首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Overexpression of TRIP13, a member of the AAA‐ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β‐catenin and EGFR signaling pathways. Evaluation of formalin‐fixed paraffin‐embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient''s gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid‐forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR‐AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial–mesenchymal transition. Cell‐based assays revealed that miR‐192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13‐mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.

Abbreviations

CIN
chromosomal instability
CRC
colorectal cancer
EMT
epithelial–mesenchymal transition
FFPE
formalin‐fixed, paraffin‐embedded
LEF
lymphoid enhancer factor
MS
microsatellite
MSI
microsatellite instable
MSS
microsatellite stable
NSG
NOD/SCID/IL2γ receptor‐null
NT
nontargeting
SAC
spindle assembly checkpoint
TCF
T‐cell factor
TRIP13
thyroid hormone receptor interactor 13
UAB
University of Alabama at Birmingham
  相似文献   

2.
3.
The Wnt/β‐catenin signaling pathway plays a key role in development and carcinogenesis. Although some target genes of this signaling have been identified in various tissues and neoplasms, the comprehensive understanding of the target genes and their roles in the development of human cancer, including hepatoma and colorectal cancer remain to be fully elucidated. In this study, we searched for genes regulated by the Wnt signaling in liver cancer using HuH‐7 hepatoma cells. A comparison of the expression profiles between cells expressing an active form of mutant β‐catenin and cells expressing enhanced green fluorescent protein (EGFP) identified seven genes upregulated by the mutant β‐catenin gene (CTNNB1). Among the seven genes, we focused in this study on ODAM, odontogenic, ameloblast associated, as a novel target gene. Interestingly, its expression was frequently upregulated in hepatocellular carcinoma, colorectal adenocarcinoma, and hepatoblastoma. We additionally identified a distant enhancer region that was associated with the β‐catenin/TCF7L2 complex. Further analyses revealed that ODAM plays an important role in the regulation of the cell cycle, DNA synthesis, and cell proliferation. These data may be useful for clarification of the main molecular mechanism(s) underlying these cancers.  相似文献   

4.
5.
Cancer stem cells (CSCs) and EMT-type cells, which share molecular characteristics with CSCs, have been believed to play critical roles in tumor metastasis. Although much progress has been garnered in elucidating the molecular pathways that trigger EMT, stemness and metastasis, a number of key mechanistic gaps remain elusive. In the study, miR-371-5p was obviously down-regulated in primary CRC tissues compared with matched adjacent normal mucosa and correlated significantly with differentiation, tumor size, lymphatic and liver metastases. MiR-371-5p could attenuate proliferation, invasion in vitro and metastasis in vivo in CRC cells. It also suppressed EMT by regulating Wnt/β-catenin signaling and strongly decreased the CRC stemness phenotypes. Moreover, demethylation of SOX17 induced miR-371-5p expression and consequently suppressed its direct target SOX2 in CRC cells. MiR-371-5p was necessary for SOX17 mediated cancer-related traits and SOX2 was a functional target of miR-371-5p. A positive relationship between SOX17 and miR-371-5p expression and a negative one between miR-371-5p and SOX2 expression were observed in CRC cell lines and tissues. In conclusion, we identified miR-371-5p as an important “oncosuppressor” in CRC progression and elucidated a novel mechanism of the SOX17/miR-371-5p/SOX2 axis in the regulation of EMT, stemness and metastasis, which may be a potential therapeutic target.  相似文献   

6.
Our previous big data analyses showed a high level of association between chitinase 3 like1 (CHI3L1) expression and lung tumor development. In the present study, we investigated whether a CHI3L1‐inhibiting chemical, 2‐({3‐[2‐(1‐cyclohexen‐1‐yl)ethyl]‐6,7‐dimethoxy‐4‐oxo‐3,4‐dihydro‐2‐quinazolinyl}sulfanyl)‐N‐(4‐ethylphenyl)butanamide (K284), could inhibit lung metastasis and studied its mechanism of action. We investigated the antitumor effect of K284 both in vitro and in vivo. K284 (0.5 mg·kg−1 body weight) significantly inhibited lung metastasis in in vivo models after injection of murine melanoma cells (B16F10) or adenocarcinomic human alveolar basal epithelial cells (A549). K284 significantly and concentration‐dependently also inhibited cancer cell proliferation and migration in the A549 and H460 lung cancer cell lines. We found that the binding of K284 to the chitin‐binding domain (CBD) of CHI3L1 prevented the binding of CHI3L1 to its receptor, interleukin‐13 receptor subunit alpha‐2 (IL‐13Rα2), thereby suppressing the CHI3L1 signal. This blocking of the CHI3L1‐IL‐13Rα2 signal caused the inhibition of c‐Jun N‐terminal kinase (JNK)‐activator protein 1 (AP‐1) signals, resulting in the prevention of lung metastasis and cancer cell growth. Our data demonstrate that K284 may serve as a potential candidate anticancer compound targeting CHI3L1.  相似文献   

7.
A previous bioinformatics study suggested that circular RNA 0001666 (circ_0001666) and its target microRNA (miR)-1229 were associated with colorectal cancer (CRC) pathogenesis. However, the role of this interaction in the regulation of CRC cell malignancy remains unclear. Thus, the aim of the present study was to examine the interaction between circ_0001666 and miR-1229, and its effects on CRC cell malignancy. circ_0001666 overexpression or knockdown plasmids were transfected into the HT-29 and HCT-116 cell lines. In addition, in rescue experiments, circ_000166 or miR-1229 overexpression plasmids were transfected into the HT-29 cell line, either alone or in combination. Following transfection, cell proliferation, apoptosis, invasion and the number of CD133+ cells were analyzed. The protein expression level of proteins in the Wnt/β-catenin pathway was also examined. In both HT-29 and HCT-116 cell lines, circ_0001666 overexpression increased apoptosis, whilst inhibiting cell proliferation and invasion, and reducing the frequency of CD133+ cells. By contrast, circ_0001666 knockdown reduced apoptosis, but increased cell proliferation and the number of CD133+ cells. However, cell invasion remained unaffected. In addition, circ_0001666 expression levels negatively regulated those of miR-1229, whereas miR-1229 expression did not affect circ_0001666, in both the HT-29 and HCT-116 cell lines. Furthermore, a luciferase reporter assay confirmed that miR-1229 directly bound to circ_0001666. In the HT-29 cell line, miR-1229 overexpression activated the Wnt/β-catenin pathway, and promoted cell proliferation, invasion and stemness, while suppressing cell apoptosis. In addition, miR-1229 overexpression reversed the effects of circ_0001666 overexpression. In conclusion, circ_0001666 suppresses CRC cell proliferation, invasion and stemness by inhibiting the Wnt/β-catenin signaling pathway by targeting miR-1229, and may represent a potential target for CRC treatment.  相似文献   

8.
Solasodine is a main active component isolated from Solanum incanum L. that performs a wide range of functions containing anti‐oxidant, anti‐infection, and neurogenesis promotion. In this study, we explored the influence of solasodine on three types of human colorectal cancer (CRC) cell lines. The results show that solasodine prohibited CRC cell proliferation dose‐ and time‐dependently and impeded CRC cell motility by downregulating MMPs. Solasodine was also found to fuel caspase‐cascade reaction and increase the ratio between Bax and Bcl‐2 so as to induce CRC cell apoptosis. When cells were pretreated with AKT activator (insulin‐like growth factor‐1) followed by solasodine, the solasodine‐induced apoptosis was partially abrogated by insulin‐like growth factor‐1. Moreover, solasodine hindered tumor development and stimulated similar mechanisms in vivo. In general, our study provides the first evidence that solasodine has a suppressive effect on CRC cells and that this agent may be a novel therapeutic drug for CRC treatment.  相似文献   

9.
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease‐specific survival, and disease‐free survival. Gain‐of‐function and loss‐of‐function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF‐κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin‐bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF‐κB signaling. Through activation of NF‐κB, LINC01578 further upregulated YY1 expression. Through activation of the NF‐κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF‐κB/YY1 formed a positive feedback loop. Blocking NF‐κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF‐κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.

Abbreviations

ChIP
chromatin immunoprecipitation
ChIRP
chromatin isolation by RNA purification
COAD
colon adenocarcinoma
CPAT
Coding‐Potential Assessment Tool
CPC
coding potential calculator
DFS
disease‐free survival
DSS
disease‐specific survival
EdU
5‐ethynyl‐2''‐deoxyuridine
H&E
hematoxylin and eosin
HR
hazard ratio
IHC
immunohistochemistry
IKK
IκB kinase
IκB
inhibitory κB
lncRNAs
long noncoding RNAs
NC
negative control
NCBI
National Center for Biotechnology Information
NF‐κB
nuclear factor kappa B
qRT‐PCR
quantitative real‐time polymerase chain reaction
RIP
RNA immunoprecipitation
RPISeq
RNA‐Protein Interaction Prediction
TCGA
The Cancer Genome Atlas
TNF
tumor necrosis factor
TUNEL
TdT‐mediated dUTP Nick‐End Labeling
YY1
Yin Yang 1
  相似文献   

10.
11.
The effect of hepatitis C virus p7 trans‐regulated protein 3 (P7TP3) in the development of hepatocellular carcinoma (HCC) is still unknown. The present study aimed to investigate the role and mechanism of P7TP3 in HCC. P7TP3 was significantly decreased in HCC tissues when compared with corresponding liver tissues immediately around the tumor (LAT) from seven HCC patients. Fewer and smaller colonies originated from HepG2‐P7TP3 cells when compared to HepG2‐NC cells. Overexpression of P7TP3 in HepG2 cells significantly repressed the growth of HCC xenografts in nude mice. Furthermore, wound‐healing tests, Transwell assays, Matrigel Transwell assays, adhesion assays, CCK‐8 assays, flow cytometry and western blotting analysis showed that P7TP3 protein expression inhibited migration, invasion, adhesion, proliferation and cell cycle progression in HCC cell lines. Moreover, P7TP3 suppressed the activity of the Wnt/β‐catenin signaling pathway, and was restored by Wnt3a, which is an activator of the Wnt/β‐catenin signaling pathway. Consistently, β‐catenin was highly expressed by P7TP3 silencing, and restored by XAV939, an inhibitor of the Wnt/β‐catenin signaling pathway. Finally, microRNA (miR)‐182‐5p suppressed the expression of target gene P7TP3 by directly interacting with the 3′‐UTR region. Taken together, P7TP3, the direct target gene of miR‐182‐5p, inhibited HCC by regulating migration, invasion, adhesion, proliferation and cell cycle progression of liver cancer cell through the Wnt/β‐catenin signaling pathway. These findings provide strong evidence that P7TP3 functions as a new promising tumor suppressor in HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号