox data is necessary to properly assess any role for DNA adducts in risk assessment. Regulatory acceptance and application of these insights remain key challenges that only the regulatory community can address by applying the many learnings from recent research. The necessary tools, such as BMDs and PODs, and the example datasets, are now available and sufficiently mature for use by the regulatory community. Environ. Mol. Mutagen. 60: 100–121, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.  相似文献   

10.
We have developed an in vitro mutation assay using primary hepatocytes from the transgenic Muta?Mouse. Primary hepatocytes were isolated using a two‐step perfusion method with purification by Percoll, cultured, and treated with benzo[a]pyrene (BaP), 2‐amino‐1‐methyl‐6‐phenyl‐ imidazo[4,5‐b]pyridine (PhIP), 3‐nitrobenzoanthrone (3‐NBA), and cigarette smoke condensate (CSC). The mean lacZ mutant frequency (MF) for the solvent control was approximately twofold greater than the spontaneous MF observed in liver tissue. A concentration‐dependent increase in MF (up to 3.7‐fold above control) was observed following exposure to BaP. Fourfold and twofold increases in mutant frequency were observed for 3‐NBA and PhIP exposures, respectively, without the addition of any exogenous metabolic activation. A slight but statistically significant increase in lacZ MF was observed for CSC, but only at the lowest concentration. This is the first report demonstrating that mutations can be detected in cultured primary hepatocytes from Muta?Mouse. The preliminary results presented suggest that the Muta?Mouse primary hepatocyte mutagenicity assay can be used as a cost‐effective tool for screening of environmental mutagens and therapeutic products. Environ. Mol. Mutagen., 2010 © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Exposure to environmental polycyclic aromatic hydrocarbons (PAHs) has been associated with increased risk of cancer, but evidence for gender differences in this association is limited. The aim of this study was to examine the gender differences in PAHs caused early genotoxic effects such as oxidative stress and chromosome damage, which are potential carcinogenic etiology of PAHs. A total of 478 nonsmoking workers (272 men and 206 women) from a coke oven plant were recruited. We determined 16 environmental PAHs in their workplaces, and measured concentrations of 12 urinary PAH metabolites (OH‐PAHs), plasma benzo[a]pyrene‐r‐7,t‐8,t‐9,c‐10‐tetrahydotetrol‐albumin (BPDE‐Alb) adducts, urinary 8‐hydroxydeoxyguanosine (8‐OHdG) and 8‐iso‐prostaglandin‐F2α (8‐iso‐PGF2α), and micronucleus frequencies in lymphocytes in all subjects. It showed that, women working at the office, adjacent to the coke oven, and on the bottom or side of the coke oven displayed significantly higher levels of urinary 8‐OHdG and 8‐iso‐PGF2α, and lymphocytic micronucleus frequencies compared with men working at above areas, respectively (all P < 0.05). These gender differences remain significant after adjusted for potential confounders and urinary ΣOH‐PAHs or plasma BPDE‐Alb adducts. A significant interaction existed between gender and BPDE‐Alb adducts on increasing micronucleus frequencies (Pinteraction < 0.001). We further stratified all workers by the tertiles of urinary ΣOH‐PAHs or plasma BPDE‐Alb adducts, and the above gender differences were more evident in the median‐ and high‐exposure groups (all P < 0.05). In conclusion, women were more susceptible than men to oxidative stress and chromosome damage induced by PAHs, which may add potential evidence underlying gender differences in PAH exposure‐related lung cacinogenesis. Environ. Mol. Mutagen. 55:472–481, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous occupational and environmental pollutants and the urinary excretion of 1‐hydroxypyrene (1‐OHP) is classically measured for the determination of PAH exposure internal dose. Some of PAH are tumorigenic due to their metabolites ability to generate DNA adducts and oxidative DNA damage through the production of reactive oxygen species during metabolism. 8‐hydroxy‐7,8‐dihydro‐2′‐deoxyguanosine (8‐OHdGuo) is one of the major oxidative DNA lesions and its use as a potential biomarker of genotoxic PAH occupational exposure should be evaluated. Indeed conflicting results are frequently reported in occupational studies in terms of correlation between 8‐OHdGuo urinary levels and PAH exposure. The aim of our study was therefore to determine the potential for PAH occupational exposure to increase urinary oxidative DNA damage. The population consisted of 68 male workers employed in silicon production. The urinary concentrations of 8‐OHdGuo and its homologue in RNA, 8‐hydroxy‐7,8‐dihydroguanosine (8‐OHGuo) were determined using high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry, whereas those of 1‐OHP were measured using HPLC with fluorescence detection. Individual variation rates were calculated on a working day and a working week. The results indicated that, while 1‐OHP levels strongly increased on a working day and even more on a working week, 8‐OHdGuo and 8‐OHGuo urinary levels did not show similar significant increases. Moreover, no correlation between 1‐OHP and oxidative DNA and RNA lesions was found. Consequently, urinary 8‐OHdGuo and 8‐OHGuo did not seem to be relevant biomarkers of genotoxic PAH exposure in the case of the silicon plant studied. Environ. Mol. Mutagen., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Many natural environments are contaminated with carcinogenic polycyclic aromatic hydrocarbons (PAHs) and N-heterocyclic aromatic hydrocarbons (NHAs) as complex mixtures of coal tar, petroleum, and shale oil. These potentially hazardous substances are prevalent at many former tar production and coal gasification sites. Three polycyclic [benzo-(a)pyrene (BaP), benz(a)anthracene (BAA), and 7, 12-dimethylbenz(a)anthracene (DMBA)] and two N-heterocyclic [7H-dibenzo(c, g)carbazole (DBC), and dibenz(a, j)acridine (DBA)] aromatic hydrocarbons were analyzed for cytotoxic and genotoxic effects on human lymphocytes. All of these polyaromatic compounds are normally present in the environment, except for DMBA. Lymphocytes from healthy donors were isolated from whole blood. The 5-ring polycyclic aromatic BaP consistently induced micronuclei in a linear dose-dependent manner with doses from 0.1–10.0 ug/ml, whereas the 4-ring compounds (BAA and DMBA) had no effect on the induction of micronuclei above controls except at 5 and 10 ug/ml. Of the two N-heterocyclic compounds, DBC produced a significant increase in micronuclei in lymphocytes, but the dose response tended to plateau above 0.1 ug/ml. DBA showed an effect on the frequency of micronuclei above controls only at high doses of 5 and 10 ug/ml. The average background frequency of micronuclei for 7 lymphocyte donors averaged 3.1 per 1, 000 stimulated cells, whereas the average frequency of micronuclei at 10 ug/ml BaP was 36.8 per 1,000 stimulated cells. The lowest effective dose in 2 donors for BaP occurred at 0.1 ug/ml. At a challenge dose of 1 ug/ml (4 uM) of BaP, considerable variation in micronuclei induction between 7 individuals was observed, ranging from 2–6-fold increases above spontaneous frequency. Over a dose range of 1–10.0 ug/ml (4–40 uM), BaP also induced sister chromatid exchanges (SCEs) in lymphocytes, whereas BAA had no effect above controls. Parallel studies of both cytogenetic endpoints showed that the micronucleus assay is a more sensitive indicator of BaP exposure at equivalent doses. Mitotic and replication indices of BaP-exposed lymphocytes showed that cell proliferation is only moderately inhibited even at the highest dose; this shows that bulky DNA-adducts are generally compatible with cell survival. The cytogenetic data are consistent, firstoff, with reports that individuals in the population vary widely with respect to the inducibility of the CYP1A1 gene, which is known to be involved in polycyclic aromatic hydrocarbon metabolism, in particular, in BaP. Secondly, the data support the fact that polyaromatic compounds differ with regard to micronucleus induction within the same sample(s) of human lymphocytes, indicating selective metabolism of polyaromatic compounds that may reflect carcinogen sensitivity of the individual. Thirdly, it would appear that the micronucleus induction in human lymphocytes by PAHs is an overall-sensitive endpoint for measuring PAH exposure. Lastly, this is the first report of the use of the micronucleus assay to assess a series of PAHs and NHAs for their ability to induce genetic damage in human lymphocytes. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Increased incidence of mortality and sickness due to cardiopulmonary complications has been associated with elevated levels of urban air particles (UAP), with an aerodynamic diameter of 10 microm (PM 10) and 2.5 microm (PM 2.5). In the present report alternative plant systems and human cells in vitro are associated with human hazard and genotoxic risk assessment of UAP. The genotoxic activities associated with the coarse (PM 10) and the fine fraction (PM 2.5) of airborne particulates have been analyzed by evaluating micronuclei induction and/or sister-chromatid exchange (SCE) using in vitro models of Daucus carota and HS 27 human fibroblast cell suspensions and Zea mays root meristems. Results show variability in the response of the test systems and indicate that the mutagenicity trend in both plant and human cell cultures was directly correlated to the concentration of carbon-rich particles in the fraction of the PM 2.5 airborne particulates. Moreover, in plant tissues, the frequency of micronuclei and SCE was related to an enhancement of the specific activity of the stress-related enzyme peroxidase.  相似文献   

16.
Contaminated soil is a serious environmental problem, constituting a risk to humans and the environment. Polycyclic aromatic hydrocarbons (PAHs) are often present at contaminated sites. However, risk levels are difficult to estimate because of the complexity of contaminants present. Here, we compare cellular effects of extracts from contaminated soils collected at six industrial settings in Sweden. Chemical analysis showed that all soils contained complex mixtures of PAHs and oxy‐PAHs. Western blotting and immunocytochemistry were used to investigate DNA damage signaling in HepG2 cells exposed to extracts from these soils. The effects on phosphorylated Mdm2, p53, Erk, H2AX, 53BP1, and Chk2, cell cycle regulating proteins (cyclin D1 and p21), and cell proliferation were compared. We found that most soil extracts induced phosphorylation of Mdm2 at the 2A10 epitope at low concentrations. This is in line with previous studies suggesting that this endpoint reflects readily repaired DNA‐damage. However, we found concentration‐ and time‐dependent γH2AX and 53BP1 responses that were sustained for 48 hr. These endpoints may reflect the presence of different types of persistent DNA‐damage. High concentrations of soil extracts decreased cyclin D1 and increased p21 response, indicating cell cycle arrest. Phosphorylation of Mdm2 at Ser166, which attenuates the p53 response and is induced by many tumor promoters, was induced in a time‐dependent manner and was associated with Erk phosphorylation. Taken together, the PAH extracts elicited unpredictable signaling responses that differed between samples. More polar compounds, i.e., oxy‐PAHs, also contributed to the complexity. Environ. Mol. Mutagen. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes? together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5, to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP‐7,8‐dihydrodiol and BaP‐9‐ol, which are intermediates in BaP‐derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP‐3‐ol, a metabolite that is a ‘detoxified’ product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP‐7,8‐dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP‐9‐ol. BaP‐3‐ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active. Environ. Mol. Mutagen. 57:229–235, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
Carcinogenic polycyclic aromatic hydrocarbons (PAHs) were disposed directly into the Saguenay River of the St. Lawrence Estuary (SLE) by local aluminum smelters (Quebec, Canada) for 50 years (1926–1976). PAHs in the river sediments are likely etiologically related to gastrointestinal epithelial cancers observed in 7% of 156 mature (>19-year old) adult beluga found dead along the shorelines. Because DNA adduct formation provides a critical link between exposure and cancer induction, and because PAH–DNA adducts are chemically stable, we hypothesized that SLE beluga intestine would contain PAH–DNA adducts. Using an antiserum specific for DNA modified with several carcinogenic PAHs, we stained sections of paraffin-embedded intestine from 51 SLE beluga (0–63 years), 4 Cook Inlet (CI) Alaska beluga (0–26 years), and 20 beluga (0–46 years) living in Arctic areas (Eastern Beaufort Sea, Eastern Chukchi Sea, Point Lay Alaska) and aquaria, all with low PAH contamination. Stained sections showed nuclear light-to-dark pink color indicating the presence of PAH–DNA adducts concentrated in intestinal crypt epithelial lining cells. Scoring of whole tissue sections revealed higher values for the 51 SLE beluga, compared with the 20 Arctic and aquarium beluga (P = 0.003). The H-scoring system, applied to coded individual photomicrographs, confirmed that SLE beluga and CI beluga had levels of intestinal PAH–DNA adducts significantly higher than Arctic and aquarium beluga (P = 0.003 and 0.02, respectively). Furthermore, high levels of intestinal PAH–DNA adducts in four SLE beluga with gastrointestinal cancers, considered as a group, support a link of causality between PAH exposure and intestinal cancer in SLE beluga. Environ. Mol. Mutagen. 60:29–41, 2019. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号