首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When Escherichia coli cells lacking all chemotaxis proteins except the response regulator CheY are exposed to acetate, clockwise flagellar rotation results, indicating the acetate stimulus has activated signaling by CheY. Acetate can be converted to acetyl-CoA by either of two different metabolic pathways, which proceed through acetyl phosphate or acetyl-AMP intermediates. In turn, CheY can be covalently modified by either intermediate in vitro, leading to phosphorylation or acetylation, respectively. Either pathway is sufficient to support the CheY-mediated response to acetate in vivo. Whereas phosphorylation of Asp-57 is a recognized mechanism for activation of CheY to stimulate clockwise flagellar rotation, acetylation of CheY is less well characterized. We found evidence for multiple CheY acetylation sites by mass spectrometry and directly identified Lys-92 and Lys-109 as acetylation sites by Edman degradation of peptides from [14C]acetate-labeled CheY. Replacement of CheY Lys-92, the preferred acetylation site, with Arg has little effect on chemotaxis but completely prevents the response to acetate via the acetyl-AMP pathway. Thus acetylation of Lys-92 activates clockwise signaling by CheY in vivo. The mechanism by which acetylation activates CheY apparently is not simple charge neutralization, nor does it involve enhanced binding to the FliM flagellar switch protein. Thus acetylation probably affects signal generation by CheY at a step after switch binding.  相似文献   

2.
Chemotaxis in bacteria is controlled by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein CheY. When phosphorylated, CheY binds to FliM, which is one of the proteins that constitute the "gear box" (or "switch") of the flagellar motor. Consequently, the motor shifts from the default direction of rotation, counterclockwise, to clockwise rotation. This biased rotation is terminated when CheY is dephosphorylated either spontaneously or, faster, by a specific phosphatase, CheZ. Logically, one might expect CheZ to act directly on FliM-bound CheY. However, here we provide direct biochemical evidence that, in contrast to this expectation, phosphorylated CheY (CheY approximately P), bound to FliM, is protected from dephosphorylation by CheZ. The complex between CheY approximately P and FliM was trapped by cross-linking with dimethylsuberimidate, and its susceptibility to CheZ was measured. CheY approximately P complexed with FliM, unlike free CheY approximately P, was not dephosphorylated by CheZ. However, it did undergo spontaneous dephosphorylation. Nonspecific cross-linked CheY dimers, measured as a control, were dephosphorylated by CheZ. No significant binding between CheZ and any of the switch proteins was detected. It is concluded that, in the termination mechanism of signal transduction in bacterial chemotaxis, CheZ acts only on free CheY approximately P. We suggest that CheZ affects switch-bound CheY approximately P by shifting the equilibrium between bound and free CheY approximately P.  相似文献   

3.
Regulation of the direction of flagellar rotation is central to the mechanism of bacterial chemotaxis. The transitions between counterclockwise and clockwise rotation are controlled by a "switch complex" composed of three proteins (FliG, FliM, and FliN) and located at the base of the flagellar motor. The mechanism of function of the switch is unknown. Here we demonstrate that the diffusible clockwise-signal molecule, the CheY protein, binds to the switch, that the primary docking site is FliM, that the extent of CheY binding to FliM is dependent upon the phosphorylation level of CheY, and that it is unaffected by the other two switch proteins. This study provides a biochemical demonstration of binding of a signal molecule to the bacterial switch and demonstrates directly that phosphorylation regulates the activity of this molecule.  相似文献   

4.
Signal transduction in Escherichia coli involves the interaction of transmembrane receptor proteins such as the aspartate receptor, Tar, and the products of four chemotaxis genes, cheA, cheY, cheW, and cheZ. It was previously shown that the cheA gene product is an autophosphorylating protein kinase that transfers phosphate to CheY, whereas the cheZ gene product acts as a specific CheY phosphatase. Here we report that the system can be reconstituted in vitro and receptor function can be coupled to CheY phosphorylation. Coupling requires the presence of the CheW protein, the appropriate form of the receptor, and the CheA and CheY proteins. Under these conditions the accumulation of CheY-phosphate is enhanced approximately 300-fold. This rate enhancement is seen in reactions using wild-type and "tumble" mutant receptors but not "smooth" mutant receptors. The increased accumulation of phosphoprotein was inhibited by micromolar concentrations of aspartate, using wild-type, but not tumble, receptors. These results provide evidence that the signal transduction pathway in bacterial chemotaxis involves receptor-mediated alteration of the levels of phosphorylated proteins. They suggest that CheW acts as the coupling factor between receptor and phosphorylation. The results also support the suggestion that CheY-phosphate is the tumble signal.  相似文献   

5.
When cells of the bacterium Salmonella typhimurium are incubated with penicillin and lysed in a dilute buffer, flagellated cytoplasm-free envelopes are formed. When the envelopes are tethered to glass by their flagella and then energized, some of them spin. The direction of rotation of wild-type envelopes is exclusively counterclockwise (CCW). We perturbed this system by including in the lysis medium (and hence in the envelopes) the chemotaxis protein CheY. As a result, some of the envelopes rotated exclusively clockwise (CW). The fraction of envelopes that did so increased with the concentration of CheY; at a concentration of 48 microM (pH 8), all functional envelopes spun CW. The fraction also increased with the pH of the lysis medium in the range of 6.6-8.4. The results were the same in the presence or absence of intracellular Ca2+. Reconstituted envelopes failed to respond to chemotactic stimuli. None of them changed the direction of their rotation. However, when the intracellular pH was lowered to 6.6 or below, envelopes that spun CW stopped rotating, while envelopes that spun CCW continued to rotate. This phenomenon was reversible. We conclude that CheY per se, without any additional free cytoplasmic mediators, interacts with a switch at the base of the flagellum to cause CW rotation.  相似文献   

6.
Although interfaces mediating protein-protein interactions are thought to be under strong evolutionary constraints, binding of the chemotaxis histidine kinase CheA to its phosphorylation target CheY suggests otherwise. The structure of Thermotoga maritima CheA domain P2 in complex with CheY reveals a different association than that observed for the same Escherichia coli proteins. Similar regions of CheY bind CheA P2 in the two systems, but the CheA P2 domains differ by an approximately 90 degrees rotation. CheA binds CheY with identical affinity in T. maritima and E. coli at the vastly different temperatures where the respective organisms live. Distinct sets of P2 residues mediate CheY binding in the two complexes; conservation patterns of these residues in CheA and compensations in CheY delineate two families of prokaryotic chemotaxis systems. A protein complex that has the same components and general function in different organisms, but an altered structure, indicates unanticipated complexity in the evolution of protein-protein interactions and cautions against extrapolating structural data from homologs.  相似文献   

7.
The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior.  相似文献   

8.
In Escherichia coli chemotaxis, signaling depends on modulation of the level of phosphorylation of CheY, a small protein that couples receptors and flagellar motors. Working in vivo, we used fluorescence resonance energy transfer (FRET) to measure the interaction of CheY approximately P with its target, FliM. Binding of CheY approximately P to FliM was found to be much less cooperative than motor switching; however, under the conditions of our experiment, most of the FliM appeared to be in the cytoplasm. We studied signal processing times in the chemotaxis pathway by measuring the changes in CheY approximately P binding to FliM on flash release of caged chemoeffectors. Following sudden addition of attractant, the amount of CheY approximately P bound to FliM decayed exponentially with a rate constant of about 2 s(-1). Following sudden addition of repellent, FliM occupancy increased with a rate constant of about 20 s(-1). Using these data, we were able to construct a simple model for the chemotactic pathway and to estimate values of rate constants for several key reactions.  相似文献   

9.
CheY, a response regulator protein in bacterial chemotaxis, serves as a prototype for the analysis of response regulator function in two-component signal transduction. Phosphorylation of a conserved aspartate at the active site mediates a conformational change at a distal signaling surface that modulates interactions with the flagellar motor component FliM, the sensor kinase CheA, and the phosphatase CheZ. The objective of this study was to probe the conformational coupling between the phosphorylation site and the signaling surface of CheY in the reverse direction by quantifying phosphorylation activity in the presence and absence of peptides of CheA, CheZ, and FliM that specifically interact with CheY. Binding of these peptides dramatically impacted autophosphorylation of CheY by small molecule phosphodonors, which is indicative of reverse signal propagation in CheY. Autodephosphorylation and substrate affinity, however, were not significantly affected. Kinetic characterization of several CheY mutants suggested that conserved residues Thr-87, Tyr-106, and Lys-109, implicated in the activation mechanism, are not essential for conformational coupling. These findings provide structural and conceptual insights into the mechanism of CheY activation. Our results are consistent with a multistate thermodynamic model of response regulator activation.  相似文献   

10.
During bacterial chemotaxis, the binding of stimulatory ligands to chemoreceptors at the cell periphery leads to a response at the flagellar motor. Three proteins appear to be required for receptor-mediated control of swimming behavior, the products of the cheA, cheW, and cheY genes. Here we present the complete nucleotide sequence of the Salmonella typhimurium cheA gene together with the purification and characterization of its protein product. The protein is a 73,000 Mr cytoplasmic constituent. Amino acid-sequence comparisons indicate that it belongs to a family of bacterial regulatory proteins including the products of the cpxA, dctB, envZ, ntrB, phoR, phoM, and virA genes. Each member of this family has a conserved domain of approximately equal to 200 residues within its C terminus. We have previously shown that another chemotaxis protein, CheY, represents a domain of protein structure that has been conserved within a second large family of bacterial regulatory proteins. Each protein of the CheA family seems to function as a regulator of a different CheY homologue. Although each pair of proteins appears to produce a specialized response to a distinct type of stimulus, the relationships in primary structure suggest that a similar molecular mechanism may be involved.  相似文献   

11.
The crystal structure at 2.0-Å resolution of the complex of the Escherichia coli chemotaxis response regulator CheY and the phosphoacceptor-binding domain (P2) of the kinase CheA is presented. The binding interface involves the fourth and fifth helices and fifth β-strand of CheY and both helices of P2. Surprisingly, the two heterodimers in the asymmetric unit have two different binding modes involving the same interface, suggesting some flexibility in the binding regions. Significant conformational changes have occurred in CheY compared with previously determined unbound structures. The active site of CheY is exposed by the binding of the kinase domain, possibly to enhance phosphotransfer from CheA to CheY. The conformational changes upon complex formation as well as the observation that there are two different binding modes suggest that the plasticity of CheY is an essential feature of response regulator function.  相似文献   

12.
Chemotactic receptors at the bacterial cell surface communicate with flagellar basal structures to elicit appropriate motor behavior in response to extracellular stimuli. Genetic and physiological studies indicate that the product of the cheY gene interacts directly with components of the flagellar motor to control swimming behavior. We have purified and characterized the Salmonella typhimurium CheY protein and have determined the nucleotide sequence of the cheY gene. Amino acid sequence comparisons showed CheY to be homologous over its entire length (129 residues) to the N-terminal regulatory domain of another protein involved in chemotaxis, the CheB methyl esterase. The entire CheY protein and the regulatory domain of CheB also homologous to the N-terminal portions of the Escherichia coli OmpR and Dye proteins and the Bacillus subtilis Spo0A protein. These homologies suggest an evolutionary and functional relationship between the chemotaxis system and systems that are thought to regulate gene expression in response to changing environmental conditions.  相似文献   

13.
Bacterial motility and gene expression are controlled by a family of phosphorylated response regulators whose activities are modulated by an associated family of protein-histidine kinases. In chemotaxis there are two response regulators, CheY and CheB, that receive phosphoryl groups from the histidine kinase, CheA. Here we show that the response regulators catalyze their own phosphorylation in that both CheY and CheB can be phosphorylated in the complete absence of any auxiliary protein. Both CheY and CheB use the N-phosphoryl group in phosphoramidate (NH2PO3(2-)) as a phospho-donor. This enzymatic activity probably reflects the general ability of response regulators to accept phosphoryl groups from phosphohistidines in their associated kinases. It provides a general method for the study of activated response regulators in the absence of kinase proteins. CheY can also use intermediary metabolites such as acetyl phosphate and carbamoyl phosphate as phospho-donors. These reactions may provide a mechanism to modulate cell behavior in response to altered metabolic states.  相似文献   

14.
Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS). Unlike conventional chemoreception, PTS substrates are sensed during their uptake and concomitant phosphorylation by the cell. The phosphoryl groups are transferred from PEP to the carbohydrates through two common intermediates, enzyme I (EI) and phosphohistidine carrier protein (HPr), and then to sugar-specific enzymes II. We found that in mutant strains HPr-like proteins could substitute for HPr in transport but did not mediate chemotactic signaling. In in vitro assays, these proteins exhibited reduced phosphotransfer rates from EI, indicating that the phosphorylation state of EI might link the PTS phospho-relay to the flagellar signaling pathway. Tests with purified proteins revealed that unphosphorylated EI inhibited CheA autophosphorylation, whereas phosphorylated EI did not. These findings suggest the following model for signal transduction in PTS-dependent chemotaxis. During uptake of a PTS carbohydrate, EI is dephosphorylated more rapidly by HPr than it is phosphorylated at the expense of PEP. Consequently, unphosphorylated EI builds up and inhibits CheA autophosphorylation. This slows the flow of phosphates to CheY, eliciting an up-gradient swimming response by the cell.  相似文献   

15.
Protein phosphorylation is involved in bacterial chemotaxis.   总被引:50,自引:14,他引:50       下载免费PDF全文
The nature of the biochemical signal that is involved in the excitation response in bacterial chemotaxis is not known. However, ATP is required for chemotaxis. We have purified all of the proteins involved in signal transduction and show that the product of the cheA gene is rapidly autophosphorylated, while some mutant CheA proteins cannot be phosphorylated. The presence of stoichiometric levels of two other purified components in the chemotaxis system, the CheY and CheZ proteins, induces dephosphorylation. We suggest that the phosphorylation of CheA by ATP plays a central role in signal transduction in chemotaxis.  相似文献   

16.
17.
A recombinant DNA approach has been used to study intracellular signaling in the bacterial sensing system. The Escherichia coli cheY gene, whose function is unknown, has been subcloned behind the synthetic inducible tac promoter. The resulting plasmid directs the synthesis of the Y protein in response to isopropyl beta-D-thiogalactoside, independent of its usual operon control. When this construct was introduced into wild-type and mutant cells, the Y protein caused a clockwise rotational bias in the flagellar motors. This effect was observed even in heavily biased counterclockwise strains lacking most of the central chemotaxis processing genes. The results show that the Y protein has a direct influence on flagellar rotation not requiring other processing genes of the sensing system. The Y protein appears to bind directly to a part of the flagellar motor, probably the flaA gene product, and it is probably the key element in biasing the motor toward the clockwise rotational direction.  相似文献   

18.
Escherichia coli expresses two forms of the chemotaxis-associated CheA protein, CheAL and CheAS, as the result of translational initiation at two distinct, in-frame initiation sites in the gene cheA. The long form, CheAL, plays a crucial role in the chemotactic signal transduction mechanism by phosphorylating two other chemotaxis proteins: CheY and CheB. CheAL must first autophosphorylate at amino acid His-48 before transferring its phosphono group to these other signal transduction proteins. The short form, CheAS, lacks the N-terminal 97 amino acids of CheAL and, therefore, does not possess the site of autophosphorylation. Here we demonstrate that although it lacks the ability to autophosphorylate, CheAS can mediate phosphorylation of kinase-deficient variants of CheAL each of which retains a functional autophosphorylation site. This transphosphorylation enables these kinase-deficient CheAL variants to phosphorylate CheY. Because it mediates this activity, CheAS can restore to kinase-deficient E. coli cells the ability to tumble and, thus, to perform chemotaxis in swarm plate assays.  相似文献   

19.
We have demonstrated that a complex of the proteins CheA (CheAL and CheAS) and CheW can be isolated and constitutes a functional unit that responds to the signaling state of the chemoreceptors. The autophosphorylation rate of CheAL is much greater when CheAL and CheAS are complexed with CheW. Moreover, the presence of mutant chemoreceptors that cause cells to tumble increases this rate. At wild-type levels of expression, the isolated CheAL/CheAS/CheW complex accounts for about 10% of the total number of CheAL, CheAS, and CheW molecules and exists in a 1:1:1 stoichiometry. This complex is also required for CheAL/CheAS and CheW binding to the phosphorylation substrate, CheY. A separate interaction between CheY and another chemotaxis component, CheZ, was also detected. The CheY-CheZ interaction does not require participation of the CheAL/CheAS/CheW complex.  相似文献   

20.
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and CheX. A variable structural element, which, in CheC, mediates binding to CheD (alpha2') and, in CheX, mediates dimerization (beta'(x)), has a truncated structure unique to FliM (alpha2'). An exposed helix of FliM(M) (alpha1) does not contain the catalytic residues of CheC and CheX but does include positions conserved in FliM sequences. Cross-linking experiments with site-directed cysteine mutants show that FliM self-associates through residues on alpha1 and alpha2'. CheY activated by BeF(3)(-) binds to FliM with approximately 40-fold higher affinity than CheY (K(d) = 0.04 microM vs. 2 microM). Mapping residue conservation, suppressor mutation sites, binding data, and deletion analysis onto the FliM(M) surface defines regions important for contacts with the stator-interacting protein FliG and for either counterclockwise or clockwise rotation. Association of 33-35 FliM subunits would generate a 44- to 45-nm-diameter disk, consistent with the known dimensions of the C-ring. The localization of counterclockwise- and clockwise-biasing mutations to distinct surfaces suggests that the binding of phosphorylated CheY cooperatively realigns FliM around the ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号