首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the present study, adrenocorticotropic hormone (ACTH) release and intracellular calcium ([Ca(2+)](i)) increase induced by arginine vasopressin (AVP) were characterized in collagenase-dispersed and 3-day cultured rat anterior pituitary cells. AVP and the selective vasopressin V(1b) receptor agonist, [1-deamino-4-cyclohexylalanine]AVP (d[Cha(4)]AVP) induced ACTH release with nanomolar potencies in both cell preparations, and produced a maximal stimulation that was about 1.5 fold greater in the 3-day cultured cells, indicating that the vasopressin V(1b) receptor-ACTH release pathway is enhanced over time in culture. In dispersed cells, AVP, oxytocin and d[Cha(4)]AVP induced [Ca(2+)](i) increases with nanomolar potencies. The selective vasopressin V(1a) receptors antagonist, SR49059 (100 nM), together with the selective oxytocin receptors antagonist (d(CH(2))(5)(1)Tyr(Me)(2),Thr(4),Orn(8),Tyr-NH(2)(9)-vasotocin (100 nM), inhibited the maximal AVP response by ~70%, without affecting the response to d[Cha(4)]AVP, suggesting that the V(1b) receptor was only partially responsible for the AVP-induced [Ca(2+)](i) increase. In contrast, in 3-day cultures, AVP induced an increase in [Ca(2+)](i), while oxytocin and d[Cha(4)]AVP did not. The response to AVP was completely antagonized by SR49059, whereas the vasopressin V(1b) receptor antagonists, SSR149415 and (d(CH(2))(5)(1)Tyr(Me)(2),Thr(4),Orn(8),Tyr-NH(2)(9))-vasotocin had no effect, indicating that the [Ca(2+)](i) increase was mediated exclusively by vasopressin V(1a) receptors. In conclusion, the enhancement of vasopressin V(1b) receptor-mediated ACTH release and the lack of a detectable vasopressin V(1b) receptor coupling to [Ca(2+)](i) increase in cultured cells suggests the activation of a different/additional signaling pathway in the molecular mechanism of ACTH release.  相似文献   

2.
3.
[(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139  相似文献   

4.
5.
1. The effect of arginine vasopressin (AVP) on human uterine artery rings, both intact and denuded of endothelium, was investigated. 2. Initially, AVP (63 pM-32 nM) induced concentration-dependent contraction of human uterine artery (pD2 = 8.92 +/- 0.01). Removal of the endothelium did not affect the concentration-response curve for AVP (pD2 = 8.83 +/- 0.03). 3. In contrast, human uterine arteries, both intact and denuded of endothelium, did not respond to the addition of 1-desamino-8-D-arginine vasopressin (dDAVP, 1 nM-1 microM). 4. In both types of preparations, [d(CH2)5Tyr(Me)AVP (1-10 nM) and [d(CH2)5,D-Ile2,Ile4]AVP (300 nM-3 microM) produced parallel rightward shifts of the curves for AVP. The Schild plots constrained to a slope of unity gave the following -log KB values: [d(CH2)5Tyr(Me)]AVP vs. [d(CH2)5,D-Ile2,Ile4]AVP 9.66 vs. 6.69 and 9.61 vs. 6.80 for human uterine artery, intact and denuded of endothelium, respectively. 5. The pKA values for AVP itself also did not differ between preparations: 6.56 and 6.43 for human uterine artery with and without endothelium, respectively. In both types of preparations, the receptor reserve (KA/EC50) was considerably greater than unity (intact vs. denuded: 228 vs. 244). 6. It is concluded that, in human uterine artery, AVP induces contractions that are not modulated by the endothelium. It is likely that AVP acts as a full agonist on human uterine artery, regardless of the endothelial condition. On the basis of differential antagonists affinity and affinity of AVP itself, it is probable that vasopressin receptors involved in AVP-induced contraction in human uterine arteries belong to the V1a or V1a-like subtype.  相似文献   

6.
The aim of this study was to evaluate the renal vascular effects of oxytocin in Sprague-Dawley rats and in Brattleboro heterozygous or homozygous rats, the latter being genetically deficient in vasopressin synthesis. Studies were performed in vitro, in the isolated kidney perfused in an open circuit with a Tyrode's solution. Oxytocin induced a concentration-dependent renal vasoconstriction in Sprague-Dawley rats, at rather high concentrations (EC50=170+/-39 nM, mean +/- SEM, n=6) with a maximum response amounting to 44% of that elicited by vasopressin (increase in renal vascular resistance: 11.5+/-0.9 mmHg min ml(-1) vs. 26.2+/-2.2 mmHg min ml(-1)). Oxytocin-evoked renal vasoconstriction was abolished by SR 49059, a selective vasopressin V1A receptor antagonist (10 nM), but not by d(CH2)5[Tyr(Me)2,Thr4,Orn8,Tyr-(NH2)9] vasotocin, an oxytocin receptor antagonist (10 nM). In the presence of SR 49059, oxytocin did not induce renal vasorelaxation. Oxytocin induced renal vasoconstriction in Brattleboro homozygotes and heterozygotes (EC50=59+/-12 nM and 262+/-110 nM; Emax=7.8+/-1.1 mmHg min ml(-1) and 6.9+/-0.4 mmHg min ml(-1), n=5 respectively) with characteristics similar as observed in Sprague-Dawley rats concerning partial agonist activity, low potency and antagonism by SR 49059. Responsiveness to vasopressin did not differ in Brattleboro homozygotes and heterozygotes (EC50 approximately 0.25 nM) and was similar as we reported in Sprague-Dawley rats. These findings indicate that high concentrations of oxytocin induce renal vasoconstriction in the rat by activating vasopressin V1A receptors. The low agonist activity makes it unlikely that oxytocin can substitute functionally for vasopressin at the renal vascular V1A receptor in Brattleboro homozygous rats which are deficient in endogenous vasopressin.  相似文献   

7.
An oxytocic antagonist, [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid,2-O-methyltyrosine,4-threonine, 8-ornithine,9-tyrosylamide]vasotocin (d(CH2)5[Tyr(Me)2, Thr4,Tyr-NH2(9)]OVT [corrected], was monoiodinated at the phenyl moiety of the tyrosylamide residue at position 9. 125I-labelling was performed with 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl-glycoluril. Iodination resulted in an increased affinity for rat uterine oxytocin receptors. A considerably lower affinity for rat vascular V1- and renal V2-receptors was found, resulting in a highly specific oxytocin receptor ligand. 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT [corrected] was demonstrated to bind selectively to one population of binding sites in rat uterus and ventral hippocampal membrane preparations. Dissociation constants ranged between 0.03 and 0.06 nM. After 3 days of exposure autoradiography revealed binding in regions known to contain oxytocin receptors as well as labelling in some new regions, while no binding was found in the lateral septum, a structure containing mainly [8-arginine]vasopressin receptors. The high specific radioactivity of 125I-labelling allowed important reductions in membrane protein amount, gain in precision of binding analysis as well as considerably lower exposure times for autoradiography.  相似文献   

8.
We report the vasopressin receptor-binding properties of [3H-Phe]-desGlyd(CH2)5D-Tyr(Et)VAVP, [3H]-SK&F 101926, the first radiolabeled vasopressin receptor antagonist. We chose to radiolabel SK&F 101926 because this vasopressin analog is a potent antagonist of vascular V1 and renal V2 vasopressin receptors in all species studied. [3H]-SK&F 101926 bound with a single high affinity to intact vascular smooth muscle cells (A-10; KD = 0.5 nM), and plasma membranes A-10 cells (KD = 0.4 nM) and rat liver (KD = 0.2 nM). In competition experiments with [3H]-SK&F 101926 and [3H]arginine vasopressin ([3H]AVP) using cell and liver membranes, the affinity rank orders of vasopressin analogs were the same and were typical for the V1 receptor subtype. In competition binding experiments with [3H]-SK&F 101926 using cell and liver membranes, guanosine 5'-(beta,gamma-imido)triphosphate did not significantly alter the affinity of the V1 antagonist d(CH2)5Tyr(Me)AVP, but the affinity of AVP was decreased. These data indicate that the V1 receptor can exist in at least two affinity states that are modulated by guanine nucleotides. [3H]-SK&F 101926 also bound specifically and with high affinity to V2 receptors of MDCK cells. We conclude that [3H]-SK&F 101926 binds with high affinity to V1 and V2 vasopressin receptors and is a powerful new tool for the identification of vasopressin receptors and the study of molecular mechanisms involved in the interaction of vasopressin with its receptors.  相似文献   

9.
YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.  相似文献   

10.
11.
Labelling of vasopressin and oxytocin receptors from the human uterus   总被引:2,自引:0,他引:2  
Four labelled ligands, [3H]arginine vasopressin ([3H]AVP), [3H]oxytocin ([3H]OT), [3H]d(CH2)5[Tyr(Me)2]AVP ([3H]VPA), and [125I]d(CH2)5[Tyr(Me)2-Thr4-Orn8-Tyr(NH2)9]OT([125I]OTA] and nine unlabelled analogues exhibiting enhanced selectivity for rat oxytocin (OT) and vasopressin (VP) receptors were used to characterize OT and VP receptors on myometrial membranes from non-pregnant and pregnant human uteri. On membranes from non-pregnant uteri, [3H]AVP, [3H]VPA, and [125I]OTA labelled with high affinity (Kd values: 3.2, 2 and 0.8 nM, respectively) a major and apparently homogeneous population of sites, the ligand selectivity of which resembled that of rat V1a VP receptors. On membranes from pregnant and non-pregnant uteri, [3H]OT labelled a single population of high-affinity sites that could be distinguished from VP receptors on the basis of ligand selectivity. Several analogues (in particular [125I]OTA) that are highly selective for rat OT receptors exhibited a much less pronounced selectivity for human OT receptors. Experiments with [3H]VPA allowed detection of VP receptors on myometrical membranes from pregnant uteri and confirmed that only OT but not VP receptors increase during pregnancy in humans.  相似文献   

12.
We have analyzed binding domains of the oxytocin receptor for barusiban, a highly selective oxytocin receptor antagonist, in comparison to the combined vasopressin V1A/oxytocin receptor antagonist atosiban and the agonists oxytocin and carbetocin. For this purpose, chimeric 'gain-in function' oxytocin/vasopressin V2 receptors were expressed in COS-7 cells. These recombinant receptors have been produced by transfer of domains from the oxytocin receptor into the related vasopressin V2 receptor and have already been successfully employed for the identification of ligand binding domains at the oxytocin receptor (Postina, R., Kojro, E., Fahrenholz, F., 1996. Separate agonist and peptide antagonist binding sites of the oxytocin receptor defined by their transfer into the V2 vasopressin receptor. J. Biol. Chem. 271, 31593-31601). In displacement studies with 10 chimeric receptor constructs, the binding profile of barusiban was compared with the binding profiles of the ligands oxytocin, [Arg8]vasopressin, carbetocin, and atosiban. The binding profiles for the agonists oxytocin and carbetocin were found to be similar. For both agonists, important binding domains were the extracellular N-terminus (=E1) and the extracellular loops E2 and E3 from the oxytocin receptor. For the vasopressin V1A/oxytocin receptor antagonist atosiban, none of the receptor constructs were able to provide a binding with higher affinity than the starting vasopressin V2 receptor. In contrast, the binding of barusiban was significantly improved when the transmembrane domains 1 and 2 were transferred from the oxytocin receptor to the vasopressin V2 receptor. The binding domain of barusiban differs from the binding domain of the agonists and the nonselective oxytocin receptor antagonist d(CH2)5[Tyr-(Me)2,Thr4,Orn8,Tyr9]vasotocin that has been used in previous studies. Overall, the data supported the concept of a central pocket site within the oxytocin receptor.  相似文献   

13.
The binding and signal transduction characteristics of YM218 ((Z)-4'-{4,4-difluoro-5-[2-oxo-2-(4-piperidinopiperidino)ethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-methyl-3-furanilide hemifumarate), a newly synthesized, potent arginine vasopressin (AVP) V(1A) receptor-selective antagonist, were examined using cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells and human uterine smooth muscle cells (USMCs) expressing oxytocin receptors. YM218 potently inhibited specific binding of [(3)H] AVP to V(1A) receptors, exhibiting a K(i) value of 0.30 nM. In contrast, YM218 exhibited much lower affinity for V(1B), V(2) and oxytocin receptors, exhibiting K(i) values of 25,500 nM, 381 nM and 71.0 nM, respectively. In CHO cells expressing V(1A) receptors, YM218 potently inhibited the AVP-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), exhibiting an IC(50) value of 0.25 nM. However, in human USMCs expressing oxytocin receptors, YM218 exhibited a much lower potency in inhibiting the oxytocin-induced [Ca(2+)](i) increase, showing an IC(50) value of 607 nM, and had no effect on the AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM218 did not potently inhibit the production of cAMP stimulated by AVP, showing an IC(50) value of 62.2 nM. In all assays used, YM218 did not exhibit any agonistic activity. These results demonstrate that YM218 is a potent, nonpeptide human V(1A) receptor-selective antagonist, and that YM218 will be a valuable new tool to gain further insight into the physiologic and pharmacologic actions of AVP.  相似文献   

14.
Background and purpose:Oxytocin is believed to be involved in ejaculation by increasing sperm number and contracting ejaculatory tissues. However, oxytocin may mediate these effects via oxytocin or vasopressin (AVP) receptors. The aim of this study was to determine the effect of oxytocin and AVP on peripheral tissues involved in ejaculation and to identify the receptor subtype(s) involved.Experimental approach:Standard tissue bath techniques were used to measure isometric tension from tissues involved in ejaculation and erection.Key results:Oxytocin and AVP failed to elicit a tonic contractile response in rat and rabbit testes, vas deferens, epididymis, seminal vesicles and prostate. In contrast, oxytocin and AVP elicited large tonic contractions in erectile (corpus spongiosum and corpus cavernosum) and ejaculatory (prostatic urethra, bladder neck and ejaculatory duct) tissues in a concentration-dependent manner. The selective oxytocin agonist, [Thr(4),Gly(7)]-oxytocin and the V(2) agonist, [deamino-Cys(1),Val(4),D-Arg(8)]-vasopressin (dDAVP), failed to contract tissues. Oxytocin and AVP-induced contractions were weakly antagonized by the selective oxytocin antagonist, L-368899 but potently antagonized by the V(1A) antagonist, SR49059. The V(1B) antagonist SSR149415 failed to antagonize AVP contractions except in rabbit bladder neck. Neither L-368899 nor SR49059 antagonized endothelin-1-induced contractions.Conclusions and implications:The contractile effect of oxytocin on rat and rabbit ejaculatory and erectile tissues is mediated via V(1A) receptors. Endothelin-1-induced contractions are not due to endogenous oxytocin or AVP release. V(1A) receptor antagonists may have a therapeutic role in both erectile dysfunction and premature ejaculation.British Journal of Pharmacology (2008) 155, 118-126; doi:10.1038/bjp.2008.226; published online 16 June 2008.  相似文献   

15.
Both oxytocin and vasopressin cause potent and long-lasting vasoconstriction of uterine arteries from several species, including humans, and the resulting tissue ischemia is thought to be involved in the pathogenesis of primary dysmenorrhea. We have studied the effects of oxytocin and vasopressin in isolated resistance arteries (diameter, 90-120 microm) from non-pregnant rat uteri using two potent and selective receptor antagonists, SR 49059, a selective vasopressin V1A antagonist, and atosiban, a selective oxytocin antagonist. Uterine arteries with intact endothelium were mounted in a microvessel chamber, and pressurized to 75 mm Hg to allow the development of myogenic tone. Both vasopressin and oxytocin elicited a concentration-dependent vasoconstriction with a similar maximum effect (i.e., total vessel occlusion). The EC50 was 0.44 +/- 0.02 and 25 +/- 3.1 nM for vasopressin and oxytocin, respectively. Thus, vasopressin was 57-fold more potent than oxytocin. Schild analysis indicated that SR 49059 yielded a similar pA2 value against vasopressin-induced (pA2 = 8.96 +/- 0.60) or oxytocin-induced (pA2 = 9.06 +/- 0.23) contractions, suggesting that both agonists activated the vasopressin V1A receptor. In addition, atosiban (10(-7) M), a selective antagonist of the oxytocin receptor in the rat, did not antagonize the effect of vasopressin and oxytocin, showing that the oxytocin receptor is not involved in the response. In conclusion, these results suggest that V1A receptor stimulation is responsible for the vasoconstricting effects of both vasopressin and oxytocin in small diameter resistance arteries from the rat uterus.  相似文献   

16.
We describe the synthesis and some pharmacological properties of 16 new in vivo antagonists of oxytocin. These are based on modifications of three peptides: A, B, and C. A is our previously reported potent and selective antagonist of the vasopressor (V1 receptor) responses to arginine-vasopressin (AVP)/weak oxytocin antagonist, [1-(beta-mercapto-beta,beta-pentamethylenepropionic acid), 2-O-methyltyrosine]arginine-vasopressin (d(CH2)5[Tyr(Me)2]AVP. B reported here, the Ile3 analogue of A, is d(CH2)5[Tyr(Me)2]AVT (5 below) and C is our previously reported potent nonselective oxytocin antagonist/AVP V1 antagonist, [1-(beta-mercapto-beta,beta-pentamethylenepropionic acid),2-O- methyltyrosine,8-ornithine]vasotocin (d(CH2)5[Tyr(Me)2]OVT). The following substitutions and deletions, alone or in combination, were employed in A, B, and C: 1-deaminopenicillamine (dP); D-Tyr(Alk)2 (where Alk = Me or Et), D-Phe2; Val4, Thr4; delta 3-Pro7; Lys8, Cit8; desGly9, desGly-NH2(9), Ala-NH2(9); Leu-NH2(9); Arg-NH2(9). The 16 new analogues are (1) d(CH2)5[D-Tyr(Me)2]AVP, (2) d(CH2)5[D-Tyr(Me)2, Val4,delta 3-Pro7]AVP, (3) d(CH2)5[D-Tyr-(Et)2, Val4,Lys8]VP, (4) d(CH2)5[D-Tyr(Et)2,Val4,Cit8]VP, (5) d(CH2)5[Tyr(Me)2]AVT, (6) d(CH2)5[Tyr(Me)2,Lys8]VT, (7) dP[Tyr(Me)2]AVT, (8) dP[Tyr(Me)2,Val4]AVT, (9) d(CH2)5[D-Tyr(Me)2, Val4]AVT, (10) d(CH2)5[D-Phe2,Val4]AVT, (11) d(CH2)5[Tyr(Me)2,Thr4]OVT, (12) d(CH2)5[Tyr(Me)2,Thr4,Ala-NH2(9)]OVT, (13) d(CH2)5[Tyr(Me)2,Thr4,Leu-NH2(9)]OVT, (14) d(CH2)5[Tyr(Me)2,Thr4,Arg-NH2(9)]OVT, (15) desGly-NH2(9),d(CH2)5[Tyr(Me)2,Thr4]OVT, (16) desGly9,d(CH2)5[Tyr(Me)2,Thr4]OVT. 1-4 are analogues of A, 5-10 are analogues of B, and 11-16 are analogues of C. Their protected precursors were synthesized either entirely by the solid-phase method or by a combination of solid-phase and solution methods (1 + 8 or 8 + 1 couplings). All analogues were tested in rats for agonistic and antagonistic activities in oxytocic (in vitro, without and with Mg2+, and in vivo) assays as well as by antidiuretic and vasopressor assays. All analogues exhibit potent oxytocic antagonism in vitro and in vivo. With an in vitro pA2 (in the absence of Mg2+) = 9.12 +/- 0.09, dP[Tyr(Me)2]AVT is (7) one of the most potent in vitro oxytocin antagonists reported to date. Fifteen of these analogues (all but 6) appear as potent or more potent in vivo oxytocin antagonists than C (pA2 = 7.37 +/- 0.17). Analogues 1-9 and 14 are potent AVP V1 antagonists. Their anti-V1 pA2 values range from 7.92 to 8.45. They are thus nonselective oxytocin antagonists.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We report the identification and characterization of specific vasopressin-binding sites on intact cells and membranes of the established vascular smooth muscle cell line A-10, the fate of vasopressin associated with the cells, the role of guanine nucleotides in the regulation of the affinity of the vasopressin-binding sites, and the determination of the vasopressin receptor subtype. We have found specific vasopressin-binding sites on intact cells in monolayer (110,000 sites per cell during log growth and 60,000 sites per cell in stationary culture) with a KD of 6 nM at 37 degrees. After incubation of [3H]-8-arginine vasopressin ([3H]AVP) and cells for less than 20 min, cell-associated AVP was intact; with longer incubation times, AVP was progressively degraded. The major metabolites included phenylalanine and a fraction that eluted from a C18 reverse phase high performance liquid chromatography column between AVP and 8-arginine, 9-desglycinamide vasopressin. Extensive degradation also occurred when AVP was allowed to dissociate from the cells. With increased time of incubation, the amount of specifically bound AVP that could dissociate decreased, suggesting receptor-mediated endocytosis. In saturation equilibrium binding experiments with plasma membranes, two affinity states with KD of 0.7 nM and 379 nM were observed. The number of high affinity binding sites was similar to the number of receptors found on intact cells. Guanosine 5'-(beta,gamma-imido)triphosphate decreased vasopressin binding to the high affinity sites and did not significantly affect the low affinity sites. Competition binding experiments indicated that the vasopressin-binding sites of A-10 cells belong to the vascular V1 receptor subtype. We conclude that the established vascular smooth muscle cell line A-10 expressed vasopressin receptors of the vascular V1 subtype. Vasopressin bound to the receptors reversibly, but could also be degraded by the cells presumably after receptor-mediated endocytosis. The receptors might exist in different affinity states; guanosine 5'-(beta,gamma-imido)triphosphate decreased the affinity of the high affinity binding state.  相似文献   

18.
The neurohypophyseal peptides arginine vasopressin (AVP) and oxytocin (OT) mediate a wide variety of peripheral and central physiological and behavioral effects by acting on four different G-protein coupled receptors, termed V1a (vascular), V1b (pituitary), V2 (renal), and OT (uterine). We recently reported that d[Cha4]AVP (A), d[Leu4]AVP (B), d[Orn4]AVP (C), and d[Arg4]AVP (D) have high affinity and are selective agonists for the human V1b receptor. However, peptides A-D were subsequently shown to be potent antidiuretic agonists in the rat and are, thus, not selective V1b agonists in the rat. Peptides A-D served as leads for the studies reported here. They were modified at position 8 by Lys, ornithine (Orn), diaminobutyric acid (Dab), and diaminopropionic acid (Dap) to give d[Cha4,Lys8]VP (1), d[Cha4,Orn8]VP (2), d[Cha4,Dab8]VP (3), d[Cha4,Dap8]VP (4), d[Leu4,Lys8]VP (5), d[Leu4,Orn8]VP (6), d[Leu4,Dab8]VP (7), d[Leu4,Dap8]VP (8), d[Orn4,Lys8]VP (9), d[Orn4,Orn8]VP (10), d[Arg4,Lys8]VP (11), d[Arg4,Orn8]VP (12), and d[Arg4,Dab8]VP (13). All peptides were synthesized by the Merrifield solid-phase method. Their binding and functional properties were evaluated in rat AVP V1a, V1b, and V2 receptors and on the rat OT receptor expressed either in native tissues or in stably transfected cells. They were also examined in rat vasopressor, antidiuretic, and in in vitro (no Mg++) oxytocic assays. Functional studies performed on chinese hamster ovary cells expressing the different AVP/OT receptors confirm that d[Cha4,Lys8]VP (1), d[Cha4,Dab8]VP (3), d[Leu4,Lys8]VP (5), and d[Leu4,Dap8]VP (8) are the first selective agonists for the rat V1b receptor. These selective V1b agonists are promising new tools for studies of the role of the V1b receptor in the rat.  相似文献   

19.
The effects on social recognition memory of (Arg(8))-vasopressin (AVP-(1-9), [pGlu(4), Cyt(6)]AVP-(4-8) and oxytocin locally administered into the rat's septum were investigated. In the behavioural paradigm used, a juvenile intruder was presented to an adult resident male rat twice for 5 min, with an inter-exposure interval of 120 min. Peptide-free residents investigated the juvenile during the second encounter as long as during the first encounter. Intraseptal injection just after the first encounter with graded doses of (Arg(8))-vasopressin, [pGlu(4),Cyt(6)]AVP-(4-8) or oxytocin caused a decrease of social investigation, as compared to placebo treatment, indicating facilitation of social recognition. The least effective dose was 100pg, 200pg and 300pg respectively. The action of vasopressin was blocked by both d(CH(2))(5)[Tyr(Me)(2)]AVP and d(CH(2))(5)[D-Ile(2)Ile(4)]AVP, V(1) and V(2) vasopressinergic receptor antagonists, but not by desGly(NH(2))(9)-d(CH(2))(5)[Tyr(Me)(2)Thr(4)]-OVT, an oxytocinergic receptor antagonist. None of the antagonists blocked the oxytocin-facilitating action on social recognition. They also did not affect social recognition when injected alone. The effects of vasopressin seem to be mediated by vasopressinergic receptors dissimilar to those found in the periphery, while the receptors involved in the action of oxytocin remain to be elucidated.  相似文献   

20.
The dysregulation of arginine vasopressin (AVP) release and activation of vasopressin receptors plays an important role in disease conditions including polycystic kidney disease, congestive heart failure and dysmenorrhoea. The development of potent and selective vasopressin receptor ligands is needed to help dissect the function of the specific subtypes in disease pathogenesis. Here we report the pharmacological characterisation of PF-00738245 in in vitro binding and functional assays using cells expressing vasopressin V(?A), V(?B) or V? receptors. PF-00738245 inhibited AVP binding to the recombinant human vasopressin V(?A) receptor (K(i)=2.85 nM) and blocked AVP-induced rat aortic ring and human myometrial contraction (pK(B)=7.35 and 8.62 respectively). PF-00738245 was selective for the vasopressin V(1A) receptor by demonstrating minimal binding to vasopressin V(?B) (3.6% inhibition at 10 μM) or functional activity at vasopressin V? receptors (8.1% agonist and -8.4% antagonist activity at 10 μM) as well as the oxytocin receptor (46.3% antagonist activity at 10 μM). The in vivo pharmacological properties were tested orally in the rat and PF-00738245 dose dependently blocked the effect of AVP on a capsaicin-induced cutaneous flare response. Taken together the data support the use of PF-00738245 as a potent and selective vasopressin V(?A) receptor antagonist which may have utility in the treatment of disease conditions which are propagated by elevation in vasopressin V(?A) receptor signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号