首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine natural killer (NK) cells are inhibited from killing their targets by the interaction between inhibitory, C-type lectin like Ly49 receptors and major histocompatibility complex (MHC) class I molecules. The receptors have overlapping specificity, and it has been difficult to analyze specific aspects of the interaction between different Ly49 receptors and their respective ligands. We have addressed this problem using tetramers of bacterially expressed, non-glycosylated, MHC class I molecules refolded with different peptides. Our results indicate that this technology is useful for analysis of Ly49 receptor specificity as well as for monitoring of NK cell subsets, with the following major conclusions emerging from this study: (1) tetramers of H-2D(d) bound the Ly49A receptor; the MHC associated glycan, previously suggested to be involved in recognition by this receptor, is thus not required for Ly49A receptor binding; (2) in support and extension of a recent report indicating peptide selectivity in the recognition of H-2K(b) by Ly49C(+) cells, H-2K(b) tetramer binding to Ly49C receptors was strongly influenced by the peptide presented by the MHC class I molecule; (3) tetramer binding allowed visualization of interactions that have not previously been detected in functional studies, such as the recognition of H-2D(b) by Ly49A and Ly49C.  相似文献   

2.
Natural killer cell function is controlled by interaction of NK receptors with MHC I molecules expressed on target cells. We describe the binding of bacterially expressed Ly49A, the prototype murine NK inhibitory receptor, to similarly engineered H-2Dd. Despite its homology to C-type lectins, Ly49A binds independently of carbohydrate and Ca2+ and shows specificity for MHC I but not bound peptide. The affinity of the Ly49A/H-2Dd interaction as determined by surface plasmon resonance is from 6 to 26 microM at 25 degrees C and is greater by ultracentrifugation at 4 degrees C. Biotinylated Ly49A stains H-2Dd-expressing cells. Competition experiments indicate that the Ly49A and T cell receptor (TCR) binding sites on MHC I are distinct, suggesting complex regulation of cells that bear both TCR and NK cell receptors.  相似文献   

3.
Subsets of mouse natural killer (NK) cells express receptors encoded by the Ly49 gene family that recognize allelic determinants on major histocompatibility complex (MHC) class I molecules. Recognition of self class I molecules typically inhibits NK cell lytic function. The presence of NK cell subsets expressing receptors which are able to discriminate class I alleles raises the possibility that there exist mechanisms to coordinate the NK cell receptor repertoire with the class I molecules of the host. In the present study, we determined the effects of class I gene expression on the frequencies of NK cells expressing three different Ly49 receptors defined by monoclonal antibodies. We show here an MHC-dependent skewing of NK cell subsets expressing multiple Ly49 receptors with specificity for self MHC. The results provide the first evidence that the frequencies of NK cells expressing different Ly49 receptors are determined by the host's MHC molecules. The results also extend previous findings that MHC class I expression influences the cell surface levels of each Ly49 receptor, suggesting an additional mechanism by which MHC molecules may influence the effective specificity of NK cells. Models to account for self tolerance and MHC-controlled repertoire differences are discussed.  相似文献   

4.
Mouse NK cells express at least seven inhibitory Ly49 receptors. Here we employ a semiquantitative cell-cell adhesion assay as well as class I/peptide tetramers to provide a comprehensive analysis of specificities of Ly49 receptors for class I MHC molecules in eight MHC haplotypes. Different Ly49 receptors exhibited diverse binding properties. The degree of class I binding was related to the extent of functional inhibition. The tetramer studies demonstrated that neither glycosylation nor coreceptors were necessary for class I binding to Ly49 receptors and uncovered peptide-specific recognition by a Ly49 receptor. The results provide a foundation for interpreting and integrating many existing functional studies as well as for designing tests of NK cell development and self-tolerance.  相似文献   

5.
The activity of natural killer (NK) cells is regulated by surface receptors that recognize class I MHC. Murine NK cells express a large family of lectin-related receptors (Ly49s) to perform this function, while human NK cells utilize a separate group of proteins containing Ig-related domains (KIRs). Although these receptor families are not structurally related, the Ly49 family appears to be the functional equivalent of human KIRs, since it uses similar signal transduction pathways for either activation or inhibition of NK cell function. Therefore, lessons learned from the study of the murine MHC class I receptor system may be relevant to human NK function. This review summarizes the current state of knowledge of the Ly49 family.  相似文献   

6.
Engagement of MHC class I-specific inhibitory receptors regulates natural killer (NK) cell development and function. Using both new and previously characterized anti-Ly49 monoclonal antibodies, we comprehensively determined expression and co-expression frequencies of four Ly49 receptors by NK cells from MHC-congenic, MHC class I-deficient, and Ly49A-transgenic mice to study mechanisms that shape the inhibitory Ly49 repertoire. All Ly49 receptors were expressed on partially overlapping subsets. Significantly, in the absence of class I MHC, several receptor pairs were co-expressed more frequently than predicted from a purely random expression model, indicating that biases independent of MHC class I underlie receptor co-expression in some cases. MHC interactions were found to inhibit Ly49 co-expression variably depending on the MHC allele and the receptor pair examined. These data extend previous evidence that interactions with MHC shape the repertoire. It was previously proposed that developing NK cells express Ly49 receptors sequentially and cumulatively, until self-MHC specific receptors are expressed and inhibit new receptor expression. Fulfilling a major prediction of this model, we found that class I recognition by a Ly49A transgene expressed by all developing NK cells equivalently inhibited expression of endogenous self-specific and nonself-specific Ly49 receptors.  相似文献   

7.
Murine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell. Here, we establish that the number of transferred MHC class I proteins is proportional to the number of Ly49A receptors at the NK cell surface. Ly49A+ NK cells from mice expressing the Ly49A ligand H-2D(d) showed a 90% reduction in Ly49A accessibility compared to Ly49A+ NK cells from H-2D(d)-negative mice. The reduction was caused both by lower expression of Ly49A and interactions in cis between Ly49A and H-2D(d) at the NK cell surface. Approximately 75% of the Ly49A receptors on H-2D(d)-expressing NK cells were occupied in cis with endogenous H-2D(d) and only 25% were free to interact with H-2D(d) molecules in trans. Thus, H-2D(d) ligands control Ly49A receptor accessibility through interactions both in cis and in trans.  相似文献   

8.
Natural killer (NK) cell function is regulated by NK receptors that bind either classical MHC class I (MHC-I) molecules or their structural relatives (MICA, RAE-1 and H-60). Two distinct families of NK receptors have been identified: the C-type lectin-like family (Ly49, NKG2D and CD94/NKG2) and the immunoglobulin-like family (KIRs and LIRs). Here, we describe the crystal structure of the C-type lectin-like NK receptor (Ly49A), bound to its MHC-I ligand (H-2D(d)). We also discuss results from recent mutagenesis studies of the Ly49A/H-2D(d) interaction in the context of the complex structure.  相似文献   

9.
Natural killer (NK) T lymphocytes are thought to act as regulatory cells directing early events during immune responses. Murine NKT cells express inhibitory receptors of the Ly49 family. These receptors have a well-established and crucial role in modulating NK cell activities, but their physiological role in regulating NKT cells is not well understood, nor is the influence of major histocompatibility (MHC) ligands on endogenous Ly49 expression. We have further investigated how the expression of inhibitory NK receptors is regulated on NKT cells, and demonstrate a non-random expression of ligated Ly49 molecules on CD1d-restricted NKT cells. The nature of the T-cell receptor on the NKT cell crucially determines the profile of expressed Ly49 isoforms. Further, we show that MHC class I ligands efficiently modulate the expression levels of the inhibitory receptors, and the frequencies of cells positive for the Ly49 members. In addition, we find a several-fold increase in Ly49C/I-expressing NKT cells in adult thymus, apparently independent of MHC class I molecules. Abundant expression of Ly49 receptors on NKT cells, and the striking differences found in Ly49 isoform patterns on NKT-cell subsets differing in T-cell receptor expression, suggest that the pattern of Ly49 expression is tuned to fit the T-cell receptor and to emphasize further a role for these receptors in NKT immunity.  相似文献   

10.
NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.  相似文献   

11.
Murine bone marrow (BM) cell preparations lack mature cytotoxic natural killer (NK) cells, but NK cells may be induced in these cell preparations by culturing with interleukin-2 (IL2). Present study was aimed at studying the role of interactions between Ly49 molecules and major histocompatibility complex (MHC) class I molecules during IL2-induced development of mature NK cells in BM cell cultures. Addition of monoclonal antibodies (mabs) specific to class I MHC molecules of H-2b haplotype, to block any interaction of MHC I molecules with their receptors, was found to inhibit NK cell development. Mouse NK cells express several types of Ly49 molecules including Ly49C, which is an inhibitory receptor specific to MHC I molecules of H-2b haplotype. Blocking Ly49-MHC I interaction by using anti-Ly49C mab inhibited the development of cytotoxic NK cells. Addition of anti-Ly49A (no specificity for H-2b MHC I molecules) or anti-Ly49D (activating receptor specific for MHC I molecules of many H-2 haplotypes including H-2b) mabs, however, had no effect on IL2-induced NK cell development in BM cells. Mabs specific to Ly49C molecule and MHC I molecules of H-2b haplotype inhibited the development of mature NK cells from highly purified NK precursor cell population. These results indicate that specific interaction between inhibitory self-reactive Ly49 molecules and MHC I molecules may be crucial for NK cell development. We propose a model in which Ly49-MHC I interaction may have a permissive role in allowing development of only such NK cell clones that expresses at least one self-reactive inhibitory Ly49 molecule so that lysis of autologous healthy cells by mature NK cells may be avoided.  相似文献   

12.
Inhibitory receptors expressed on natural killer (NK) cells and T cells specific for major histocompatibility complex (MHC) class I are believed to prevent these cells from responding to normal self tissues. To understand the regulation and function of Ly49 receptor molecules in vivo, we used the CD2 promoter to target Ly49A expression to all thymocytes, T cells, and NK cells. In animals expressing its MHC class I ligand, H-2Dd or H-2Dk, there was a large decrease in the expression of Ly49A on thymocytes, peripheral T cells, and NK1.1+ cells. The extent of the down-regulation of Ly49A was dependent on the expression of the MHC ligand for Ly49A and on the site where the cells were located. The level of expression of endogenous Ly49A was similarly found to be dependent upon the organ where the cells resided. Data from bone marrow chimeras indicated that most cell types may regulate Ly49A expression, but the efficacy to regulate receptor expression may vary depending on the cell type.  相似文献   

13.
The expression of murine Ly49 receptors on natural killer (NK) cells and NK1.1+ T cells is believed to prevent these cells from responding against normal self-tissues. In this report we investigated whether the expression level of Ly49A was fixed on mature cells or if it could be adapted as the major histocompatibility complex (MHC) class I environment changed in vivo. By transferring peripheral T cells from Ly49A transgenic mice into BALB/c nude/nude and B6 nude/nude mice, we demonstrated that mature cells modulate their Ly49A receptor expression relative to the in vivo MHC class I environment. These results indicated that the expression of the inhibitory Ly49A receptor is not permanently fixed during a maturation and/or education process but rather is adapted to MHC class I changes on the surrounding cells.  相似文献   

14.
NK cells from long-term bone marrow culture (LTBMC) were compared with IL-2-activated splenic NK cells [short-term spleen cell culture (STSC)] with regard to expression of inhibitory Ly49 receptors and cytotoxic function. In the LTBMC, the total number of NK cells expressing either one of the Ly49 molecules A, C/I and G2 was strongly reduced (10-15% of NK1.1(+) cells) compared to the STSC (80-90% of NK1.1(+) cells). With regard to cytotoxic function, we confirmed that LTBMC-derived NK cells efficiently killed the prototype NK target YAC-1. However, against other targets, killing was more variable. First, while STSC-derived NK cells clearly distinguished MHC class I(-) from MHC class I(+) tumor cell targets, LTBMC-derived NK cells did not; they either killed both targets equally well or not at all. Secondly, LTBMC-derived NK cells were largely incapable of killing lymphoblast targets deficient in MHC class I expression. To test whether this cytotoxic defect was due to the low number of Ly49(+) NK cells in the LTBMC, we separated Ly49(+) and Ly49(-) NK cells by cell sorting and tested them individually. This experiment showed that only Ly49(+) NK cells in the LTBMC were able to kill MHC class I(-) lymphoblasts (and to distinguish them from MHC class I(+)), despite good cytotoxicity against YAC-1 cells in both populations. These data suggest that certain modes of NK cell triggering are dependent on Ly49 receptor expression. From our results, we speculate that inhibitory receptors are expressed before triggering receptors for normal self cells during NK cell development, which may be an important mechanism to preserve self tolerance during the early stages of NK cell maturation.  相似文献   

15.
Major histocompatibility complex (MHC) class I-specific inhibitory receptors are expressed not only on natural killer (NK) cells but also on some subsets of T cells. We here show Ly49 expression on gamma/delta T cells in the thymus and liver of beta2-microglobulin-deficient (beta2m-/-) and C57BL/6 (beta2m+/+) mice. Ly49C/I or Ly49A receptor was expressed on NK1.1+gamma/delta T cells but not on NK1.1-gamma/delta T cells. The numbers of NK1.1+gamma/delta T cells were significantly smaller in beta2m+/+ mice than in beta2m-/- mice with the same H-2b genetic background. Among NK1.1+gamma/delta T cells, the proportions of Ly49C/I+ cells but not of Ly49A+ cells, were decreased in beta2m+/+ mice, suggesting that cognate interaction between Ly49C/I and H-2Kb is involved in the reduction of the number of Ly49C/I+ gamma/delta T cells in beta2m+/+ mice. The frequency of Ly49C/I+ cells in NK1.1+gamma/delta T cells was lower in both lethally irradiated beta2m+/+ mice transplanted with bone marrow (BM) from beta2m-/- mice and lethally irradiated beta2m-/- mice transplanted with BM from beta2m+/+ mice than those in adult thymectomized BM-transplanted chimera mice. These results suggest that reduction of Ly49C/I+ NK1.1+gamma/delta T cells in beta2m+/+ mice is at least partly due to the down-modulation by MHC class I molecules on BM-derived haematopoietic cells or radioresistant cells in the thymus.  相似文献   

16.
Ly49A is a C-type lectin-like receptor on NK cells that recognizes MHC class I ligands, H-2D(d) and D(k). The engagement of Ly49A with the ligands inhibits activation of NK cells and protects target cells from lysis by NK cells. Here we express the extracellular region of Ly49A with an N-terminal biotinylation tag in Escherichia coli to obtain soluble Ly49A (sLy49A) after refolding. sLy49A is indistinguishable from native Ly49A expressed on NK cells serologically and in the ability to specifically bind H-2D(d) after tetramerization with R-phycoerythrin-coupled streptavidin. The fluorescently labeled tetramer of sLy49A is applied to explore MHC class I haplotype specificity of Ly49A. We demonstrate the hierarchical reactivity of Ly49A with H-2 of various alleles in the order of d > k, r > p > v > q > s > z. Reactivity of sLy49A tetramer to spleen lymphocytes from B10.QBR mice (H-2K(b), I(b), D(q), Qa-1/Tla(b)) but not from C57BL/10 mice (H-2(b)) identifies H-2D(q) and L(q) as candidates for a Ly49A ligand. Binding of sLy49A tetramer to H-2D(q)- or L(q)-transfected cell lines demonstrates that the two highly related MHC class I molecules, H-2D(q) and L(q), are ligands for Ly49A. sLy49A tetramer staining also demonstrates preferential expression of Ly49A ligand on a subset of B cells in P/J mice. These results provide the basis to examine the molecular mechanism by which Ly49A discriminates polymorphic MHC class I molecules.  相似文献   

17.
Mouse NK cells express MHC class I-specific inhibitory Ly49 receptors. Since these receptors display distinct ligand specificities and are clonally distributed, their expression generates a diverse NK cell receptor repertoire specific for MHC class I molecules. We have previously found that the D d (or Dk )-specific Ly49A receptor is usually expressed from a single allele. However, a small fraction of short-term NK cell clones expressed both Ly49A alleles, suggesting that the two Ly49A alleles are independently and randomly expressed. Here we show that the genes for two additional Ly49 receptors (Ly49C and Ly49G2) are also expressed in a (predominantly) mono-allelic fashion. Since single NK cells can co-express multiple Ly49 receptors, we also investigated whether mono-allelic expression from within the tightly linked Ly49 gene cluster is coordinate or independent. Our clonal analysis suggests that the expression of alleles of distinct Ly49 genes is not coordinate. Thus Ly49 alleles are apparently independently and randomly chosen for stable expression, a process that directly restricts the number of Ly49 receptors expressed per single NK cell. We propose that the Ly49 receptor repertoire specific for MHC class I is generated by an allele-specific, stochastic gene expression process that acts on the entire Ly49 gene cluster.  相似文献   

18.
We have exploited strain-specific differences in the NK allorecognition repertoires to generate rat monoclonal antibodies against receptors involved in the control of allogeneic responses by rat NK cells. The monoclonal antibody STOK2 binds to a homodimeric glycoprotein that has been implicated as an inhibitory receptor for an MHC molecule in the PVG strain. In the present study, we haveidentified this glycoprotein as a novel rat Ly49 receptor (Ly49i2) containing an immunoreceptor tyrosine-based inhibitory motif. Ligation of the Ly49i2 receptor induces inhibitory signals, and Ly49i2 coprecipitates with the inhibitory tyrosine phosphatase SHP-1 in stably transfected RNK-16 cells. Moreover, it inhibits natural killing of lymphoblast targets and transfected fibroblast targets expressingthe classical MHC class Ia allele RT1-A1(c). Ly49i2, therefore, is an inhibitory receptor for specific MHC class Ia molecules, similar to inhibitory members of the mouse Ly49 family.  相似文献   

19.
Natural killer (NK) cells are an essential component of the innate immunity toward tumors and virally infected cells. The function of NK cells is regulated by a precise balance between inhibitory and activating signals. These signals are mediated by NK cell receptors that bind either classical MHC class I molecules or their structural relatives such as MICA, ULBP, RAE-1, and H-60. Two separate families of NK cell receptors have been identified: the immunoglobulin-like family (KIR, LIR) and C-type lectin-like family (Ly49, NKG2D, and CD94/NKG2). Here we summarize the structure of Ly49 C-type lectin-like proteins hitherto solved (Ly49A, Ly49C and Ly49I) and their interaction with MHC class I molecules as determined by the co-crystal structure of Ly49A/H-2Dd and Ly49C/H-2Kb.  相似文献   

20.
Ly49 antigens, interacting with MHC class I molecules, enable NK cells to distinguish "self" from "non-self". Here, we investigated the activating receptor Ly49 D after allogeneic bone marrow transplantation (BMT). After transplantation of B6 bone marrow (BM) into BALB/c recipients we observed a significant reduction of Ly49 D+ NK cells and a decreased density of expression. We found a nonstochastic distribution of Ly49 D with Ly49 G2. In contrast to reduced coexpression with Ly49 A, a constant rate of Ly49 G2 on Ly49 D+ NK cells was observed in allogeneic chimeras. Cytotoxicity was reduced during the first two months after BMT After this time allogeneic chimeras showed tolerance against host-specific targets. We conclude that NK cells are able to shape their Lys49 repertoire fitting to a new environment after allogeneic BMT. This alteration seems to depend on the presence of new corresponding MHC class I molecules resulting in downregulation of respective receptors on donor cells. Analysing coexpression of Ly49 D and Ly49 G2, we found a relationship between these two receptors, showing a distinct effect after allogeneic BMT. Functional data indicate that a time of reduced NK cell cytotoxicity after BMT is followed by in vitro tolerance of allogeneic chimeras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号