首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroblastoma is the most common type of cancer in infants. In children this tumor is particularly aggressive; despite various new therapeutic approaches, it is associated with poor prognosis. Given the importance of endosomal-lysosomal proteolysis in cellular metabolism, we hypothesized that inhibition of lysosomal protease would impact negatively on neuroblastoma cell survival. Treatment with E-64 or CA074Me (2 specific inhibitors of cathepsin B) or with pepstatin A (a specific inhibitor of cathepsin D) was cytotoxic for 2 neuroblastoma cell lines having different degrees of malignancy. Cell death was associated with condensation and fragmentation of chromatin and externalization of plasma membrane phosphatidylserine, 2 hallmarks of apoptosis. Concomitant inhibition of the caspase cascade protected neuroblastoma cells from cathepsin inhibitor-induced cytotoxicity. These data indicate that prolonged inhibition of the lysosomal proteolytic pathway is incompatible with cell survival, leading to apoptosis of neuroblastoma cells, and that the cathepsin-mediated and caspase-mediated proteolytic systems are connected and cooperate in the regulation of such an event. Since modern antitumor chemotherapy is aimed at restoring the normal rate of apoptosis in neoplastic tissues, the demonstration that endosomal-lysosomal cathepsins are involved in this process may constitute a basis for novel strategies that include cathepsin inhibitors in the therapeutic regimen.  相似文献   

2.
Acquired resistance to classic caspase-mediated apoptosis is a common problem for the treatment of human cancer. Here, we show that siramesine, a novel sigma-2 receptor ligand, effectively induces caspase-independent programmed cell death in immortalized and transformed cells of various origins. Siramesine-treated tumor cells displayed increased levels of reactive oxygen species, lysosomal membrane permeabilization, chromatin condensation, and shrinkage and detachment of cells. Lipid antioxidants (alpha-tocopherol and gamma-tocopherol), but not other tested antioxidants (butylated hydroxyanisol or N-acetyl cysteine), effectively inhibited siramesine-induced morphologic changes and cell death. Cathepsin B inhibitors (CA-074-Me and R-2525) conferred similar, but less pronounced protection, whereas ectopic expression of antiapoptotic protein Bcl-2, lack of wild-type p53 as well as pharmacologic inhibitors of caspases (zVAD-fmk, DEVD-CHO, and LEHD-CHO), calpains (PD150606), and serine proteases (N-tosyl-L-phenylalanine chloromethyl ketone and pefabloc) failed to protect cells against siramesine-induced death. Importantly, transformation of murine embryonic fibroblasts with activated c-src or v-Ha-ras oncogenes greatly sensitized them to siramesine-induced cytotoxicity. Furthermore, p.o. administration of well-tolerated doses of siramesine had a significant antitumorigenic effect in orthotopic breast cancer and s.c. fibrosarcoma models in mice. These results present siramesine as a promising new drug for the treatment of tumors resistant to traditional therapies.  相似文献   

3.
The aspartic protease cathepsin D (cath-D) is a key mediator of induced-apoptosis and its proteolytic activity has been generally involved in this event. During apoptosis, cath-D is translocated to the cytosol. Because cath-D is one of the lysosomal enzymes that requires a more acidic pH to be proteolytically active relative to the cysteine lysosomal enzymes such as cath-B and -L, it is therefore open to question whether cytosolic cath-D might be able to cleave substrate(s) implicated in the apoptotic cascade. Here, we have investigated the role of wild-type cath-D and its proteolytically inactive counterpart overexpressed by 3Y1-Ad12 cancer cells during chemotherapeutic-induced cytotoxicity and apoptosis, as well as the relevance of cath-D catalytic function. We demonstrate that wild-type or mutated catalytically inactive cath-D strongly enhances chemo-sensitivity and apoptotic response to etoposide. Both wild-type and mutated inactive cath-D are translocated to the cytosol, increasing the release of cytochrome c, the activation of caspases-9 and -3 and the induction of a caspase-dependent apoptosis. In addition, pretreatment of cells with the aspartic protease inhibitor, pepstatin A, does not prevent apoptosis. Interestingly therefore, the stimulatory effect of cath-D on cell death is independent of its catalytic activity. Overall, our results imply that cytosolic cath-D stimulates apoptotic pathways by interacting with a member of the apoptotic machinery rather than by cleaving specific substrate(s).  相似文献   

4.
Expression and activity of lysosomal cysteine cathepsins correlate with the metastatic capacity and aggressiveness of tumors. Here, we show that transformation of murine embryonic fibroblasts with v-H-ras or c-src(Y527F) changes the distribution, density, and ultrastructure of the lysosomes, decreases the levels of lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in an extracellular signal-regulated kinase (ERK)- and cathepsin-dependent manner, and sensitizes the cells to lysosomal cell death pathways induced by various anticancer drugs (i.e., cisplatin, etoposide, doxorubicin, and siramesine). Importantly, K-ras and erbb2 elicit a similar ERK-mediated activation of cysteine cathepsins, cathepsin-dependent down-regulation of LAMPs, and increased drug sensitivity in human colon and breast carcinoma cells, respectively. Notably, reconstitution of LAMP levels by ectopic expression or by cathepsin inhibitors protects transformed cells against the lysosomal cell death pathway. Furthermore, knockdown of either lamp1 or lamp2 is sufficient to sensitize the cells to siramesine-induced cell death and photo-oxidation-induced lysosomal destabilization. Thus, the transformation-associated ERK-mediated up-regulation of cysteine cathepsin expression and activity leads to a decrease in the levels of LAMPs, which in turn contributes to the enhanced sensitivity of transformed cells to drugs that trigger lysosomal membrane permeabilization. These data indicate that aggressive cancers with high cysteine cathepsin levels are especially sensitive to lysosomal cell death pathways and encourage the further development of lysosome-targeting compounds for cancer therapy.  相似文献   

5.
Thiol antioxidants, typified by N-acetyl cysteine, are known to induce p53-dependent apoptosis in transformed mouse embryo fibroblasts but not in normal mouse embryo fibroblasts. We now report that this is also the case for human cells. First, we used an isogenic fibroblast cell lineage exhibiting progressive stages of transformation, from primary derived cells to v-MYC immortalized to tumorigenic. At the immortalization stage, cells became 12- and 480-fold more sensitive to the thiol antioxidants N-acetyl cysteine (NAC) and penicillamine (PEN), respectively. Although immortalization of these cells was associated with v-MYC expression, overexpression of MYC was not sufficient for sensitizing these cells to antioxidants. To test whether sensitivity to antioxidants is a general property of immortalized human cells, including fully transformed cells, 12 tumor-derived cell lines were treated with PEN, the more potent of the two antioxidants. Ten of 11 caspase-proficient tumor cell lines underwent apoptosis after treatment, whereas primary fibroblasts and keratinocytes were resistant. The difference between normal and transformed cells was apparent whether the assay used measured caspase 3 activation, Annexin V binding, or cell viability. Tumor cell lines containing wild-type p53 were more sensitive than p53-null cell lines. The requirement for p53 was tested using the p53 inhibitor, pifithrin-alpha, or using stable transfectants of a v-MYC-immortalized, telomerase-positive cell line that expresses HPV16 E6 to bind and degrade p53. In the latter case, > or = 80% of the PEN-induced apoptosis was dependent on the presence of wild-type p53. These studies suggest that treatment with thiol-containing antioxidants, such as PEN, may offer a useful approach for preferential induction of apoptosis in preneoplastic and neoplastic cells.  相似文献   

6.
7.
Integrins are heterodimeric transmembrane receptors involved in sensing and transmitting informational cues from the extracellular environment to the cell. This study explored sub-proteome changes in response to elimination of the β3 integrin using a knockout murine model. Cleavable isotope-coded affinity tagging (cICAT) in combination with sub-cellular fractionation, multiple dimensions of separation and tandem mass spectrometry (MS/MS) were used to characterize differentially expressed proteins among β3 integrin(-/-) (β3(-/-)) mouse embryonic fibroblasts and isogenic wild-type (WT) controls. From a cytosolic protein fraction, 48 proteins were identified, in which expression differed by > 1.5-fold. Predominant ontological groups included actin-binding/cytoskeletal proteins and protease/protease inhibitors. Interestingly, β3 integrin expression was inversely correlated with expression of cathepsin B, a lysosomal cysteine protease, as its expression was greater by over 3.5-fold in the β3(-/-) cells. This inverse correlation was also observed in stable heterologous cells transfected with β3 integrin, where the intracellular expression and activity of cathepsin B was lower compared to control cells. Our data suggests that the composition of the cellular proteome is influenced by integrin expression patterns and reveals a strong functional relationship between β3 integrin and cathepsin B.  相似文献   

8.
We isolated human KB adenocarcinoma cisplatin-resistant (CP-r) cell lines with multidrug-resistance phenotypes because of reduced accumulation of cisplatin and other cytotoxic compounds such as methotrexate and heavy metals. The uptake of horseradish peroxidase (HRPO) and Texas Red dextran was decreased several-fold in KB-CP-r cells, indicating a general defect in fluid-phase endocytosis. In contrast, although EGF receptors were decreased in amount, the kinetics of EGF uptake, a marker of receptor-mediated endocytosis, was similar in sensitive and resistant cells. However, 40-60% of the (125)I-EGF released into the medium after uptake into lysosomes of KB-CP-r cells was TCA precipitable as compared to only 10% released by sensitive cells. These results indicate inefficient degradation of internalised (125)I-EGF in the lysosomes of KB-CP-r cells, consistent with slower processing of cathepsin L, a lysosomal cysteine protease. Treatment of KB cells by bafilomycin A(1), a known inhibitor of the vacuolar proton pump, mimicked the phenotype seen in KB-CP-r cells with reduced uptake of HRPO, (125)I-EGF, (14)C-carboplatin, and release of TCA precipitable (125)I-EGF. KB-CP-r cells also had less acidic lysosomes. KB-CP-r cells were crossresistant to Pseudomonas exotoxin, and Pseudomonas exotoxin-resistant KB cells were crossresistant to cisplatin. Since cells with endosomal acidification defects are known to be resistant to Pseudomonas exotoxin and blocking of endosomal acidification mimics the CP-r phenotype, we conclude that defective endosomal acidification may contribute to acquired cisplatin resistance.  相似文献   

9.
The active form of vitamin D3, 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3), induces caspase‐independent apoptosis in MCF‐7 and T47D breast cancer cells. Before the appearance of apoptotic cells at Day 4 after the addition of 1,25(OH)2D3, the MCF‐7 cells are sensitized to the caspase‐mediated apoptosis induced by TNF. We studied the mechanism underlying the cross talk between these 2 distinct death pathways in MCF‐7 and T47D cells. Whereas 1,25(OH)2D3 pre‐treatment enhanced TNF‐induced apoptosis of TNF sensitive MCF‐7 cells, it failed to render TNF resistant T47D cells sensitive to this cytokine. Opposing to an earlier report suggesting that cytosolic phospholipase A2 (cPLA2) mediates the 1,25(OH)2D3‐induced sensitization to TNF, we could not detect any cPLA2 protein in MCF‐7 cells and its overexpression had no effect on cellular sensitivity to 1,25(OH)2D3 or the combination with TNF. The sensitization of MCF‐7 cells to TNF‐induced apoptosis by pre‐treatment with 1,25(OH)2D3 may instead be partially explained by an increased surface expression of the TNF receptor 1 (TNF‐R1). In line with this, not only the TNF‐induced activation of caspases and apoptosis but also that of NF‐κB was enhanced by 1,25(OH)2D3 pre‐treatment. Furthermore, 1,25(OH)2D3 enhanced TNF‐induced NF‐κB activation in T47D cells suggesting that it potentiates TNF signaling in general. Interestingly, the lysosomal protease cathepsin B, which expression is up‐regulated by 1,25(OH)2D3, was released from the lysosomes upon TNF treatment, and inhibition of its activity rescued 1,25(OH)2D3 treated MCF‐7 cells from TNF‐induced apoptosis. In conclusion, 1,25(OH)2D3 may enhance TNF‐induced apoptosis by increasing the expression of both the TNF‐R1 and cathepsin B. © 2001 Wiley‐Liss, Inc. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
We have previously reported that the microtubule stabilizing agents (MSAs) paclitaxel, epothilone B and discodermolide induce caspase-independent cell death in non-small cell lung cancer (NSCLC) cells. Here we present two lines of evidence indicating a central role for the lysosomal protease cathepsin B in mediating cell death. First, inhibition of cathepsin B, and not of caspases or other proteases, such as cathepsin D or calpains, results in a strong protection against drug-induced cell death in several NSCLC cells. Second, MSAs trigger disruption of lysosomes and release and activation of cathepsin B. Interestingly, inhibition of cathepsin B prevents the appearance of multinucleated cells, an early characteristic of MSA-induced cell death, pointing to a central, proximal role for cathepsin B in this novel cell death pathway.  相似文献   

11.

Background:

Tumour necrosis factor (TNF) is capable of activating the cell death pathway, and has been implicated in killing transformed cells. However, TNF also activates survival signals, including NF-κB activation and the subsequent expression of anti-apoptotic genes, leading to protection against TNF toxicity.

Methods:

In this study, we show that, although untransformed mouse embryonic fibroblasts (MEFs) were resistant to TNF killing, E1A/Ras-transformed MEFs were susceptible to extensive apoptosis induced by TNF. The key factors for determining TNF sensitivity were explored by comparing wild-type and E1A/Ras-transformed MEFs.

Results:

TNF signalling to NF-κB and to its target genes such as IκBα seemed to be mostly intact in E1A/Ras-transformed cells. Instead, the induction of A20 was completely abolished in E1A/Ras-transformed MEFs, although A20 is known to be NF-κB dependent. Reintroduction of A20 into E1A/Ras-transformed MEFs rescued these cells from TNF-induced death and reduced the formation of the FADD/caspase-8 complex. This impaired A20 induction in E1A/Ras MEFs was not because of the stabilisation of p53 or a defective TNF-induced p38 and Jun N-terminal kinase (JNK) signalling. Consistently, we found a reduced A20 promoter activity but normal NF-κB activity in TNF-treated E1A/Ras MEFs. However, Bcl-3 seemed to have a role in the transactivation of the A20 promoter in E1A/Ras cells.

Conclusions:

Our results suggest that specific inhibition of certain survival factors, such as A20, may determine the sensitivity to TNF-induced apoptosis in transformed cells such as E1A/Ras MEFs.  相似文献   

12.
J D Liddil  R T Dorr  P Scuderi 《Cancer research》1989,49(10):2722-2728
The cytotoxic mechanism of action of tumor necrosis factor (TNF) was examined using murine L929 fibrosarcoma cells in vitro. Two cell lines were evaluated: parental TNF sensitive (L929S) (50% cytotoxic concentration, 2-6 ng/ml); and TNF resistant (L929R) (50% cytotoxic concentration, greater than 10,000 ng/ml). The latter resistant cell line was developed by serial passage in increasing concentrations of recombinant human TNF. Sensitive cells demonstrated cytolytic and cytostatic effects at TNF concentrations between 2 and 6 ng/ml, respectively. However, TNF failed to show any selective depression of RNA, DNA, or protein synthesis or ATP content in these cells until general cell death was apparent, as defined by the cell rounding and lifting off the plastic surface. The cytokine also failed to cause DNA single-strand breaks, as detected by alkaline elution techniques. TNF was also found to be no more active in glutathione-depleted cells than in target cells containing normal glutathione levels. In contrast, various nonspecific lysosomotropic agents such as ammonium chloride and D-saccharic acid lactone led to a marked inhibition of the cytotoxic action of TNF in vitro. Furthermore, significant differences in lysosomal enzyme activity were noted between L929S and L929R cells. The changes in L929R cells involved a 50% reduction in total lysosomal protein levels and a marked depression of beta-glucuronidase activity. In contrast, L929R lysosomal hexosaminidase activity was significantly elevated over the L929S cells. From these studies it is concluded that the antitumor activity of TNF does not involve specific inhibition of macromolecular synthesis, ATP production, or the level of reduced thiols. Instead, TNF cytotoxicity appears to require functional lysosomes, which are altered when TNF resistance develops in vitro.  相似文献   

13.
Imaging proteolysis by living human breast cancer cells   总被引:5,自引:1,他引:4       下载免费PDF全文
Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549) through the use of quenched-fluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent or endocytic uptake of substrate. In the presence of a cathepsin B-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1) a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2) the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.  相似文献   

14.
Harhaj EW  Good L  Xiao G  Sun SC 《Oncogene》1999,18(6):1341-1349
Human T-cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T-cell leukemia, an acute and often fatal T-cell malignancy. A key step in HTLV-I-induced leukemigenesis is induction of abnormal T-cell growth and survival. Unlike antigen-stimulated T cells, which cease proliferation after a finite number of cell division, HTLV-I-infected T cells proliferate indefinitely (immortalized), thus facilitating occurrence of secondary genetic changes leading to malignant transformation. To explore the molecular basis of HTLV-I-induced abnormal T-cell survival, we compared the gene expression profiles of normal and HTLV-I-immortalized T cells using 'gene array'. These studies revealed a strikingly altered expression pattern of a large number of genes along with HTLV-I-mediated T-cell immortalization. Interestingly, many of these deregulated genes are involved in the control of programmed cell death or apoptosis. These findings indicate that disruption of the cellular apoptosis-regulatory network may play a role in the HTLV-I-mediated oncogenesis.  相似文献   

15.
Transformation of human cells, both induced and spontaneous, is an extremely rare event, whereas rodent cells are relatively easily transformed when treated with a single carcinogenic agent. The present review addresses the question of why human cells are resistant to malignant transformation in vitro. To facilitate understanding of the problem, the process of transformation is divided operationally into two phases, i.e. phase I, immortalization; and phase II, malignant transformation. In human cells, one-phase transformation, i.e., the consecutive occurrence of phases I and II due to the action of a single carcinogenic agent, is observed only rarely. Once human cells are immortalized, however, malignant transformation by chemical carcinogens or oncogenes proceeds, suggesting that for human cells, phase I immortalization is a prerequisite for such transformation to take place. To date, about 20 papers have been published describing protocols for the two-phase transformation of a variety of human epithelial cells and fibroblasts. In most experiments, SV40, human papilloma viruses and their transforming genes are utilized for induction of phase I (immortalization) followed by the use of chemical carcinogens or activated oncogenes for induction of phase II (malignant transformation). Possible mechanisms that would render human cells refractory to transformation are discussed below.  相似文献   

16.
Although many tumor cells are sensitive to tumor necrosis factor (TNF)-induced cell death, most normal cells are resistant. To determine whether the sensitive phenotype or the resistant phenotype is genetically dominant, we constructed somatic cell hybrids of TNF-resistant (TNP) C3H mouse 10T1/2 fibroblasts and Ha-ms-transformed TNF-sensitive (TNFs) 10T-EJ cells and then tested the sensitivity of those hybrids to TNF-induced cell death. All somatic cell hybrid cell lines tested were resistant to TNF-induced cell death. The TNFr 10T1/2 cells, however, exhibited sensitivity to TNF-induced cell death in the presence of cycloheximide (CHX), whereas TNFs 10T-EJ cells did not show any further increase in sensitivity to TNF-induced cell death in the presence of CHX. In addition, the killing of 1OT1/2 cells by TNF in the presence of CHX involved apoptosis. These results demonstrate that resistance to TNF-induced apoptosis is a genetically dominant phenotype and that certain protein(s) constitutively expressed or induced by TNF in resistant cells may confer protection against TNF-induced apoptosis.  相似文献   

17.
18.
The lysosomal cysteine proteinase cathepsin L is involved in proteolytic processing of internalized proteins. In transformed cells, where it is frequently overexpressed, its intracellular localization and functions can be altered. Previously, we reported that treatment of highly metastatic, murine carcinoma H-59 cells with small molecule cysteine proteinase inhibitors altered the responsiveness of the type I insulin-like growth factor (IGF-I) receptor and consequently reduced cell invasion and metastasis. To assess more specifically the role of cathepsin L in IGF-I-induced signaling and tumorigenicity, we generated H-59 subclones with reduced cathepsin L expression levels. These clonal lines showed an altered responsiveness to IGF-I in vitro, as evidenced by (i) loss of IGF-I-induced receptor phosphorylation and Shc recruitment, (ii) reduced IGF-I (but not IGF-II)-induced cellular proliferation and migration, (iii) decreased anchorage-independent growth and (iv) reduced plasma membrane levels of IGF-IR. These changes resulted in increased apoptosis in vivo and an impaired ability of the cells to form liver metastases. The results demonstrate that cathepsin L expression levels regulate cell responsiveness to IGF-I and thereby identify a novel function for cathepsin L in the control of the tumorigenic/metastatic phenotype.  相似文献   

19.
Expression of cathepsin L in human tumors   总被引:9,自引:0,他引:9  
It has been proposed that proteases secreted by cancer cells facilitate tumor invasion and metastasis by degrading the components of extracellular membranes. The lysosomal cysteine protease cathepsin L is synthesized in large amounts and secreted by many malignantly transformed cells in culture. The secreted protease is potent in degrading collagen, laminin, elastin, and other structural proteins of basement membranes. To determine whether human cancers synthesize cathepsin L, the expression of cathepsin L in approximately 100 human tumor samples was determined by quantitative RNA slot blot analysis using a specific human cathepsin L complementary DNA probe. Results of the present study suggest that cancers in general express higher levels of cathepsin L than do normal tissues. Kidney and testicular tumors expressed the highest levels of cathepsin L; non-small cell carcinomas of the lung expressed the next highest levels; and most cancers of the breast, ovary, colon, adrenal, bladder, prostate, and thyroid expressed elevated levels as well. Cathepsin L may prove useful as a diagnostic or prognostic marker of human malignancy.  相似文献   

20.
We have shown that the loss of p53 function contributed to resistance of tumor cells to TNF-induced cytotoxicity. In the present study, we evaluated the effect of wild-type p53 (wt-p53) expression on TNF sensitivity, by introducing wt-p53 into MCF7/Adr cells in which p53 was deleted, via a recombinant adenovirus encoding p53 (Ad-p53). Our results indicate that infection with Ad-p53 (50-100 viral particles per cell) resulted in pronounced cytotoxicity, whereas infection with 10 viral particles per cell, which was weakly toxic for the MCF7/Adr cells, sensitized these cells to TNF-induced cell death. Moreover, expression of wt-p53 in MCF7/Adr cells induced the production of reactive oxygen intermediates (ROIs) and caused glutathione (GSH) depletion, indicating disturbances in the cellular redox state. Additional treatment of cells with the anti-oxidant and glutathione (GSH) precursor N-acetylcysteine (NAC) resulted in inhibition of p53-induced ROIs production and in partial restoration of intracellular GSH levels, which was associated with the ability of NAC to inhibit p53-modulated TNF-induced cytotoxicity. Interestingly, Ad-p53 was able to inhibit TNF-induced MnSOD mRNA expression in MCF7/Adr cells, which might contribute to the sensitization of cells to the cytotoxic action of TNF. Taken together, our data strongly suggest that wt-p53 expression sensitizes TNF-resistant MCF7 cells with p53 deletion to TNF-induced cell death by a pathway that is dependent on ROIs production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号