首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The visual system constantly utilizes regularities that are embedded in the environment and by doing so reduces the computational burden of processing visual information. Recent findings have demonstrated that probabilistic information can override attentional effects, such as the cost of making an eye movement away from a visual target (antisaccade cost). The neural substrates of such probability effects have been associated with activity in the superior colliculus (SC). Given the immense reciprocal connections to SC, it is plausible that this modulation originates from higher oculomotor regions, such as the frontal eye field (FEF) and the supplementary eye field (SEF). To test this possibility, the present study employed theta burst transcranial magnetic stimulation (TMS) to selectively interfere with FEF and SEF activity. We found that TMS disrupted the effect of location probability when TMS was applied over FEF. This was not observed in the SEF TMS condition. Together, these 2 experiments suggest that the FEF plays a critical role not only in initiating saccades but also in modulating the effects of location probability on saccade production.  相似文献   

2.
We used positron emission tomography (PET) to investigate the neural correlates of selective attention in humans. We examined the effects of attending to one side of space versus another (spatial selection) and to one sensory modality versus another (intermodal selection) during bilateral, bimodal stimulation of vision and touch. Attention toward one side resulted in greater activity in several contralateral areas. In somatosensory cortex, these spatial attentional modulations were found only when touch was relevant. In the intraparietal sulcus, spatial attentional effects were multimodal, independent of the modality attended. In occipital areas, spatial modulations were also found during both visual and tactile attention, indicating that tactile attention can affect activity in visual cortex; but occipital areas also showed more activity overall during visual attention. This suggests that while spatial attention can exert multimodal influences on visual areas, these still maintain their specificity for the visual modality. Additionally, irrespective of the attended side, attending to vision activated posterior parietal and superior premotor cortices, while attending to touch activated the parietal operculi. We conclude that attentional selection operates at multiple levels, with attention to locations and attention to modalities showing distinct effects. These jointly contribute to boost processing of stimuli at the attended location in the relevant modality.  相似文献   

3.
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level-dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1-V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1-V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex.  相似文献   

4.
Recent brain imaging studies have revealed that increased neuralactivity along the ventral visual stream and parietal and frontalareas is associated with visual awareness. In order to studythe time-course and temporal aspects of awareness, we examinedelectrophysiological correlates of conscious vision in two maskingexperiments. The differences in event-related potentials (ERPs)between unmasked (consciously recognized) and masked (unrecognized)stimuli were considered to be electrophysiological correlatesof awareness. Two attentional conditions (global, local) wereincluded to examine the relationship between the scope of attentionand awareness. Two ERP-deflections were found to correlate withawareness. First, awareness was associated with a posteriornegative amplitude shift 130–320 ms after the stimulus.This effect was present in both attention conditions, suggestingthat it emerges independent of the scope of attention. Second,ERPs to unmasked stimuli became more positive as compared withmasked stimuli around 400 ms, peaking at parietal sites. Thiseffect was attenuated in the local attention condition, althoughthe participants were aware of the stimuli, suggesting thatthe late positivity does not directly correlate with visualawareness. The results imply that the earlier negativity isthe earliest and most direct correlate of visual awareness.  相似文献   

5.
Schizophrenia is associated with perceptual and cognitive dysfunction including impairments in visual attention. These impairments may be related to deficits in early stages of sensory/perceptual processing, particularly within the magnocellular/dorsal visual pathway. In the present study, subjects viewed high and low spatial frequency (SF) gratings designed to test functioning of the parvocellular/magnocellular pathways, respectively. Schizophrenia patients and healthy controls attended to either the low SF (magnocellularly biased) or high SF (parvocellularly biased) gratings. Functional magnetic resonance imaging (fMRI) and recordings of event-related potentials (ERPs) were carried out during task performance. Patients were impaired at detecting low-frequency targets. ERP amplitudes to low-frequency gratings were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the selection negativity), which is regarded as a neural index of feature-selective attention. Similarly, fMRI revealed that activity in extrastriate visual cortex was reduced in patients during attention to low, but not high, SF. In contrast, activity in frontal and parietal areas, previously implicated in the control of attention, did not differ between patients and controls. These findings suggest that impaired sensory processing of magnocellularly biased stimuli lead to impairments in the effective processing of attended stimuli, even when the attention control systems themselves are intact.  相似文献   

6.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.  相似文献   

7.
Cerebral bases of subliminal and supraliminal priming during reading   总被引:1,自引:0,他引:1  
Several studies have investigated the neural correlates of conscious perception by contrasting functional magnetic resonance imaging (fMRI) activation to conscious and nonconscious visual stimuli. The results often reveal an amplification of posterior occipito-temporal activation and its extension into a parieto-frontal network. However, some of these effects might be due to a greater deployment of attentional or strategical processes in the conscious condition. Here, we examined the brain activity evoked by visible and invisible stimuli, both of which were irrelevant to the task. We collected fMRI data in a masking paradigm in which subliminal versus supraliminal letter strings were presented as primes while subjects focused attention on another subsequent, highly visible target word. Under those conditions, prime visibility was associated with greater activity confined to bilateral posterior occipito-temporal cortices, without extension into frontal and parietal cortices. However, supraliminal primes, compared with subliminal primes, evoked more extensive repetition suppression in a widely distributed set of parieto-frontal areas. Furthermore, only supraliminal primes caused phonological repetition enhancement in left inferior frontal and anterior insular cortex. Those results suggest a 2-stage view of conscious access: Relative to masked stimuli, unmasked stimuli elicit increased occipito-temporal activity, thus allowing them to compete for global conscious access and to induce priming in multiple distant areas. In the absence of attention, however, their access to a second stage of distributed parieto-frontal processing may remain blocked.  相似文献   

8.
It has been suggested that the frontal eye field (FEF), which is involved with the inhibition and generation of saccades, is engaged to a different degree in pro- and antisaccades. Pro- and antisaccades are often assessed in separate experimental blocks. In such cases, saccade inhibition is required for antisaccades but not for prosaccades. To more directly assess the role of the FEF in saccade inhibition and generation, a new paradigm was used in which inhibition was necessary on pro- and antisaccade trials. Participants looked in the direction indicated by a target ('<' or '>') that appeared in the left or right visual field. When the pointing direction and the location were congruent, prosaccades were executed; otherwise antisaccades were required. Saccadic latencies were measured in blocks without and with single pulse transcranial magnetic stimulation (TMS) to the right FEF or a right posterior control site. Results showed that antisaccades generated into the hemifield ipsilateral to the TMS were significantly delayed after TMS over the FEF, but not the posterior control site. This result is interpreted in terms of a modulation of saccade inhibition to the contralateral visual field due to disruption of processing in the FEF.  相似文献   

9.
Recordings of event-related potentials (ERPs) were combined with structural and functional magnetic resonance imaging (fMRI) to study the spatio-temporal patterns of cortical activity that underlie visual-spatial attention. Small checkerboard stimuli were flashed in random order to the four quadrants of the visual field at a rapid rate while subjects attended to stimuli in one quadrant at a time. Attended stimuli elicited enhanced ERP components in the latency range 80-200 ms that were co-localized with fMRI activations in multiple extrastriate cortical regions. The earliest ERP component (C1 at 50-90 ms) was unaffected by attention and was localized by dipole modeling to calcarine cortex. A longer latency deflection in the 150-225 ms range that was accounted for by this same calcarine source, however, did show consistent modulation with attention. This late attention effect, like the C1, inverted in polarity for upper versus lower field stimuli, consistent with a neural generator in primary visual cortex (area V1). These results provide support to current hypotheses that spatial attention in humans is associated with delayed feedback to area V1 from higher extrastriate areas that may have the function of improving the salience of stimuli at attended locations.  相似文献   

10.
Cortical mechanisms for shifting and holding visuospatial attention   总被引:2,自引:0,他引:2  
Access to visual awareness is often determined by covert, voluntary deployments of visual attention. Voluntary orienting without eye movements requires decoupling attention from the locus of fixation, a shift to the desired location, and maintenance of attention at that location. We used event-related functional magnetic resonance imaging to dissociate these components while observers shifted attention among 3 streams of letters and digits, one located at fixation and 2 in the periphery. Compared with holding attention at the current location, shifting attention between the peripheral locations was associated with transient increases in neural activity in the superior parietal lobule (SPL) and frontal eye fields (FEF), as in previous studies. The supplementary eye fields and separate portions of SPL and FEF were more active for decoupling attention from fixation than for shifting attention to a new location. Large segments of precentral sulcus (PreCS) and posterior parietal cortex (PPC) were more active when attention was maintained in the periphery than when it was maintained at fixation. We conclude that distinct subcomponents of the dorsal frontoparietal network initiate redeployments of covert attention to new locations and disengage attention from fixation, while sustained activity in lateral regions of PPC and PreCS represents sustained states of peripheral attention.  相似文献   

11.
We investigated the relation between electrophysiological and hemodynamic measures of brain activity through comparison of intracranially recorded event-related local field potentials (ERPs) and blood-oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI). We manipulated the duration of visual checkerboard stimuli across trials and measured stimulus-duration-related changes in ERP and BOLD activity in three brain regions: peri-calcarine cortex, the fusiform gyrus and lateral temporal-occipital (LTO) cortex. ERPs were recorded from patients who had indwelling subdural electrodes as part of presurgical testing, while BOLD responses were measured in similar brain regions in a second set of subjects. Similar BOLD responses were measured in peri-calcarine and fusiform regions, with both showing monotonic but non-linear increases in hemodynamic amplitude with stimulus duration. In sharp contrast, very different ERP responses were observed in these same regions, such that calcarine electrodes exhibited onset potentials, sustained activity over the course of stimulus duration and prominent offset potentials, while fusiform electrodes only exhibited onset potentials that did not vary with stimulus duration. No duration-related ERP or BOLD changes were observed in LTO. Additional analyses revealed no consistent changes in the EEG spectrum across different brain sites that correlated with duration-related changes in the BOLD response. We conclude that the relation between ERPs and fMRI differs across brain regions.  相似文献   

12.
Damage to parietal cortex impairs visuospatial judgments. However, it is currently unknown how this damage may affect or indeed be caused by functional changes in remote but interconnected brain regions. Here, we applied transcranial magnetic stimulation (TMS) to the parietal cortices during functional magnetic resonance imaging (fMRI) while participants were solving visuospatial tasks. This allowed us to observe both the behavioral and the neural effects of transient parietal activity disruption in the active healthy human brain. Our results show that right, but not left, parietal TMS impairs visuospatial judgment, induces neural activity changes in a specific right-hemispheric network of frontoparietal regions, and shows significant correlations between the induced behavioral impairment and neural activity changes in both the directly stimulated parietal and remote ipsilateral frontal brain regions. The revealed right-hemispheric neural network effect of parietal TMS represents the same brain areas that are functionally connected during the execution of visuospatial judgments. This corroborates the notion that visuospatial deficits following parietal damage are brought about by a perturbation of activity across a specific frontoparietal network, rather than the lesioned parietal site alone. Our experiments furthermore show how concurrent fMRI and magnetic brain stimulation during active task execution hold the potential to identify and visualize networks of brain areas that are functionally related to specific cognitive processes.  相似文献   

13.
The purpose of this study was to assess possible central side-effects of sildenafil (Viagra) on attention and memory functions. Sildenafil and placebo were administered in young male subjects in a double-blind balanced cross-over design. Behavioral patterns and event-related brain potentials (ERP) were recorded in a spatial auditory attention and a visual word recognition task. While behavioral patterns did not reveal any overt effects of sildenafil, auditory ERPs were indicative of an enhanced ability to focus attention (amplitude enhancement of Nd-effect) and to select relevant target stimuli in the sildenafil condition (P3 component). In the memory task, CNS-effects of sildenafil were evident in a reduction of a negativity in the 150–250 ms range. No overt effects on behavior were observed. Nevertheless, the data reveal CNS-effects of sildenafil necessitating further studies.  相似文献   

14.
Hearing lips: gamma-band activity during audiovisual speech perception   总被引:2,自引:0,他引:2  
Auditory pattern changes have been shown to elicit increases in magnetoencephalographic gamma-band activity (GBA) over left inferior frontal cortex, forming part of the putative auditory ventral "what" processing stream. The present study employed a McGurk-type paradigm to assess whether GBA would be associated with subjectively perceived changes even when auditory stimuli remain unchanged. Magnetoencephalograms were recorded in 16 human subjects during audiovisual mismatch perception. Both infrequent visual (auditory /ta/ + visual /pa/) and acoustic deviants (auditory/pa/ + visual /ta/) were compared with frequent audiovisual standards (auditory /ta/ and visual /ta/). Statistical probability mapping revealed spectral amplitude increases at approximately 75 and approximately 78 Hz to visual deviants. GBA to visual deviants peaked 160 ms after auditory stimulus onset over posterior parietal cortex, at 270 ms over occipital areas and at 320 ms over left inferior frontal cortex. The latter GBA enhancement was consistent with the increase observed previously to pure acoustic mismatch, supporting a role of left inferior frontal cortex for the representation of perceived auditory pattern change. The preceding gamma-band changes over posterior areas may reflect processing of incongruent lip movements in visual motion areas and back-projections to earlier visual cortex.  相似文献   

15.
A previous positron emission tomography study that investigated the cortical areas involved in directing eye movements during text reading showed two areas of extra-occipital asymmetry: left > right posterior parietal cortex (PPC), and right > left frontal eye-field (FEF). We used the temporal resolution of repetitive TMS (rTMS) to isolate the contributions of the left and right PPC and FEF to the planning and execution of rightward reading saccades. We present eye-movement data collected during text reading, which involves the initiation and maintenance of a series of saccades (scanpath). rTMS over the left but not right PPC slowed reading speeds for the whole array of words, indicating that this area is involved throughout the scanpath. rTMS over the right but not the left FEF slowed the time to make the first saccade, but only when triggered before the stimuli appeared, demonstrating that the role of this region is in the preparation of the scanpath. Our results are compatible with the hypotheses that the left PPC maintains reading saccades along a line of text while the right FEF is involved in the preparation of the motor plan for the scanpath at the start of each new line of text.  相似文献   

16.
The posterior parietal cortex (PPC) has been proposed to play a critical role in exerting top-down influences on occipital visual areas. By inducing activity in the PPC (angular gyrus) using transcranial magnetic stimulation (TMS), and using the phosphene threshold as a measure of visual cortical excitability, we investigated the functional role of this region in modulating the activity of the visual cortex. When triple-pulses of TMS were applied over the PPC unilaterally, the intensity of stimulation required to elicit a phosphene from the visual cortex (area V1/V2) was reduced, indicating an increase in visual cortical excitability. The increased excitability that was observed with unilateral TMS was abolished when TMS was applied over the PPC bilaterally. Our results provide a demonstration of the top-down modulation exerted by the PPC on the visual cortex and show that these effects are subject to interhemispheric competition.  相似文献   

17.
Covert attention affects prestimulus activity in the visual cortex. Although most studies investigating neural mechanisms of attention have focused on the effects of spatial attention, attention can also be directed to particular features. To investigate the spatiotemporal nature of feature attention, we measured subjects' brain activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while subjects attended to color or motion of a stimulus based on a visual cue, which was presented 1 s before the stimulus onset. We used the hierarchical Bayesian method that allows us to estimate cortical currents with MEG and fMRI data in the order of millimeters and milliseconds. When subjects attended to color, activity within the color-sensitive area (fusiform gyrus) was selectively enhanced within the prestimulus period. By contrast, when subjects attended to motion, activity within the motion-sensitive area (middle temporal gyrus) was selectively enhanced during this period. This effect was not seen in frontal, parietal, and lower visual areas. Additionally, this effect was transient rather than sustained, suggesting that it differs from temporal aspects of spatial attention. These results suggest that, although both spatial and feature attention modulate prestimulus activity within specific visual areas, neural mechanisms underlying these effects might be different.  相似文献   

18.
Scalp event-related potential (ERP) studies in humans indicate that face processes taking place between 130 and 170 ms after stimulus onset at posterior sites (N170) are strongly reduced when another face stimulus is processed concurrently or has been presented shortly before for a prolonged period. These observations suggest that neural representations of individual faces compete in the occipitotemporal cortex as early as 130 ms. Here, we tested the respective role of spatial attention and sensory competition in accounting for the amplitude reduction of the N170 during concurrent face stimulation. ERPs time locked to a lateralized face stimulus were recorded while subjects were fixating either a face or a controlled scrambled-face stimulus (context factor) and were engaged in either a high- or a low-attentional load task at fixation (task factor). The N170 amplitude to the lateralized face stimulus was reduced both when the central stimulus was a face compared with a scrambled face and when the attentional load at fixation was high. However, these effects of context and task factors were largely additive. Most importantly, spatial attention modulated visual processes as early as 80 ms after stimulus onset, whereas sensory competition effects started at about 130 ms. These results provide strong evidence that the N170 in response to faces is modulated by spatial attention, and also that spatial attention and sensory competition do not reflect the same mechanisms of early selection of visual information in the extrastriate cortex.  相似文献   

19.
Prior studies reported that functional variants of both the serotonin transporter (5-HTT) and tryptophan hydroxylase-2 genes (TPH2), 2 key regulators of the serotonergic signaling pathway, modulate amygdala activation during emotional processing. We addressed the question whether these 2 gene variants modulate each other, using an emotional picture-processing task. Specifically, we measured event-related potentials (ERPs) during a passive emotional picture perception task, focusing on ERPs for the early posterior negativity (EPN) around 240 ms and for the slow wave starting at 315 ms. We found evidence for increased neural activity at 240 ms in individuals who carried 1 or 2 copies of the low-expression short variant of the 5-HTT. Carriers of T variant of the TPH2 also showed a tendency toward increased neural activity at 240 ms. Moreover, we observed an additive effect of both genotypes for EPN, with highest neural activity to emotional stimuli in individuals carrying combination of both short variant of 5-HTT and T variant of TPH2. Our results indicate that both the 5-HTT and the TPH2 genotypes modulate the sensory encoding of affective stimuli during early steps of visual processing and reveal additive effects of 2 genes in the serotonergic control of emotion regulation.  相似文献   

20.
This study quantified the magnitude and timing of selective attention effects across areas of the macaque visual system, including the lateral geniculate nucleus (LGN), lower cortical areas V1 and V2, and multiple higher visual areas in the dorsal and ventral processing streams. We used one stimulus configuration and behavioral paradigm, with simultaneous recordings from different areas to allow direct comparison of the distribution and timing of attention effects across the system. Streams of interdigitated auditory and visual stimuli were presented at a high rate with an irregular interstimulus interval (mean of 4/s). Attention to visual stimuli was manipulated by requiring subjects to make discriminative behavioral responses to stimuli in one sensory modality, ignoring all stimuli in the other. The attended modality was alternated across trial blocks, and difficulty of discrimination was equated across modalities. Stimulus presentation was gated, so that no stimuli were presented unless the subject gazed at the center of the visual stimulus display. Visual stimuli were diffuse light flashes differing in intensity or color and subtending 12 degrees centered at the point of gaze. Laminar event-related potential (ERP) and current source density (CSD) response profiles were sampled during multiple paired penetrations in multiple visual areas with linear array multicontact electrodes. Attention effects were assessed by comparing responses to specific visual stimuli when attended versus when visual stimuli were looked at the same way, but ignored. Effects were quantified by computing a modulation index (MI), a ratio of the differential CSD response produced by attention to the sum responses to attended and ignored visual stimuli. The average MI increased up levels of the lower visual pathways from none in the LGN to 0.0278 in V1 to 0.101 in V2 to 0.170 in V4. Above the V2 level, attention effects were larger in ventral stream areas (MI = 0. 152) than in dorsal stream areas (MI = 0.052). Although onset latencies were shortest in dorsal stream areas, attentional modulation of the early response was small relative to the stimulus-evoked response. Higher ventral stream areas showed substantial attention effects at the earliest poststimulus time points, followed by the lower visual areas V2 and V1. In all areas, attentional modulation lagged the onset of the stimulus-evoked response, and attention effects grew over the time course of the neuronal response. The most powerful, consistent, and earliest attention effects were those found to occur in area V4, during the 100-300 ms poststimulus interval. Smaller effects occurred in V2 over the same interval, and the bulk of attention effects in V1 were later. In the accompanying paper, we describe the physiology of attention effects in V1, V2 and V4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号