首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assortment of drugs was injected into one or both ventromedial nuclei of the thalamus, to see how these influenced stereotypy, locomotion and posture in spontaneously behaving and actively rotating rats. Unilateral intrathalamic muscimol promoted weak ipsiversive circling, while bilateral treatment gave catalepsy. Similar injections of 4-amino-hex-5-enoic acid, which inhibits γ-aminobutyrate metabolism, raised γ-aminobutyrate levels in the ventromedial nuclei more than three-fold yet had none of these behavioural effects. The indirectly acting γ-aminobutyrate agonists flurazepam and cis-1,3-aminocyclohexane car☐ylic acid had little effect on posture and locomotion and, like muscimol and 4-amino-hex-5-enoic acid, elicited only very weak stereotypies. Procaine behaved like the γ-aminobutyrate antagonist bicuculline, provoking vigorous locomotor hyperactivity and teeth chattering if given uni- or bilaterally. Pretreatment of one ventromedial nucleus with muscimol or 4-amino-hex-5-enoic acid, and to a lesser extent flurazepam or cis-1,3-aminocyclohexane car☐ylic acid, gave rise to pronounced ipsilateral asymmetries when combined with a large systemic dose of apomorphine. Contraversive rotations were initiated by unilateral stereotaxic injection of muscimol into the substantia nigra pars reticulata, or with apomorphine from the supersensitive striatum in unilaterally 6-hydroxydopamine lesioned rats. Drug treatments in the ipsilateral ventromedial nucleus showed a similar rank order of potency at inhibiting these circling behaviours, seemingly by reducing apomorphine-induced posture and muscimol-induced hypermotility. The suppression of circling by muscimol in these tests was highlighted by introducing the compound into the ventromedial nucleus at the height of circling activity. Both types of circling stimulus lost the capacity to increase locomotion, but still caused head turning and stereotypy in rats made cataleptic with bilateral ventromedial muscimol. Treating one ventromedial thalamus with muscimol greatly intensified any pre-existing posture directed towards that side, and vice versa.

These data suggest that the ventromedial nucleus is not involved with the expression of stereotyped behaviours, but can profoundly influence posture and locomotion, especially in the presence of some other motor stimulus. The recovery of circus movements in rats with impaired ventromedial nucleus function implies this nucleus is not essential for the execution of circling in these models.  相似文献   


2.
Summary Unilateral stereotaxic microinjection of muscimol into the caudal region of the substantia nigra (SN) evoked tight, dose-related contralateral locomotor asymmetry and stereotypy. These behaviours were partially attenuated by various pre-treatments, including 6-hydroxydopamine lesions of the nigrostriatal dopamine pathway, intraperitoneal (i.p.) haloperidol, and inhibition of thalamic GABA-transaminase activity by local intrathalamic injection of ethanolamine-O-sulphate. Electrolytic or kainic acid lesions of the medial thalamic nuclei (MTN) partially reduced the contraversive rotation to intranigral muscimol, and completely abolished the similar behaviour elicited by apomorphine (25 g) injected into the ipsilateral caudate nucleus. Contraversive turning to intranigral muscimol was completely inhibited by kainic acid lesions of the ipsilateral SN, but potentiated by intrathalamic injection of picrotoxin. Muscimol (40 ng-4 g) administered to the MTN complex in one hemisphere stimulated rats to move in ipsilateral circles that were unaffected by haloperidol. The results of these behavioural experiments suggest that the nigrostriatal dopamine pathway, the nigrothalamic projection and possibly other non-dopaminergic SN efferents all play important roles in mediating the influences of the SN on motor and stereotyped behaviours. Disruption of the nigrothalamic pathway following electrical or chemical injury to the SN was accompanied by falls in GABA and its synthesising enzyme in the corresponding MTN. These data, together with the findings of our electrophysiological study presented in the following paper, are consistent with the nigrothalamic system having a GABAergic inhibitory function.This work was partly supported by an M.R.C. programme grant awarded to Prof. D.W. StraughanI.C. Kilpatrick and A. Fletcher are respectively M.R.C. and S.R.C. scholars  相似文献   

3.
Activation of GABAergic transmission within the substantia nigra has been shown to suppress several forms of generalized seizures in experimental models of epilepsy. More especially, such pharmacological manipulations suppress spontaneous and chemically-induced generalized non-convulsive seizures in the rat. The aim of the present study was to examine the role of the dopaminergic and GABAergic thalamic and collicular nigral outputs in this antiepileptic effect. For this purpose, we examined the effects of output destruction on the antiepileptic effect of intranigral injections of a GABA agonist or pharmacological blockade of the neurotransmission at the nerve terminal level in rats with spontaneous absence seizures. After selective destruction of dopaminergic neurons within the substantia nigra with 6-hydroxydopamine (5 micrograms/side) or hemisection of the ascending nigral output, bilateral intranigral injection of muscimol (2 ng/side) still significantly suppressed generalized non-convulsive seizures. Bilateral lesioning of the ventromedial nucleus of the thalamus did not abolish the antiepileptic effects of intranigral muscimol (2 ng/side) and the GABA antagonist, picrotoxin, when given into this thalamic nucleus (10 ng/side) also failed to induce suppression of spike and wave discharges. The antiepileptic effects of intranigral injection of muscimol (2 ng/side) was reversed by bilateral electrolytic lesions of the superior colliculus. Blockade of the GABAergic transmission at this level with picrotoxin (40 ng/side) significantly suppressed generalized non-convulsive seizures. Finally, excitation of collicular cell bodies with low doses of kainic acid (4 and 8 ng/side) also resulted in a suppression of spike and wave discharges. These results demonstrate that the GABAergic nigrocollicular pathway is critical for the inhibitory control of the substantia nigra over generalized non-convulsive seizures. The data further suggest that antiepileptic effects observed following potentiation of GABAergic transmission in the substantia nigra result from a disinhibition of collicular cell bodies.  相似文献   

4.
Unilateral injection of AMPA ((R,S)-α-3-hydroxyl-5-methyl-4-isoxazolepropionic acid), 4-bromohomoibotenic acid, kainic acid and N-methylaspartic acid into the caudal part of substantia nigra induced ipsilateral turning behaviour. AMPA and kainic acid were most potent. Ibotenic acid produced short-lasting ipsilateral turning followed by long-lasting contralateral turning behaviour which was antagonized by the GABA antagonist bicuculline methiodide. The turning induced by AMPA was not blocked by previous 6-hydroxydopamine lesion of the nigrostriatal dopaminergic pathway and was increased by systemic apomorphine. High doses of bilateral intranigral AMPA induced rigid catalepsy. The results are consistent with an involvement of glutamate or aspartate receptors in the regulation of dopamine output systems.  相似文献   

5.
Rotational behaviour was initiated in naive rats by injecting muscimol into one substantia nigra pars reticulata, or in unilaterally 6-hydroxydopamine-treated rats with systemic or intracaudate apomorphine. Electrolytic or kainic acid lesions were made in one or both ventromedial nuclei of the thalamus and their effects on the components of circling studied. A unilateral ventromedial electrolesion imposed a weak ipsilateral posture and occasionally elicited weak ipsiversive circling acutely, but not chronically. Challenging these rats with a large subcutaneous dose of apomorphine invariably provoked ipsiversive circling, however old was the lesion. Bilateral electrolesions caused slight hypoactivity. Kainic acid treatments of one or both ventromedial thalami produced uncontrolled hypermotility initially, with subsequent loss of ventromedial neurones and recovery of normal motor behaviour. No form of ventromedial lesion affected the incidence of stereotypy. Acute (but not chronic) contralateral or ipsilateral ventromedial electrolesions, or both, slowed muscimol and apomorphine-induced circling (often in different ways) through complex changes in posture and/or locomotor drive. Animals lesioned during the course of a circling episode often showed the biggest changes in circling to begin with, only to recover minutes later. Rapidly circling rats were sometimes more readily inhibited than slowly circling rats. Toxin injury of the ventromedial nucleus appeared to suppress muscimol and not apomorphine circling. Any ventromedial lesion (electrical or chemical, acute or chronic), if positioned opposite a contraversive circling stimulus, intensified the associated posture. Ipsilateral lesions tended to abolish posture altogether or, like bilateral treatments, to suppress locomotion. Sham operations had none of these effects. Acute electrical lesions and drug-induced inhibition of one or both ventromedial thalami were more or less identical in their effects on rat circling behaviour, save that bilateral muscimol injection caused profound catalepsy while lesions did not.

It is suggested that the ventromedial thalamus is more concerned with the registration of striatal dopamine-mediated behaviours in drug-stimulated than in spontaneously behaving rats, and that other output pathways may rapidly compensate for any impairment of function in the ventromedial nuclei.  相似文献   


6.
Evidence for a GABAergic nigrothalamic pathway in the rat   总被引:1,自引:0,他引:1  
Extracellular recordings were made from neurones in the ventromedial and parafasicular nuclei of the rat thalamus, many of which had demonstrable capsular or caudate projections. These cells responded to electrical stimulation of the ipsilateral substantia nigra with a short latency (4 ms) inhibition presumed to be monosynaptic. This inhibitory response was often preceded by a brief period of increased excitability (latency approximately 3 ms) attributed to activation of corticofugal collaterals. Longer latency, presumably oligosynaptic excitations (latency approximately 8 ms) and inhibitions (approximately 18 ms) were also obtained, but were more commonly evoked in non-projection neurones. All units were inhibited by iontophoretically applied GABA, glycine or 5-HT. Short and long latency synaptic and GABA-induced inhibitions were selectively blocked by bicuculline. Strychnine only antagonised glycine, while 5-HT was not affected by either convulsant. Intranigral injection of muscimol greatly elevated the spontaneous discharge rate of thalamic neurones, particularly those with a striatal projection. These data are compatible with nigrothalamic neurones maintaining a tonically active, GABA-mediated inhibition of cells in the ventromedial and parafascicular nuclei of the thalamus. It is speculated that intranigral muscimol indirectly activates these thalamic cells and thereby initiates contraversive circling behaviour by suppressing this inhibitory system.  相似文献   

7.
The effects of GABA antagonists on apomorphine-and pergolide-induced rotational behaviour were studied with models combining intracerebral and systemic pharmacological treatments. Whether given systemically or intrastriatally to 6-hydroxydopaminelesioned rats, the GABA antagonist picrotoxin inhibited the rotational responses produced by s. c. administration of the dopamine (DA) D-1/D-2 agonist apomorphine while it enhanced the rotational behaviour produced by the DA D-2 agonist pergolide. Following unilateral injection of picrotoxin or bicuculline into the striatum of naive rats, apomorphine produced ispsilateral rotation, while pergolide produced contralateral rotation. These contrasting effects are compared to the behavioural responses produced by intracerebral administration of GABAergic drugs alone. Intrapallidal injection of picrotoxin produced contralateral rotational behaviour which was independent of pallido-nigral pathways. Contralateral rotation was also produced by GABA agonists, but only following intranigral injections. The results are discussed in terms of differences in the localization of DA D-1 and DA D-2 receptors on striatal GABAergic neurons. The DA D-2 receptor agonist pergolide may induce inhibition of striato-pallidal GABAergic neurons, as well as of a local GABAergic circuit exerting inhibition on a striato-pallidal enkephalinergic pathway. However, the DA D-1/D-2 receptor agonist apomorphine may inhibit striatal interneurons exerting inhibition on a striato-nigral GABAergic projection. Such a neuronal arrangement may explain that striatal DA stimulation increases GABA release from the striato-nigral terminals.  相似文献   

8.
Rates of cerebral glucose utilization were measured by means of the autoradiographic 2-deoxy-d[1-14C]glucose technique in the rat brain in order to determine the metabolic effects of unilateral intranigral application of the GABAA agonist muscimol upon the substantia nigra and its targets. Intranigral injection of 1.5 μl 0.3 M muscimol (52 μg total dose) induced local metabolic activation in the injected substantia nigra reticulata (by 87% as compared to the control group), and distal metabolic depressions in the nucleus accumbens, striatum, globus pallidus and subthalamic nucleus only ipsilaterally to the injected nigra. The remaining basal ganglia components, including the substantia nigra compacta and the entopeduncular nucleus were bilaterally unaffected. Among the principal efferent projections of the substantia nigra reticulata, the ventromedial and centrolateral thalamic nuclei as well as the deep layers of the superior colliculi were metabolically depressed bilaterally, whereas the ventrolateral, parafascicular and mediodorsal thalamic nuclei as well as the pedunculopontine nucleus displayed metabolic depressions ipsilateral to the muscimol-injection nigra. The ventromedial and centrolateral thalamic nuclei were depressed by 41 and 42%, respectively, in the ipsilateral side, and by 30 and 26% in the contralateral side, when compared to the respective values of the control group of rats. Furthermore, unilateral intranigral injection of 0.3 M muscimol induced metabolic depressions in reticular, intralaminar and prefrontal thalamocortical areas mostly ipsilateral to the injected nigra, as well as in limbic areas bilaterally.

It is suggested that the present findings are due to a postsynaptic effect of muscimol on the nigral GABAergic cells and to a consequent metabolic depression of the basal ganglia and associated thalamocortical areas, in contrast to an earlier suggested presynaptic nigral effect of lower doses of intranigrally injected muscimol which induced metabolic activations within the same network.18 This suggestion is further supported by the fact that intranigrally injected substrate P19 induced similar effects to those elicited by the lower doses of intranigral muscimol and opposite to those induced at present by the higher muscimol dose. Moreover, it is further substantiated that the nigrothalamic GABAergic system is responsible for considerable transfer of information from one substantia nigra reticulata to the ipsilateral basal ganglia and associated thalamocortical components as well as to bilateral motor, intralaminar and limbic areas.  相似文献   


9.
The effects of GABA antagonists on apomorphine- and pergolide-induced rotational behaviour were studied with models combining intracerebral and systemic pharmacological treatments. Whether given systemically or intrastriatally to 6-hydroxydopamine-lesioned rats, the GABA antagonist picrotoxin inhibited the rotational responses produced by s.c. administration of the dopamine (DA) D-1/D-2 agonist apomorphine while it enhanced the rotational behaviour produced by the DA D-2 agonist pergolide. Following unilateral injection of picrotoxin or bicuculline into the striatum of naive rats, apomorphine produced ispsilateral rotation, while pergolide produced contralateral rotation. These contrasting effects are compared to the behavioural responses produced by intracerebral administration of GABAergic drugs alone. Intrapallidal injection of picrotoxin produced contralateral rotational behaviour which was independent of pallido-nigral pathways. Contralateral rotation was also produced by GABA agonists, but only following intranigral injections. The results are discussed in terms of differences in the localization of DA D-1 and DA D-2 receptors on striatal GABAergic neurons. The DA D-2 receptor agonist pergolide may induce inhibition of striato-pallidal GABAergic neurons, as well as of a local GABAergic circuit exerting inhibition on a striato--pallidal enkephalinergic pathway. However, the DA D-1/D-2 receptor agonist apomorphine may inhibit striatal interneurons exerting inhibition on a striato-nigral GABAergic projection. Such a neuronal arrangement may explain that striatal DA stimulation increases GABA release from the striato-nigral terminals.  相似文献   

10.
Summary Unilateral injection of muscimol into the angular complex (lateral periaqueductal grey matter and adjacent reticular formation) caused ipsiversive rotation. Focal injection of picrotoxin into the same site produced contraversive rotation. Administration of apomorphine to animals with a unilateral 6OHDA lesion of the left medial forebrain bundle caused contraversive rotation. Focal injection of muscimol into the angular complex reversed the direction of rotation such that apomorphine administration now produced ipsiversive circling. Unilateral injection of muscimol into substantia nigra zona reticulata caused contraversive rotation. Focal injection of picrotoxin into the same site produced ipsiversive rotation. The prior injection of muscimol into the ipsilateral angular complex prevented the contraversive rotation induced by intranigral administration of muscimol such that animals now showed ipsiversive circling. In both 6-OHDA-lesioned animals and animals receiving intranigral muscimol, focal injection of muscimol into the angular complex caused a reversal in the direction of circling through loss of the postural component with no obvious change in locomotor activity. Bilateral electrolytic lesions of the angular complex overall had no effect on amphetamine-induced locomotion. Manipulation of GABA function in the angular complex alters circling behaviour initiated from the striatum or substantia nigra by altering the postural component without affecting the locomotor response of the animals. The data suggest a critical role for the angular complex as an outflow station from basal ganglia.  相似文献   

11.
The γ-aminobutyrate-containing nature of nigrotectal neurones and the possible involvement of the tectum in circling behaviour were investigated in the rat. Electrolytic or kainic acid lesions of the substantia nigra reduced γ-aminobutyrate levels on average by 19–29% in intermediate and deep, but not superficial superior colliculus. Placement of lesions or injection of muscimol (40 ng) into these γ-aminobutyrate-innervated layers of superior colliculus gave only weak ipsilateral posturing or circling that was intensified by apomorphine, but which strongly antagonized contraversive apomorphine-induced circling in 6-hydroxydopamine pretreated rats (lateral > medial sites). Contraversive circling to unilateral intranigral muscimol (40 ng) was significantly attenuated by lesions or muscimol injections placed in the ipsi- or contralateral superior colliculus. Picrotoxin (40 ng) and tetanus toxin (30 mouse LD50 doses) evoked explosive motor behaviour from medial colliculus and vigorous contraversive circling when injected into the lateral colliculus. The latter offset ipsiversive asymmetries to kainate (0.8 μg) in the corresponding substantia nigra. Bilateral intratectal picrotoxin produced hyperactivity that reversed haloperidol catalepsy. Similar bilateral administration of muscimol did not produce catalepsy but a state of frozen immobility. Kainic acid introduced into the superior colliculus gave mixed excitatory-inhibitory responses initially followed by ipsiversive circling only and loss of tectal perikarya. None of these drug effects occurred from the overlying cerebral cortex or subjacent tegmentum.We propose that separate medial ‘non-postural’ and lateral ‘postural’ tectal locomotor regions may exist in the superior colliculus that are situated within a striato-nigrotectal outflow system capable of influencing the animal's motor activity and posture.  相似文献   

12.
Dual-probe microdialysis in the awake rat was employed to investigate the effects of intranigral perfusion with the tridecapeptide neurotensin on local dialysate glutamate and GABA levels in the substantia nigra pars reticulata and on dialysate GABA levels in the ventral thalamus. Intranigral neurotensin (10-300nM, 60min) dose-dependently increased (+29+/-3% and +46+/-3% vs basal for the 100 and 300nM concentrations, respectively) local dialysate glutamate levels, while the highest 300nM concentration of the peptide exerted a long-lasting and prolonged reduction in both local and ventral thalamic (-20+/-4% and -22+/-2%, respectively) GABA levels. Intranigral perfusion with the inactive neurotensin fragment neurotensin(1-7) (10-300nM, 60min) was without effect. Furthermore, the non-peptide neurotensin receptor antagonist SR 48692 (0.2mg/kg) and tetrodotoxin (1microM) fully counteracted the intranigral neurotensin (300nM)-induced increase in local glutamate. SR 48692 (0.2mg/kg) also counteracted the decreases in nigral and ventral thalamic GABA release induced by the peptide. In addition, intranigral perfusion with the dopamine D(2) receptor antagonist raclopride (1microM) fully antagonized the neurotensin (300nM)-induced decreases in nigral and ventral thalamic GABA levels. The ability of nigral neurotensin receptor activation to differently influence glutamate and GABA levels, whereby it increases nigral glutamate and decreases both nigral and ventral thalamic GABA levels, suggests the involvement of neurotensin receptor in the regulation of basal ganglia output at the level of the nigra.  相似文献   

13.
The effect of muscimol and baclofen injected into the paraventricular nucleus of the hypothalamus on penile erection and yawning induced by apomorphine, oxytocin and N-methyl-D-aspartic acid (NMDA) was studied in male rats. Muscimol (20-200 ng), but not baclofen (200 ng), injected into the paraventricular nucleus of the hypothalamus 10 min before apomorphine (50 ng), oxytocin (10 ng) or NMDA (50 ng) reduced penile erection and yawning induced by the above compounds given into the paraventricular nucleus. Bicuculline (250 ng) injected into the paraventricular nucleus 5 min before muscimol (100 ng) prevented the inhibitory effect of muscimol on penile erection and yawning induced by apomorphine, oxytocin and NMDA. The present results show that gamma-aminobutyric acid (GABA) inhibits penile erection and yawning by acting on GABA(A) receptors in the paraventricular nucleus of the hypothalamus.  相似文献   

14.
Summary The role of the midbrain angular complex (AC) in the execution of motor behaviours was investigated in the rat. In an automated holeboard apparatus bilateral AC electrolesions attenuated exploration and increased locomotor performance of drug-free rats on the first and second test occasions respectively; the latter result may signify a retarding of between-session habituation. Apomorphine also decreased locomotion and almost abolished head dipping and rearing in the holeboard; bilateral AC lesions reinstated locomotion to a normal level without modifying the other behavioural parameters. An electrolesion of one AC did not affect the animal's posture or spontaneous locomotion in the open field, but gave rise to pronounced ipsiversive circling when coupled with systemic administration of apomorphine. In unilaterally 6-hydroxydopamine (6-OHDA) treated rats subcutaneous injection of apomorphine evoked robust contraversive circling. A concomitant lesion of the ipsilateral AC introduced an additional ipsilateral bias to these animals' movements; contraversive circling was initially curtailed and posture reduced (or reversed), while stereotyped activities (particularly grooming) were suppressed. Contralateral orientation and circling were restored by subsequently lesioning the contralateral AC as well; bilateral AC lesions significantly potentiated circling to systemic apomorphine. Contralateral locomotor asymmetry was also produced by depositing apomorphine stereotaxically into the supersensitive caudate, or by microinjecting one substantia nigra zona reticulata with muscimol (in naive rats). Both rotational responses were facilitated by injury to the ipsilateral AC. The effects of electrocoagulating the AC were generally duplicated by discrete microinjection of muscimol or -vinyl GABA into this area, suggesting GABA-mediated synapses are normally operative in this part of the brain. These results do not support the claim that the AC is specifically engaged in mediating postural asymmetry in the unilaterally 6-OHDA denervated rat. Instead, we believe that impairment of neurotransmission through one AC imposes an independent and reciprocal tendency to move towards that side of the brain, as well as attenuating stereotypy and facilitating locomotion. The resultant behavioural response to systemic apomorphine shown by animals bearing these two types of lesion embodies these separate actions.  相似文献   

15.
Summary The striatonigral pathway contains several neurotransmitters which may regulate the activity of the nigrostriatal dopamine projection in the rat. This was investigated by measuring extracellular dopamine levels in the striatum, using microdialysis, after injections of GABA (300 nmol/0.2 l), dynorphin A (0.5 nmol/0.2 l), substance P (0.07 mnol/0.2 l) or neurokinin A (0.09 nmol/0.2 l) into the ipsilateral substantia nigra, pars reticulata (SNR). Intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. In rats with ibotenic acid lesions (2.5 g/0.5 l) in the SNR, intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. These responses were not significantly different than those in unlesioned rats. Analysis of the intranigral lesion with in situ hybridization revealed a heavy loss of glutamic acid decarboxylase mRNA expression in the SNR and a significant loss of tyrosine hydroxylase (TH) mRNA expression in the SNC. Immunohistochemical analysis revealed a disappearance of TH-Like immunoreactivity (LI) im dendrites in the SNR, a considerable loss of TH-LI cell bodies in the SNC and a restricted loss of neuropeptide K-LI in the SNR around the tip of the injection cannula. Furthermore, lesioned rats rotated ipsilateral to the lesion after apomorphine (1 mg/kg, s.c.), indicating that the basal ganglia output mediated via the SNR GABA neurons was impaired on the lesioned side. Analysis of the striatum revealed that a dense TH-LI fiber network could still be seen on the lesioned side. Furthermore, basal and amphetamine stimulated extracellular dopamine levels in the striatum on the lesioned side were not significantly depleted. This indicates that the ascending nigrostriatal dopamine projection was functionally intact on the lesioned side. These findings indicate that intranigral GABA, dynorphin A, substance P and neurokinin A modulation of ipsilateral striatal dopamine release is mediated via direct action on the nigrostriatal projection. Thus, it is suggested that the striatonigral pathway, which contains GABA, dynorphin, substance P and neurokinin A, exerts a direct regulatory effect on the activity of the nigrostriatal dopamine projection.  相似文献   

16.
Picrotoxin (25, 50 and 100 ng), injected unilaterally into the posterior part of the substantia nigra pars reticulata (SNR) of rats, evoked a dose-dependent catalepsy. The catalepsy evoked by 100 ng of picrotoxin injected into the SNR was abolished by a subsequent bilateral injection of the same drug (200 ng) into the ventromedial thalamic nuclei. It is suggested that impulses pertinent to the catalepsy evoked from the SNR are transmitted via a GABAergic pathway to the ventromedial thalamic nucleus, wherefrom they reach the striatum, as had been shown previously.  相似文献   

17.
The present study investigated the effects of the GABA agonist muscimol on the behaviors produced by acute injections of selective D1 and D2 agonists and antagonists. Muscimol potentiated the intensity of stereotyped behaviors shown by rats treated with the D2 agonist quinpirole; in contrast, it suppressed the repetitive bouts of grooming shown by rats treated with SKF38393. Muscimol potentiated the catalepsy produced by either a D1 (SCH23390) or D2 (metoclopramide) antagonist, suggesting that the cataleptic behaviors produced by these compounds may contain a common GABAergic mechanism.  相似文献   

18.
Carbachol microinjections into the mesencephalic and pontine reticular formation in rats induced intense and long-lasting catalepsy. Systemically administered haloperidol potentiated, while apomorphine and L-DOPA reduced the cataleptogenic effect of carbachol. These results indicate the existence of functional relations between the cholinergic cataleptogenic mechanism in the reticular formation and the dopaminergic system. They are interpreted in the light of known anatomical ascending and descending interconnections between the reticular formation and basal ganglia.  相似文献   

19.
Experiments employing a rodent circling model were conducted to test the predictive capacity of the theory which states that striatonigral γ-aminobutyrate neurones transmit striatal information influencing the animal's locomotion and orientation. In agreement with this proposal, blocking nerve conduction in one substantia nigra with procaine, or nigral γ-aminobutyrate receptors with bicuculline administered stereotaxically, frequently forced rats to move ipsiversively to systemic apomorphine, as though the treatment had impaired striatonigral transmission on that side of the brain. Attempts to reverse the direction of apomorphine circling by stimulating γ-aminobutyrate receptors with muscimol, by facilitating the amino acid's action with flurazepam, or by increasing its synaptic concentration either with a breakdown inhibitor (ethanolamine O-sulphate or 4-amino-hex-5-enoic acid) or an uptake blocker (cis-1,3-aminocyclohexane carboxylic acid) in one nigra, proved unsuccessful. In fact, ethanolamine O-sulphate, flurazepam and muscimol all gave the appearance of hindering rather than enhancing the passage of striatal-derived motor information through the nigra. Broadly speaking, these drugs gave predictable behavioral responses from the ventromedial thalamus, suggesting they were acting in accordance with known mechanisms.The anomalous behaviour with ethanolamine O-sulphate may be attributed to its elevating γ-aminobutyrate levels in other brain areas, since similar ipsiversive rotations occurred if γ-aminobutyrate catabolism was prevented at a wide variety of extranigral sites. A simple explanation for the paradoxical ipsiversive behaviours produced by intranigral flurazepam or muscimol in combination with systemic or intracerebral injection of dopamine agonists, is that they act via presynaptic receptors to inhibit the release of endogenous γ-aminobutyrate and thereby impede striatonigral outflow ipsilaterally.  相似文献   

20.
The release of [3H]γ-aminobutyrate (GABA) neosynthesized from [3H]glutamine was estimated in one substantia nigra and in the ipsilateral thalamus of halothane-anesthetized cats by perfusing a [3H]glutamine-enriched physiological medium through a push-pull cannula implanted in the two structures under investigation. After two hours of superfusion, muscimol (10?6 M) was delivered through the nigral push-pull cannula for 50–60 min and local- and distal-evoked changes of [3H]GABA release were analyzed. In some experiments, changes of global neuronal activity induced by muscimol application were recorded in different thalamic nuclei, using a bipolar electrode. In a few of the above experiments, biochemical and electrophysiological determinations were simultaneously performed in the substantia nigra and the thalamus. The nigral application of muscimol (10?6 M) induced locally an activation of the substantia nigra reticulata cells, as well as an increase in release of [3H]GABA.Distally, in the thalamus, two types of biochemical and electrophysiological responses were observed according to the localization of the tip of the push-pull cannula or the electrode. (1) An increased release of [3H]GABA and a depression of the global multi-unit cellular activity were obtained in the ventralis medialis-ventralis lateralis, the centralis lateralis and the paracentralis nuclei. These effects could reflect an activation of the GABAergic nigrothalamic neurons projecting to these different thalamic nuclei. (2) In contrast, in the medialis dorsalis paralamellar zone adjacent to the intralaminar nuclei of the thalamus, a decrease of [3H]GABA release and an activation of the multi-unit activity were obtained. These latter results may suggest either a polysynaptic response or the non-GABAergic nature of the nigrothalamic neurons afferent to the medialis dorsalis paralamellar zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号