首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hauer PJ  Yeary TJ  Rosenbusch RF 《Vaccine》2006,24(2):124-132
The immunogenic effects of the beta toxin of Clostridium haemolyticum were investigated in guinea pigs. Guinea pigs passively immunized with toxin-neutralizing monoclonal antibodies were protected from a 100 LD(50) spore challenge that was lethal to nonvaccinated controls. Guinea pigs actively immunized with varying doses of immunoaffinity-purified native beta toxin were similarly protected. In a third experiment, a recombinant toxoid was prepared from E. coli expressing the beta toxin gene. Guinea pigs immunized three times with recombinant toxoid also were protected against challenge. In each experiment, protection was correlated to the presence of anti-beta toxin antibodies in the serum. Taken together, these results indicate that a neutralizing antibody response to the beta toxin is a key component of protective immunity to C. haemolyticum in guinea pigs.  相似文献   

2.
Wu L  Jiang L  Zhou Z  Fan J  Zhang Q  Zhu H  Han Q  Xu Z 《Vaccine》2003,21(27-30):4390-4398
We expressed two immunogenic dominant epitopes of foot-and-mouth disease virus (FMDV) serotype O in tobacco plant using a vector based on a recombinant tobacco mosaic virus (TMV). The recombinant viruses TMVF11 and TMVF14 contained peptides of 11 and 14 amino acid residues, respectively, from FMDV VP 1 fused to the open reading frame of TMV coat protein (CP) gene between amino acid residues 154 and 155. TMVF11 and TMVF14 systemically infected tobacco plant and produced large quantities of stable progeny viral particles assembled with the modified CP subunits. Guinea pigs, mice and swine were used to test the protective effects of the recombinant viruses against FMDV infection. Most guinea pigs were protected against FMDV challenge after parenteral injection with TMVF11, TMVF14, or the mixture TMVF11/TMVF14, but not wtTMV. The TMVF11/TMVF14 mixture protected all animals when challenged with 150 guinea pig 50% infection dosage (GPID(50)) FMDV. Oral administration of the TMVF11/TMVF14 mixture (3mg total) protected 3/8 guinea pigs against the same FMDV challenge. Most of the suckling mice parenterally injected with antiserum from guinea pigs immunized with the TMVF11/TMVF14 mixture, but not with wtTMV, were also protected against FMDV challenge with 10 suckling mouse 50% lethal dosage (SMLD(50)), indicating that antibodies produced in guinea pigs immunized with the TMVF11/TMVF14 mixture specifically neutralized FMDV. Western blot analysis indicated that antiserum from those guinea pigs reacted with the FMDV VP1 protein. The protective effect of TMVF11 was also demonstrated in swine, where preliminary tests showed that nine pigs immunized with TMVF11 in three experiments were protected against FMDV challenge with 20 minimal infecting dose (MID).  相似文献   

3.
An animal exposure experiment which simulated a workplace exposure situation was made to compare toluene diisocyanate (TDI) concentrations which resulted in antibody production with those which elicited pulmonary responses. Groups of guinea pigs were exposed to inhaled TDI from 0.02 to 1.0 ppm (g/g) for 3 h/day on 5 consecutive days. Three weeks later the animals were challenged with 0.02 ppm of free TDI for 15 min. TDI specific antibodies and pulmonary responses were evaluated. Specific antibody production showed a linear correlation to TDI concentration at induction. Most of the animals exposed to TDI levels above 0.2 ppm displayed significant pulmonary responses, but no correlation was found between TDI concentration at induction and the intensity of pulmonary response upon challenge to free TDI. These results indicated that there was a threshold concentration of 0.02 ppm TDI for antibody production and for the development of pulmonary response. It was also found that exposure to TDI at a level lower than its threshold concentration for sensitization may elicit a response in previously sensitized individuals.  相似文献   

4.
Oaks EV  Turbyfill KR 《Vaccine》2006,24(13):2290-2301
Over 160 million cases of shigellosis occur annually worldwide, with the two most prevalent species being Shigella flexneri and S. sonnei. Protective immunity against Shigella infection is primarily directed at the lipopolysaccharide (LPS) of the homologous serotype, so it may be necessary to combine monovalent vaccines for multiple Shigella serotypes to construct a multivalent vaccine against predominant serotypes. Recently, we described a subcellular vaccine isolated from virulent S. flexneri, consisting of proteins (including the invasins IpaB and IpaC) and LPS, that protected mice and guinea pigs from homologous challenge. In the present study, a bivalent Invaplex vaccine consisting of S. flexneri 2a and S. sonnei Invaplex was used to intranasally immunize mice and guinea pigs to determine the bivalent vaccine's immunogenicity and protective capacity against challenge with either strain. Mice and guinea pigs immunized with the bivalent S. flexneri 2a/S. sonnei Invaplex vaccine produced serum IgA and IgG antibodies to S. flexneri LPS, S. sonnei LPS, the homologous Invaplex and the water extract antigens (invasins) as determined by ELISA. The immune responses in animals immunized with the bivalent vaccine were similar to responses in animals immunized with the monovalent Invaplex vaccines. Mice and guinea pigs immunized with the bivalent vaccine were protected from a lethal lung challenge (mice, P<0.001) or severe keratoconjunctivitis (guinea pigs, P< or = 0.002) after challenge with either S. flexneri 2a or S. sonnei. Animals immunized with monovalent Invaplex vaccines were protected (P<0.001) against the homologous agent at levels comparable to the bivalent vaccine. After challenge, immunized animals demonstrated boosts in antibody titers to LPS, water extract antigens and Invaplex. These studies indicate that the subcellular Invaplex vaccine will be readily adaptable to a multivalent vaccine approach for shigellosis.  相似文献   

5.
The immunogenicity and efficacy of a herpes simplex virus type 2 glycoprotein D (gD2) DNA vaccine formulated with bupivacaine was evaluated using murine and guinea pig models of genital herpes. Animals received three doses of 100 microg of gD2 plasmid or control plasmid intramuscularly prior to intravaginal challenge with HSV-2. Immunization induced HSV ELISA and neutralizing antibody in serum and ELISA antibody in the vaginal secretions of all animals evaluated. Following intravaginal HSV-2 challenge, vaginal viral replication was reduced in both models with peak reductions of greater than 99%. Immunization also decreased the number of animals developing any clinical disease (p < 0.001) and the severity of the acute disease (total lesion score 6.4 versus 0.6 in guinea pigs, p < 0.001). Further recurrent lesion days were reduced from 14.5 to 4.9 days in immunized guinea pigs (p < 0.001). DNA immunization with gD2 + bupivacaine was effective in reducing clinical disease and viral replication in both guinea pigs and mice.  相似文献   

6.
The basis for efficacy of the recombinant botulinum vaccine, serotypes A and B (rBV A/B) is that neutralizing antibodies induced by vaccination bind to botulinum neurotoxin complex serotype A, subtype A1 (BoNT/A1) and serotype B, subtype B1 (BoNT/B1) and prevent their actions at cholinergic neurons. The protective capacity of BoNT/A1 and BoNT/B1 neutralizing antibodies derived from the serum of clinical volunteers vaccinated with rBV A/B was evaluated in a guinea pig passive transfer model and a mouse bioassay. Guinea pigs passively immunized to achieve circulating neutralizing antibody concentration (NAC) levels representing the lowest measurable concentrations for BoNT/A1 and BoNT/B1 were protected against an intramuscular (IM) challenge more than 10 times the guinea pig IM median lethal dosage for BoNT/A1 and BoNT/B1. The passively immunized guinea pigs were asymptomatic during the 14-day post-challenge observation period. Control guinea pigs died within 48 h after challenge. Calculation of neutralizing efficiency of antibodies using results from a mouse bioassay indicated that a simple linearly proportional relationship does not exist between NAC level and the amount of BoNT neutralized. Based on this finding, estimates of level of protection must consider variability in BoNT neutralizing efficiency at different NAC levels. The protective capacity of human BoNT/A1 and BoNT/B1 neutralizing antibodies induced by rBV A/B vaccination was verified in a guinea pig passive immunization model. Additionally, estimates of the neutralizing efficiency have been established for BoNT/A1 and BoNT/B1 neutralizing antibodies obtained from clinical volunteers vaccinated with the rBV A/B.  相似文献   

7.
The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a > IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.  相似文献   

8.
The aim of this study was to ascertain whether the FN concentrations in plasma and in CSF are related to the symptomatic status of EAE induced in guinea pigs by myelin basic protein. Guinea pigs were immunized with myelin basic proteins in Freund's complete adjuvant, and after the appearance of neurological symptoms, the plasmas and CSFs from these animals were individually collected. The FN concentrations in these specimens were determined by a solid-phase inhibitory radioimmunoassay using a rabbit antibody specific for guinea pig FN. In plasmas from EAE induced animals, the average value of FN concentrations was lower than that from control animals, but in CSFs from EAE induced animals the average value was slightly higher than that from control animals. The FN concentration in plasma from individual animals with or without EAE was not related to that in the respective CSF, and no direct correlation between the symptomatic severity of EAE and the FN concentration in CSF from the respective animals was observed. These results indicate that the FN concentrations in CSFs probably increase in association with the induction of EAE in guinea pigs, but the levels are highly variable in individual cases, and that the FN concentration in CSF is not available to use as a consistent indicator for EAE in guinea pigs.  相似文献   

9.
《Vaccine》2019,37(47):6942-6950
Ebola virus (EBOV) is among the deadliest pathogens known to man causing infrequent outbreaks of hemorrhagic disease. In humans, the case fatality rates in the outbreaks can reach 90%. During the West African epidemic almost 30,000 people were infected and of these over 11,000 fatalities were reported. Currently, we are facing an uncontained larger outbreak in the Democratic Republic of the Congo. Even though EBOV was discovered in 1976, extensive efforts to develop countermeasures, particularly therapeutics and vaccines, started late and there is still no FDA-approved product available. Nevertheless, one candidate vaccine, the rVSV-ZEBOV, is being used in clinical trials during the current outbreak with the hope of ending the human transmission chains. However, adverse reactions to administration of some EBOV vaccines have been reported; therefore, we have developed a safe and efficacious formulation of insect-cell derived adjuvanted protein vaccines. Vaccine candidates containing the EBOV glycoprotein with or without matrix proteins VP24 and VP40 formulated with one of three different adjuvants were tested in guinea pigs for immunogenicity and efficacy against lethal EBOV challenge. The results demonstrated that these vaccine candidates engendered high titers of antigen-specific antibodies in immunized animals and two of these vaccine candidates afforded complete or nearly complete protection against lethal challenge. Interestingly, we found a sex bias in partially protected immunized groups with male guinea pigs succumbing to disease and females surviving. In summary, we developed a safe and immunogenic adjuvanted subunit vaccine uniformly protective against EBOV disease in guinea pigs.  相似文献   

10.
Jones SM  Griffin KF  Hodgson I  Williamson ED 《Vaccine》2003,21(25-26):3912-3918
A fully recombinant sub-unit vaccine comprising the protein antigens rF1 + rV has been demonstrated to protect immunised guinea pigs against exposure to 10(5) colony-forming units (CFU) of virulent Yersinia pestis. Additionally, IgG purified from rF1 + rV-immunised guinea pig serum, protected the mouse by passive immunisation against challenge with Y. pestis whereas IgG purified from the serum of guinea pigs immunised with a licensed killed whole cell (KWC) vaccine for plague, protected less well. Guinea pigs immunised with the licensed killed whole cell vaccine developed an IgG titre for fraction 1 (F1) but not for V antigen. The differential in protection conferred on the mouse by passive immunisation with guinea pig IgG, was abrogated by the use of IgG purified from guinea pigs immunised with killed whole cell vaccine supplemented with V antigen. These findings indicate that the reduced efficacy of the licensed killed whole cell vaccine formulation previously observed in the mouse can be attributed to lack of the V antigen. Cross-protection of the mouse with guinea pig IgG suggests that the recognition of neutralising epitopes in the F1 and V proteins is conserved between these two species.  相似文献   

11.
The development of a successful recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vector-based vaccine for human immunodeficiency virus type 1 (HIV-1) requires the induction of high levels of HIV-1-specific immunity while at the same time maintaining immunity to tuberculosis. To examine a combined vaccination strategy for enhancement of immune responses specific for HIV-1, guinea pigs were inoculated with either a single or combination intradermal (i.d.), intrarectal (i.r.) and intranasal (i.n.) administration of rBCG-pSOV3J1 which secretes a chimeric protein of HIV-1 V3J1 peptide and alpha-antigen. Significant level of delayed-type hypersensitivity to both V3J1 peptide and tuberculin was induced in guinea pigs inoculated with human doses of rBCG-pSOV3J1 by a combination of intrarectal and intradermal routes. Guinea pigs inoculated by combined routes also had significantly higher titers of HIV-1-specific serum IgG and IgA compared with those animals immunized only intrarectally, which led to the enhanced neutralization activity against HIV-1(MN). In addition, the induction of high levels of IFNgamma and interleukin-2 (IL-2) mRNA in PBMC, splenocytes, and intraepithelial lymphocytes from the immunized animals was detected until at least 110 weeks post-inoculation. These results suggest that enhanced immune responses specific for HIV-1 are efficiently induced by combined intrarectal and intradermal immunization with rBCG-HIV, and antigen-specific Th1-type memory cells are maintained for more than 2 years in the immunized animals. Thus, inoculation with rBCG-HIV by combined routes represents an effective vaccination strategy to elicit high levels of HIV-1-specific immune responses.  相似文献   

12.
Cigarette smoke (CS) causes oxidative damage and tea polyphenols have strong antioxidant properties. Therefore, we studied the effect of a black tea (BT) infusion on CS-induced oxidative damage of proteins both in vitro and in vivo. In the in vitro experiment, bovine serum albumin (BSA) or a guinea pig tissue microsomal suspension was incubated with an aqueous extract of CS (CS-solution) in the presence or absence of the BT infusion. Protein oxidation was measured by immunoblotting of the dinitrophenylhydrazone derivatives of the protein carbonyls followed by densitometric scanning. Protein degradation was assessed by SDS-PAGE. BT prevented (P < 0.05) CS-induced oxidation of BSA and oxidative degradation of guinea pig lung, liver and heart microsomal proteins. This was also observed when the BT infusion was replaced by its components, i.e, flavonols, theaflavins, thearubigins and catechins. BT prevented microsomal protein degradation by inhibiting oxidative modification of the proteins. The antioxidant effect of BT was similar to that of green tea. In the in vivo experiment, partially ascorbate-deficient guinea pigs were subjected to CS exposure from 5 cigarettes/(guinea pig. d) for 7 d and given water or the BT infusion (20 g/L) to drink. Guinea pigs exposed to CS and given water had extensive oxidation accompanied by 39, 40 and 30% losses (P < 0.05) of microsomal proteins of lung, liver and heart, respectively. However, when the CS-exposed guinea pigs consumed the BT infusion instead of water, the oxidation of microsomal proteins was reduced (P < 0.05) approximately 90, 97 and 70% in lung, liver and heart, respectively. Protein loss was reduced (P < 0.05) approximately 92, 98 and 90% in lung, liver and heart, respectively. The results, if extrapolated to humans, would indicate that regular intake of tea may protect smokers from CS-induced oxidative damage and consequent degenerative diseases.  相似文献   

13.
Thirteen guinea pigs were immunized with TDI-BSA conjugates employing CFA or AHG adjuvant or only adjuvant as a control via intraperitoneal route. After 5-8 weeks, 30.8% of the sensitized animals experienced asthma attacks after a TDI-HSA challenge. The dynamic airway pulmonary ventilation imaging with Tc-99m-DTPA showed an accumulation of radioactivity. The radioactivity ratio of trachea or bronchus/lung was increased 6.46-29 times in contrast with before challenge. A specific IgE and IgG type antibodies were developed in 87.5% of TDI-BSA/CFA sensitized animals and 40% of TDI-BSA/AHG sensitized animals by passive cutaneous anaphylaxis (PCA). Results of these suggested that allergic response play an important role in the mechanism of TDI-induced asthma.  相似文献   

14.
In this study, a new subunit vaccine that comprised native F1 and recombinant rV270 was evaluated for protective efficacy using mouse, guinea pig and rabbit models in comparison with the live attenuated vaccine EV76. Complete protection against challenging with 106 colony-forming units (CFU) of virulent Yersinia pestis strain 141 was observed for mice immunized with the subunit vaccines and EV76 vaccine. In contrast, the subunit vaccine recipes VII (F1-20 μg + rV270-10 μg) and IX (F1-40 μg + rV270-20 μg) and EV76 vaccine provided 86%, 79% and 93% protection against the same level of challenge in guinea pigs and 100%, 83% and 100% protection in rabbits, respectively. The immunized mice with the vaccines had significantly higher IgG titres than the guinea pigs and rabbits, and the immunized guinea pigs developed significantly higher IgG titres than the rabbits, but the anti-F1 response in guinea pigs was more variable than in the mice and rabbits, indicating that guinea pig is not an ideal model for evaluating protective efficacy of plague subunit vaccine, instead the rabbits could be used as an alternative model. All the immunized animals with EV76 developed a negligible IgG titre to rV270 antigen. Furthermore, analysis of IgG subclasses in the immunized animals showed a strong response for IgG1, whereas those receiving EV76 immunization demonstrated predominant production of IgG1 and IgG2a isotypes. The subunit vaccine and EV76 vaccine are able to provide protection for animals against Y. pestis challenge, but the subunit vaccines have obvious advantages over EV76 in terms of safety of use.  相似文献   

15.
邻苯二甲酸酐哮喘实验动物模型制备及病理学观察   总被引:1,自引:0,他引:1  
45只体重250—300克的豚鼠用邻苯二甲酸酐—牛血清白蛋白注射免疫,15只正常豚鼠作对照。吸入邻苯二甲酸酐—人血清白蛋白后,实验组有40只动物(88%)出现哮喘发作。用其中4只哮喘动物血清给正常未致敏豚鼠做被动转移试验,亦同样诱发致哮喘。哮喘动物的病理学观察表现为支气管壁的嗜酸性粒细胞浸润,管腔中有由嗜酸性粒细胞、粘液及少许脱落的上皮细胞组成的栓塞,肺泡腔扩大,肺泡壁变薄等一系列符合一般变应性哮喘的形态学改变。  相似文献   

16.
《Vaccine》2015,33(21):2449-2456
Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease. Capsid (Cap) protein of PCV2 is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. GM-CSF is an immune adjuvant that enhances responses to vaccines. In this study, recombinant baculoviruses Ac-Cap and Ac-Cap-GM-CSF expressing the Cap protein alone and co-expressing the Cap protein and porcine GM-CSF, respectively, were constructed successfully. The target proteins were analyzed by western blotting and IFA. Further, these proteins were confirmed by electron microscopy, which showed that Cap proteins could self-assemble into virus-like particles having diameters of 17–25 nm. Animal experiments showed that pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies than pigs immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; P < 0.05). After PCV2 wild strain challenged, Pigs receiving the Cap-GM-CSF subunit vaccine showed significantly higher average daily weight gain after wild-type PCV2 challenge than pigs receiving the other three vaccines (P < 0.05). None of PCV2 DNA was detected in all immunized animals, except control animals immunized with phosphate-buffered saline. These results indicated that GM-CSF was a powerful immunoadjuvant for PCV2 subunit vaccines because it enhanced humoral immune response and improved immune protection against PCV2 infection in pigs. Thus, the novel Cap-GM-CSF subunit vaccine has the potential to be used as an effective and safe vaccine candidate against PCV2 infection.  相似文献   

17.

Background

Cytomegalovirus (CMV) is the most common cause of congenital virus infection. Infection of guinea pigs with guinea pig CMV (GPCMV) can provide a useful model for the analysis of its pathogenesis as well as for the evaluation of vaccines. Although glycoprotein B (gB) vaccines have been reported to reduce the incidence and mortality of congenital infection in human clinical trials and guinea pig animal models, the mechanisms of protection remain unclear.

Methods

To understand the gB vaccine protection mechanisms, we analyzed the spread of challenged viruses in the placentas and fetuses of guinea pig dams immunized with recombinant adenoviruses expressing GPCMV gB and β-galactosidase, rAd-gB and rAd-LacZ, respectively.

Results

Mean body weight of the fetuses in the dams immunized with rAd-LacZ followed by GPCMV challenge 3 weeks after immunization was 78% of that observed for dams immunized with rAd-gB. Under conditions in which congenital infection occurred in 75% of fetuses in rAd-LacZ-immunized dams, only 13% of fetuses in rAd-gB-immunized dams were congenitally infected. The placentas were infected less frequently in the gB-immunized animals. In the placentas of the rAd-LacZ- and rAd-gB-immunized animals, CMV early antigens were detected mainly in the spongiotrophoblast layer. Focal localization of viral antigens in the spongiotrophoblast layer suggests cell-to-cell viral spread in the placenta. In spite of a similar level of antibodies against gB and avidity indices among fetuses in each gB-immunized dam, congenital infection was sometimes observed in a littermate fetus. In such infected fetuses, CMV spread to most organs.

Conclusions

Our results suggest that antibodies against gB protected against infection mainly at the interface of the placenta rather than from the placenta to the fetus. The development of strategies to block cell-to-cell viral spread in the placenta is, therefore, required for effective protection against congenital CMV infection.  相似文献   

18.
The protection induced by immunostimulating complexes (ISCOMs) against bovine respiratory syncytial virus (BRSV) was evaluated and compared to that of a commercial inactivated vaccine (CV) in calves with BRSV-specific maternal antibodies. Following experimental challenge, controls (n = 4) and animals immunized with CV (n = 5) developed moderate to severe respiratory disease, whereas calves immunized with ISCOMs (n = 5) remained clinically healthy. BRSV was re-isolated from the nasopharynx of all controls and from all calves immunized with CV, but from none of the calves immunized with ISCOMs. BRSV-RNA was detected by real-time PCR from a single animal in this group. Significantly higher BRSV-specific nasal IgG, serum IgG1 and IgG2 titers were detected before and after challenge in animals immunized with ISCOMs versus CV. In conclusion, the ISCOMs overcame the suppressive effect of maternal antibodies in calves and induced strong clinical and virological protection against a BRSV challenge.  相似文献   

19.
Yin Y  Zhang J  Dong D  Liu S  Guo Q  Song X  Li G  Fu L  Xu J  Chen W 《Vaccine》2008,26(46):5814-5821
The major aim of present study is to develop and evaluate chimeric virus-like particles (VLPs) displaying a neutralizing epitope of anthrax protective antigen (PA) as a potential vaccine against anthrax. The truncated hepatitis B virus core (HBc) protein (aa 1-144) was used as a carrier, and the 2beta2-2beta3 loop of the PA domain 2 (aa 302-325) which has been shown contains a dominant neutralizing epitope was inserted into the major immunodominant region (MIR) of the HBc. The recombinant protein HBc-N144-PA-loop2 was expressed in Escherichia coli, and was able to form HBc-like particles confirmed by electron microscopy. The immunogenicity of these chimeric particles was evaluated in mice and guinea pigs. In mice the HBc-N144-PA-loop2 was able to induce PA-epitope specific antibodies; in guinea pigs it was able to induce PA-epitope specific antibodies and anthrax toxin-neutralizing antibodies regardless of whether alum adjuvant was used or not, and was able to partially protect the immunized guinea pigs against virulent anthrax spores challenge. This study suggests chimeric HBc particles carrying a neutralizing epitope of PA can induce protective immunity against Bacillus anthracis.  相似文献   

20.
Immunization of domestic pigs with a DNA vaccine expressing the complete E2 protein of classical swine fever virus (CSFV) conferred total protection against a severe viral challenge. Immunization with three doses of plasmid pcDNA3.1/E2 elicited a consistent and specific, MHC class II restricted T cell response in the three domestic pigs analyzed, in the absence of detectable anti-CSFV antibodies in serum. Upon challenge specific T cell responses were boosted in the three vaccinated pigs, and a rapid rise in the titers of CSFV neutralizing antibodies was noticed in two of them, which correlated with a total protection. In these two pigs, neither disease symptoms were observed nor was virus detected at any time after CSFV infection. Neutralizing antibody titers were lower in the third vaccine, which developed a mild and transient peak of pyrexia. As expected, similar analyses in three control pigs (injected with the empty vector or PBS) did not reveal the induction of specific T cells or viral antibodies and, upon challenge, animals developed severe symptoms of the disease, including high titers of viremia, hyperthermia and virus spread to different organs. Control pigs developed, also, a marked leucopenia, resulting in SWC3+ (myelomonocytic cells) being the major PBMC population, and a drastic decrease CD3+ T cells. This T cell depletion was prevented in animals immunized with pcDNA3.1/E2. The total protection achieved, in the absence of CSFV antibodies before challenge, supports the relevance in the antiviral response observed of specific T cell responses primed by pcDNA3.1/E2 vaccine, which, upon challenge, led to a rapid induction of neutralizing antibodies. The observation that CSFV antibodies could only be detected in protected animals after viral challenge opens the possibility of exploring the potential of the DNA vaccine approach used to develop marker vaccines against CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号