首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rationale Previous research indicates that acute nicotine administration enhances the acquisition of contextual fear conditioning and trace cued fear conditioning. Pharmacological inhibition of α4β2 nicotinic acetylcholine receptors (nAChRs), but not α7 nAChRs, blocked the enhancing effect of nicotine on contextual fear conditioning. Similarly, genetic deletion of the β2 nAChR subunit but not the α7 nAChR subunit blocked the enhancing effect of nicotine on contextual fear conditioning. Objectives In the present study, nAChR subunit knockout mice were used to compare the involvement of β2 subunit-containing nAChRs and α7 subunit-containing nAChRs in the effects of nicotine on hippocampus-dependent trace cued fear conditioning and contextual fear conditioning. Methods β2 nAChR subunit knockout mice, α7 nAChR subunit knockout mice, and their wild-type littermates received either nicotine or saline 5 minutes before training and testing. Mice were trained using five conditioned stimulus (CS; 30 s, 85 dB white noise)—trace (30 s)—unconditioned stimulus (US; 2 s footshock) pairings. Freezing to the context and freezing to the CS were assessed 24 h later. Results Both contextual and trace cued fear conditioning were enhanced by nicotine administration in wild-type littermates and in α7 nAChR subunit knockout mice. In contrast, neither contextual fear conditioning nor trace cued fear conditioning was enhanced by nicotine administration in β2 nAChR subunit knockout mice. Conclusions These results suggest that β2 subunit-containing nAChRs but not α7 nAChR subunit-containing nAChRs are critically involved in the enhancing effect of nicotine on contextual and trace cued fear conditioning.  相似文献   

2.
Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term social interaction memory.  相似文献   

3.

Background:

Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses.

Methods:

We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated.

Results:

Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning.

Conclusion:

These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased.  相似文献   

4.
Rationale Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade.Objective This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans.Methods Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal.Results The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol.Conclusions These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.  相似文献   

5.
Davis JA  Gould TJ 《Psychopharmacology》2006,184(3-4):345-352
Rationale Previous research indicates that nicotine administration enhances hippocampus-dependent forms of learning, including contextual fear conditioning. This effect is blocked by mecamylamine, a noncompetitive, broad-spectrum nicotinic receptor antagonist. Objectives The present study extends previous research by further characterizing the nicotinic acetylcholinergic receptor (nAChR) subtypes through which nicotine acts to enhance contextual fear conditioning. Methods C57BL/6J mice were trained with two conditioned stimulus (CS; 30 s, 85-dB white noise)–unconditioned stimulus (US; 2 s, 0.57-mA foot shock) pairings and tested 24 h later for contextual and cued fear conditioning. The effects of the α7 nAChR antagonist methyllycaconitine (MLA; 1.00, 10.00, and 20.00 mg/kg) and the effects of the α4β2 nAChR antagonist dihydro-beta-erythroidine (DHBE; 1.00, 3.00, and 6.00 mg/kg) on cued and contextual fear conditioning and on the enhancement of contextual fear conditioning by nicotine (0.25 mg/kg) were examined. Results We demonstrate that DHBE (all doses) administration attenuates the enhancing effect of nicotine on contextual fear conditioning, and MLA administration has no significant effect on the enhancement of contextual fear conditioning by nicotine. Conclusions The data suggest that non-α7 nAChRs (most likely α4β2 nAChRs) underlie the enhancement of contextual fear conditioning by nicotine.  相似文献   

6.
Evidence from preclinical and clinical studies has shown that 5-HT(1A) receptor agonists have anxiolytic actions. The anxiolytic actions of 5-HT(1A) receptor agonists have been tested by our previous studies using fear conditioning. However, little is known about the brain regions of anxiolytic actions of 5-HT(1A) receptor agonists in this paradigm. In the present study, we investigated the effects of bilateral microinjections of flesinoxan, a selective 5-HT(1A) receptor agonist, into the hippocampus, amygdala and medial prefrontal cortex on the expression of contextual conditioned freezing and the defecation induced by conditioned fear stress in rats. These results reveal that both intrahippocampal and intraamygdala injections of flesinoxan decreased the expression of conditioned freezing, while injections into the medial prefrontal cortex did not. In addition, intraamygdala injection of flesinoxan attenuated the increased defecation induced by conditioned fear, but injections into the hippocampus and medial prefrontal cortex failed. These results suggest that flesinoxan exerts its anxiolytic actions in the fear conditioning through stimulations of the postsynaptic 5-HT(1A) receptors in the hippocampus and amygdala.  相似文献   

7.
The effects of pre-training or post-training subcutaneous injections of multiple doses of the non-competitive NMDA-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) on cued and contextual fear conditioning were examined in F344 rats. Pre-training injections of MK-801 (0.3 and 1.0 mg/kg) disrupted contextual fear conditioning but not cued fear conditioning. Post-training injections of MK-801 did not disrupt cued or contextual fear conditioning. In fact, the 0.3 mg/kg dose of MK-801 enhanced cued fear conditioning. Finally, rats were tested for MK-801-induced alterations in sensitivity to pain using the formalin test for nociception. MK-801 did not reduce sensitivity to pain. These results suggest that NMDA receptors are involved in acquisition of contextual fear conditioning but not in memory consolidation of the learned response.  相似文献   

8.
Cumulative evidence indicates that the hippocampus plays a time-limited role in contextual learning paradigms. Pharmacological studies have indicated that acquisition of background contextual cues during Pavlovian fear conditioning is dependent upon hippocampal function, whereas early inactivation of the hippocampus after training produces retrograde amnesia. When administered prior to contextual fear conditioning, agmatine (5 and 10 mg/kg, i.p.), an endogenous polyamine and N-methyl-D-aspartate (NMDA) receptor ligand found at excitatory synapses in the hippocampus, impaired the acquisition of contextual fear (measured as defensive freezing 26 hours later) without a reduction in baseline motor activity during training. Furthermore, ascending doses of agmatine were found not to exert analgesic effects on response thresholds to peripheral shock. This negated the possibility that the observed learning deficit resulted from a difference in perceived shock intensity. Post-training agmatine treatment produced a time-dependent impairment of consolidation, with subjects approaching a level of fear equivalent to that of a reference group as the delay of treatment increased (up to 6 hours). Since physiologically high levels of agmatine are able to inhibit NMDA receptor activity, these results suggest that polyamine modulation of NMDA receptors, most likely within the hippocampus, is required for the acquisition and consolidation of contextual fear stimuli.  相似文献   

9.
Combining beta-blockers with exposure therapy has been advocated to reduce fear, yet experimental studies combining beta-blockers with memory reactivation have had contradictory results. We explored how beta-blockade might affect the course of safety learning and the subsequent return of fear in a double-blind placebo-controlled functional magnetic resonance imaging study in humans (N=46). A single dose of propranolol before extinction learning caused a loss of conditioned fear responses, and prevented the subsequent return of fear and decreased explicit memory for the fearful events in the absence of drug. Fear-related neural responses were persistently attenuated in the dorsal medial prefrontal cortex (dmPFC), increased in the hippocampus 24 h later, and correlated with individual behavioral indices of fear. Prediction error-related responses in the ventral striatum persisted during beta-blockade. We suggest that this pattern of results is most consistent with a model where beta-blockade can prevent the return of fear by (i) reducing retrieval of fear memory, via the dmPFC and (ii) increasing contextual safety learning, via the hippocampus. Our findings suggest that retrieval of fear memory and contextual safety learning form potential mnemonic target mechanisms to optimize exposure-based therapy with beta-blockers.  相似文献   

10.
Current models of conditioned fear expression and extinction involve the basolateral amygdala (BLA), ventral medial prefrontal cortex (vmPFC), and the hippocampus (HPC). There is some disagreement with respect to the specific roles of these structures, perhaps due to subregional differences within each area. For example, growing evidence suggests that infralimbic (IL) and prelimbic (PL) subregions of vmPFC have opposite influences on fear expression. Moreover, it is the ventral HPC (vHPC), rather than the dorsal HPC, that projects to vmPFC and BLA. To help determine regional specificity, we used small doses of the GABAA agonist muscimol to selectively inactivate IL, PL, BLA, or vHPC in an auditory fear conditioning and extinction paradigm. Infusions were performed prior to extinction training, allowing us to assess the effects on both fear expression and subsequent extinction memory. Inactivation of IL had no effect on fear expression, but impaired the within-session acquisition of extinction as well as extinction memory. In contrast, inactivation of PL impaired fear expression, but had no effect on extinction memory. Inactivation of the BLA or vHPC impaired both fear expression and extinction memory. Post-extinction inactivations had no effect in any structure. We suggest a model in which amygdala-dependent fear expression is modulated by inputs from PL and vHPC, whereas extinction memory requires extinction-induced plasticity in IL, BLA, and/or vHPC.  相似文献   

11.
Recently, disruption of the endogenous cannabinoid (endocannabinoid, eCB) system was found to impair extinction in delay and contextual fear conditioning models. However, conditioning procedures used in that work precluded investigation of possible eCB effects on acquisition of learned fear. We therefore examined the role of eCBs in modulating fear responses using multiple-trial versions of trace (hippocampal-dependent) and delay (amygdala-dependent) Pavlovian fear conditioning. By administering the CB1 receptor antagonist AM251 (5 mg/kg, i.p) to C57/Bl/6 mice at various times, we systematically identified the stages of learning and memory (i.e. acquisition, consolidation, recall and extinction) that are modulated by eCB signaling. During tone (CS) - footshock (US) conditioning, AM251 enhanced acquisition of freezing behavior for both trace- and delay-conditioning protocols. CB1 antagonism also enhanced generalized fear (baseline freezing) and cued (CS) freezing during memory recall tests in a state-dependent manner for both trace and delay conditioned animals. Furthermore, in trace-conditioned animals, AM251 impaired extinction performance of both cued and generalized fear. CB1 antagonism did not affect short-term memory (STM) or long-term memory (LTM) consolidation processes. Together, these results suggest that during acquisition and recall of aversive learning, eCBs prevent the expression and retention of inappropriate generalized and learned responses. These findings have important implications for the therapeutic use of CB1 antagonists.  相似文献   

12.
Bupropion, a norepinephrine and dopamine reuptake inhibitor and nicotinic acetylcholine receptor antagonist, facilitates smoking cessation and reduces some symptoms of nicotine withdrawal. However, the effects of bupropion on nicotine withdrawal-associated deficits in learning remain unclear. The present study investigated whether bupropion has effects on contextual and cued fear conditioning following withdrawal from chronic nicotine or when administered alone. Bupropion was administered alone for a range of doses (2.5, 5, 10, 20 or 40 mg/kg), and dose-dependent impairments in contextual and cued fear conditioning were observed (20 or 40 mg/kg). Follow-up studies investigated if bupropion disrupted acquisition or expression of fear conditioning. Bupropion (40 mg/kg) administration on training day only produced deficits in contextual fear conditioning. Alternatively, bupropion (20 or 40 mg/kg) administration during testing dose-dependently produced deficits in contextual and cued fear conditioning. To test the effect of bupropion on nicotine withdrawal, mice were withdrawn from 12 days of chronic nicotine (6.3 mg/kg/day) or saline treatment. Withdrawal from chronic nicotine disrupted contextual fear conditioning; however, 5 mg/kg bupropion reversed this deficit. Overall, these results indicate that a low dose of bupropion can reverse nicotine withdrawal deficits in contextual fear conditioning, but that high doses of bupropion produce deficits in fear conditioning.  相似文献   

13.

Aim:

Histamine plays an important role in morphine addiction and memory-dependent behavior. However, little is known about the effect of histamine on the impairment of memory after morphine withdrawal. This study was designed to investigate the effect of histamine on memory impairment induced by morphine withdrawal in histidine decarboxylase knockout (HDC-KO) and wild-type (WT) mice.

Methods:

WT and HDC-KO mice were given subcutaneous morphine or saline twice daily for 5 consecutive days. The mice received a cued or contextual fear conditioning session 7 days after the last injection. During subsequent days, mice received 4 cued or contextual extinction sessions (one session per day). Western blot was used to assess extracellular signal-regulated kinase (ERK) phosphorylation in the amygdala and hippocampus.

Results:

Morphine withdrawal did not affect the acquisition of cued or contextual fear responses. It impaired cued but not contextual fear extinction. The acquisition of cued and contextual fear responses was accelerated in HDC-KO mice. Histamine deficiency aggravated the impairment of cued fear extinction induced by morphine withdrawal, whereas histamine (icv, 5 μg/mouse) reversed this effect. Morphine withdrawal decreased ERK phosphorylation in the amygdala after cued fear extinction, especially in HDC-KO mice.

Conclusion:

These results suggest that morphine withdrawal specifically impairs cued fear extinction and histamine ameliorates this impairment. Its action might be mediated by the modulation of ERK phosphorylation in the amygdala. Histamine should be explored for possible roles in the prevention or treatment of morphine abuse and relapse.  相似文献   

14.
BackgroundWhile healthy individuals and patients with anxiety disorders easily generalize fear responses, extinction learning is more stimulus specific. Treatments aiming to generalize extinction learning are urgently needed, since they comprise the potential to overcome stimulus specificity and reduce relapses, particularly in the face of stressful events.MethodsIn the current 3-day functional magnetic resonance imaging fear conditioning paradigm, we aimed to create a generalized extinction memory trace in 60 healthy men and women by presenting multiple sizes of 1 conditioned stimulus during extinction training (CS+G; generalized), whereas the other conditioned stimulus was solely presented in its original size (CS+N; nongeneralized). Recall was tested on the third day after pharmacological administration of either the stress hormone cortisol or placebo.ResultsAfter successful fear acquisition, prolonged activation of the amygdala and insula and deactivation of the ventromedial prefrontal cortex for CS+G compared with CS+N during extinction learning indicated sustained fear to the generalization stimuli. In line with our hypotheses, reduced amygdala activation was observed after extinction generalization on the third day in the contrast CS+G minus CS+N, possibly reflecting an attenuated return of fear. Cortisol administration before recall, however, blocked this effect.ConclusionsTaken together, the findings show that extinction generalization was associated with decreased activation of the fear network during recall after prolonged activation of the fear network during extinction learning. However, the generalization of the extinction memory did not counteract the detrimental effects of stress hormones on recall. Thus, stimulus-based extinction generalization may not be sufficient to reduce relapses after stressful experiences.  相似文献   

15.
After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.  相似文献   

16.
Interactions between nicotine and learning could contribute to nicotine addiction. Although previous research indicates that nicotine withdrawal disrupts contextual learning, the effects of nicotine withdrawal on contextual memories acquired before withdrawal are unknown. The present study investigated whether nicotine withdrawal disrupted recall of prior contextual memories by examining the effects of nicotine withdrawal on recall of nicotine conditioned place preference (CPP) and contextual fear conditioning. C57BL/6J mice trained in CPP exhibited a significant preference for an initially non-preferred chamber that was paired with 0.35 mg/kg nicotine. Following CPP, mice were implanted with mini-osmotic pumps containing 6.3 mg/kg/d nicotine or saline. Pumps were removed twelve days later and nicotine CPP was retested 24 h later. Mice withdrawn from chronic nicotine exhibited CPP, suggesting that older drug-context associations are not disrupted by nicotine withdrawal. One hour later, the same mice were trained in contextual and cued fear conditioning; nicotine withdrawal disrupted contextual but not cued fear conditioning. A subsequent experiment demonstrated that nicotine withdrawal did not disrupt recall of contextual or cued fear conditioning when acquisition occurred before nicotine withdrawal. These data suggest that nicotine withdrawal disrupts new contextual learning, but does not alter contextual learning that occurred before withdrawal.  相似文献   

17.
Rationale The cholinergic system has been shown to modulate contextual fear conditioning. However, with the exception of trace conditioning studies, most of the available data have focussed on independent context, i.e., context that do not compete with the conditioned stimulus to control for the conditioned response (interactive context).Objective In the present series of experiments, the effects of the muscarinic antagonist, atropine, were assessed when contextual fear memory interacts with cued fear memory to regulate conditioned response, using a Pavlovian degraded contingency preparation in rats. This preparation not only afforded an insight into simple Pavlovian associations but also enabled us to test for the processes of competition that made use of these associations to make an appropriate response to a stimulus [degraded contingency effect (DCE)].Methods In experiment 1, three doses of atropine [2.5, 5.0, and 10.0 mg/kg, intraperitoneally (i.p.)] were evaluated on male Sprague–Dawley rats. In experiment 2, physostigmine (0.037–0.3 mg/kg, i.p.) was injected after the administration of 5 mg/kg of atropine.Results Experiment 1A and its partial replication (experiment 1B) showed that at asymptotic level of training, atropine did not alter contextual and cued fear memories when the subjects were directly tested for them, whereas it suppressed the DCE for a 5 mg/kg dose. Indeed, atropine-induced suppression of the DCE was found to be an inverted U-shaped dose–response curve. Experiment 2 showed that physostigmine caused a dose-dependent reversal of the atropine-induced alleviation of the DCE, without altering the expression of simple cued and contextual fear memories.Conclusion These results evidence at asymptotic level of training a cholinergic modulation of the processing of interactive context, but not of independent ones. They are discussed in the framework of the mechanisms that are involved in both types of contextual processing.  相似文献   

18.
Estrogens are known to exert significant structural and functional effects in the hippocampus of adult rodents. In particular, 17β-estradiol can improve, impair, or have no effect on hippocampus-dependent learning and memory depending on dose and time of administration. The effects of other forms of estrogen, such as estrone and 17α-estradiol, on hippocampus-dependent learning have not been as thoroughly investigated. Therefore, the purpose of this study was to investigate the effects of 17β-estradiol, estrone, and 17α-estradiol at three different doses on two different tasks: hippocampus-dependent contextual fear conditioning and hippocampus-independent cued fear conditioning. Adult ovariectomized female rats were injected with one of the estrogens at one of the three doses 30 mins before conditioning to assess the rapid effects of these estrogens on acquisition. Twenty-four hours later memory for the context was examined and 1 h later memory for the cue (tone) was assessed. Levels of synaptophysin were examined in the dorsal hippocampus of rats to identify a potential synaptic correlate of hormonal effects on contextual fear conditioning. Low 17β-estradiol and 17α-estradiol enhanced, whereas high 17β-estradiol and 17α-estradiol impaired, contextual fear conditioning. Only the middle dose of estrone severely impaired contextual fear conditioning. Estrogens did not alter performance in the hippocampus-independent cued task. Synaptophysin expression was increased by estrone (at a middle and high dose) and 17β-estradiol (at a middle dose) in the CA3 region of the hippocampus and was not correlated with cognition. The results of this study indicate that estradiol can positively or negatively influence hippocampus-dependent learning and memory, whereas estrone impairs hippocampus-dependent learning and memory in a dose-dependent manner. These results have important therapeutic implications, as estrone, a main component of a widely used hormone replacement therapy, was shown to have either a negative effect or no effect on learning and memory. It may be possible to use 17α-estradiol and lower doses of estrogens as potential alternatives in hormone replacement therapies.  相似文献   

19.
The neural circuit linking the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA) has crucial roles in both the acquisition and the extinction of fear. However, the mechanism by which this circuit encodes fear and extinction remains unknown. In this study, we monitored changes in the magnitude of evoked field potentials (EFPs) in the mPFC–BLA and BLA–mPFC pathways following auditory fear conditioning and extinction, in freely moving rats. We report that extinction of fear is mediated by depression of the EFPs in the mPFC–BLA and by potentiation in the reciprocal pathway of BLA–mPFC. Interestingly, reinstatement of fear was associated with recovery of freezing and with reversal of the changes in EFPs that were observed following extinction in both pathways. The findings indicate that the mPFC–BLA circuit expresses differential changes following fear and extinction and point to dynamic and plastic changes underlying fear, extinction, and reinstatement. Manipulations targeting these different types of plasticity could constitute a therapeutic tool for the treatment of anxiety disorders.  相似文献   

20.
BackgroundHippocampus and entorhinal cortex are key players of learning and memory. Despite their established role in memory processes, the contribution of muscarinic receptor activity in these brain regions during memory retrieval remains elusive. This study was aimed to assess the role of hippocampal CA1 and medial entorhinal cortex muscarinic receptors in memory retrieval.MethodMice were implanted with bilateral cannulas in the hippocampus CA1 and medial entorhinal cortex. After recovery they were trained for Morris water maze test, novel object recognition test and contextual fear conditioning. Scopolamine was infused 10 min prior to retrieval test.ResultsPre-test scopolamine infusion in hippocampal CA1 and medial entorhinal cortex significantly reduced overall exploration of objects (p < 0.001). Similarly, pre-retrieval inactivation dorsal hippocampal CA1 and medial entorhinal cortex muscarinic activity caused significant impairment of spatial and fear memories retrieval (p < 0.05).ConclusionThese findings showed vital role of muscarinic activity in retrieving hippocampal and entorhinal cortex dependent memories and suggest a possible target for treating retrograde amnesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号