首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Background: Regenerative endodontics aims to restore normal pulp function in necrotic and infected teeth, restoring protective functions, such as innate pulp immunity, pulp repair through mineralization, and pulp sensibility. The aim of this systematic review was to assess the dentin regeneration efficacy of direct pulp capping (DPC) biomaterials. Methods: The literature published between 2005 and 2021 was searched by using PubMed, Web of Science, Science Direct, Google Scholar, and Scopus databases. Clinical controlled trials, randomized controlled trials, and animal studies investigating DPC outcomes or comparing different capping materials after pulp exposure were included in this systematic review. Three independent authors performed the searches, and information was extracted by using a structured data format. Results: A total of forty studies (21 from humans and 19 from animals) were included in this systemic review. Histological examinations showed complete/partial/incomplete dentin bridge/reparative dentin formation during the pulp healing process at different follow-up periods, using different capping materials. Conclusions: Mineral trioxide aggregate (MTA) and Biodentine can induce dentin regeneration when applied over exposed pulp. This systematic review can conclude that MTA and its variants have better efficacy in the DPC procedure for dentin regeneration.  相似文献   

2.
Premixed calcium silicate-based cements (CSCs) and fast-set CSCs were developed for the convenience of retrograde filling during endodontic microsurgery. The aim of this study was to analyze the biocompatible properties and mineralization potential of premixed CSCs, such as Endocem MTA Premixed (EM Premixed) and EndoSequence BC RRM putty (EndoSequence), and fast-set RetroMTA on human bone marrow-derived mesenchymal stem cells (BMSCs) compared to ProRoot MTA. Using CCK-8, a significantly higher proliferation of BMSCs occurred only in the EM Premixed group on days 2 and 4 (p < 0.05). On day 6, the ProRoot MTA group had significantly higher cell proliferation than the control group (p < 0.05). Regardless of the experimental materials, all groups had complete cell migration by day 4. Alizarin Red-S staining and alkaline phosphatase assay demonstrated higher mineralization potential of all CSCs similar to ProRoot MTA (p < 0.05). The EndoSequence group showed more upregulation of SMAD1 and OSX gene expression than the other experimental groups (p < 0.05), and all experimental cements upregulated osteogenic gene expression more than the control group (p < 0.05). Therefore, using premixed CSCs and fast-set CSCs as retrograde filling cements may facilitate satisfactory biological responses and comparable osteogenic potential to ProRoot MTA.  相似文献   

3.
Background: We evaluated the effects of ultrasonic activation on root canal filling quality of the single-cone (SC) obturation technique with calcium silicate sealers and gutta percha cones. Methods: Thirty-six human single-rooted premolars were obturated with gutta percha and sealer. For the continuous wave (CW) group (n = 12), AH Plus with a continuous wave technique was used. The SC group (n = 12) received EndoSequence BC sealer with a single-cone technique. The SCU (SC with the addition of ultrasonic activation) group (n = 12) received the same treatment. Micro-computed tomography was used to scan the teeth, and the void volume within the root canal was evaluated at the apical, middle, and coronal levels. Then cross-sections were observed under a light microscope and scanning electron microscope (SEM). Results: Void volume was significantly lower in the SCU group than in the CW and SC groups. There were no statistically significant differences between the CW and SC groups. The SCU group had fewer voids than the CW and SC groups in the coronal and middle third areas. Specimens showed no apparent gaps or voids in any group. SEM images revealed both gap-free and gap-containing regions at different levels in all groups. Conclusions: Single-cone obturation with calcium silicate-based sealers might obtain enhanced filling quality when used with ultrasonic activation.  相似文献   

4.
The characteristics of retrograde filling material are important factors that can affect the long-term success of apical microsurgery. Various calcium silicate-based cements (CSC) were introduced to overcome drawbacks of mineral trioxide aggregate (MTA), while Emdogain is known to be effective in the regeneration of periodontal tissues. The aim of this study is to evaluate the biocompatibility and osteogenic potential of various CSCs combined with Emdogain on human bone marrow-derived mesenchymal stem cells. Experimental groups were classified into eight groups depending on the material and the presence of Emdogain. In the cell-counting kit test, all experimental groups combined with Emdogain showed higher cell viability compared with those without Emdogain at days 1 and 2. In the wound-healing assay, cell migration increased significantly over time, with or without Emdogain. In the alkaline phosphatase assay, all groups treated with Emdogain showed higher activity compared with those without Emdogain at day 3 (p < 0.05). Using alizarin red S staining, all groups treated with Emdogain showed greater calcium nodule formation compared with those without Emdogain at days 7 and 14 (p < 0.05). In conclusion, using CSCs as retrograde filling materials and the application of additional Emdogain will increase bone regeneration and improve the prognosis of apical microsurgery.  相似文献   

5.
Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).  相似文献   

6.
Background: Calcium-silicate-based cements (CSC) have gained an increasing scientific and clinical relevance, enabling more conservative approaches, namely pulp preservation and regeneration therapies. This research aims to study the influence of four clinical variables on the interfaces between CSC and composite adhesive restoration, concerning shear bond strength (SBS) and ultra-morphological patterns. Methods: SBS tests were performed in 320 specimens divided in 16 groups (n = 20) according to: two CSC (NuSmile® NeoMTA, BiodentineTM); two adhesive systems (ClearfilTM SE Bond 2 (CSEB2), ClearfilTM Universal Bond Quick (CUBQ)); optional application of an additional hydrophobic bonding layer (HBL); two restoration times (immediate, seven days). Scanning electron microscopy (SEM) was performed to conduct the ultra-morphology interface analysis in 32 deciduous molars prepared and randomly allocated into the 16 groups. Results: Globally, SBS tests showed higher bond strength of CUBQ compared to CSEB2 (p < 0.001), as with an additional HBL application (p = 0.014) and delayed restoration (p < 0.001). SEM showed the interpenetration between adhesive systems and CSC forming a hybrid layer, whose depth and thickness depended on the restoration time and adhesive strategy. Conclusions: The independent clinical variables adhesive system, application of an additional HBL and restoration time affected the bond performance and ultra-morphological interface between composite adhesive restoration and CSC.  相似文献   

7.
The development of biomaterials that exhibit profound bioactivity and stimulate stem cell differentiation is imperative for the success and prognosis of vital pulp therapies. The objectives were to (1) synthesize calcium strontium silicate (CSR) ceramic through the sol–gel process (2) investigate its physicochemical properties, bioactivity, cytocompatibility, and its stimulatory effect on the differentiation of human dental pulp stem cells (HDPSC). Calcium silicate (CS) and calcium strontium silicate (CSR) were synthesized by the sol–gel method and characterized by x-ray diffraction (XRD). Setting time, compressive strength, and pH were measured. The in vitro apatite formation was evaluated by SEM-EDX and FTIR. The NIH/3T3 cell viability was assessed using an MTT assay. The differentiation of HDPSC was evaluated using alkaline phosphatase activity (ALP), and Alizarin red staining (ARS). Ion release of Ca, Sr, and Si was measured using inductive coupled plasma optical emission spectroscopy (ICP-OES). XRD showed the synthesis of (CaSrSiO4). The initial and final setting times were significantly shorter in CSR (5 ± 0.75 min, 29 ± 1.9 min) than in CS (8 ± 0.77 min, 31 ± 1.39 min), respectively (p < 0.05). No significant difference in compressive strength was found between CS and CSR (p > 0.05). CSR demonstrated higher apatite formation and cell viability than CS. The ALP activity was significantly higher in CSR 1.16 ± 0.12 than CS 0.92 ± 0.15 after 14 d of culture (p < 0.05). ARS showed higher mineralization in CSR than CS after 14 and 21 d culture times. CSR revealed enhanced differentiation of HDPSC, physicochemical properties, and bioactivity compared to CS.  相似文献   

8.
The purpose of the present study was to investigate the effect of a peptide (i.e., SESDNNSSSRGDASYNSDES) derived from dentin phosphophoryn (DPP) with arginine-glycine-aspartic acid (RGD) motifs on odontoblast differentiation in vitro and to compare it with calcium hydroxide—a material used conventionally for vital pulp therapy—in terms of reparative dentin formation and pulp inflammation in vivo. Alkaline phosphatase activity assay and alizarin red S staining were performed to evaluate odontoblast-differentiation in cell culturing experiments. To observe the reparative dentin formation and pulp inflammation animal experiment was performed and examined by histological methods. The difference between the experimental group and the control group was analyzed statistically using a one-way ANOVA test. The results revealed that the DPP-derived RGD-containing peptide triggered odontoblast differentiation and mineralization in vitro. In rats undergoing direct pulp capping, the DPP-derived RGD-containing peptide was found to induce intensively formed reparative dentin with high compactness at week 4. On histological and morphometrical examinations, a smaller degree of pulpitis was observed in the specimens treated with the peptide than in those treated with calcium hydroxide. This study suggests that the DPP-derived RGD-containing peptide is a biocompatible, biodegradable and bioactive material for dentin regeneration.  相似文献   

9.
Mineral trioxide aggregate (MTA) is an alternative endodontic material that predicts conductive or inductive calcified tissue formation from immature pulp mesenchymal stem cells (IPMSCs). The purpose of this study was to investigate whether MTA could promote reparative odontoblast differentiation via IPMSCs in the early phase of regeneration and compare with calcium hydroxide (CH). Direct pulp capping using calcium hydroxide (CH), MTA, and MTA with platelet-rich plasma (MTA + PRP) was performed on maxillary first molars of 8-week-old male Wistar rats (n = 36). After 3, 7, or 14 days, the teeth were analyzed for mineral density (MD) and volume of MD (VMD) via micro-focusing computed tomography (µCT), nestin, dentin matrix acidic phosphoprotein 1 (DMP1) immunohistochemistry, and real-time PCR for DMP1 mRNA expression. MTA stimulated the early phase differentiation of the IPMSCs into odontoblasts, with positive results for nestin and DMP1 compared with CH. Moreover, MTA + PRP stimulated calcified granule and dentin bridge formation through calcium mineral deposition, following the induction of DMP1 mRNA expression in IPMSCs. Our results suggested that the combination of MTA and PRP is an effective and clinically applicable method for activating endogenous dental pulp stem cells into odontoblasts in the early stages of pulp regeneration.  相似文献   

10.
The aim of this study was to evaluate the biocompatibility of calcium silicate-based sealers (CeraSeal and EndoSeal TCS) and epoxy resin-based sealer (AH-Plus) in terms of cell viability, inflammatory response, expression of mesenchymal phenotype, osteogenic potential, cell attachment, and morphology, of human periodontal ligament stem cells (hPDLSCs). hPDLSCs were acquired from the premolars (n = 4) of four subjects, whose ages extended from 16 to 24 years of age. Flow cytometry analysis showed stemness of hPDLSCs was maintained in all materials. In cell viability test, AH-Plus showed the lowest cell viability, and CeraSeal showed significantly higher cell viability than others. In ELISA test, AH-Plus showed higher expression of IL-6 and IL-8 than calcium silicate-based sealers. In an osteogenic potential test, AH-Plus showed a lower expression level than other material; however, EndoSeal TCS showed a better expression level than others. All experiments were repeated at least three times per cell line. Scanning electronic microscopy studies showed low degree of cell proliferation on AH-Plus, and high degree of cell proliferation on calcium silicate-based sealers. In this study, calcium silicate-based sealers appear to be more biocompatible and less cytotoxic than epoxy-resin based sealers.  相似文献   

11.
The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques.  相似文献   

12.
Direct pulp capping consists of a procedure in which a material is directly placed over the exposed pulp to maintain dental vitality. Although still widely used in clinical practice, previous in vitro studies found that the biomaterial Life® presented high cytotoxicity, leading to cell death. This study aimed to identify the Life® constituents responsible for its cytotoxic effects on odontoblast-like cells (MDPC-23). Aqueous medium conditioned with Life® was subjected to liquid–liquid extraction with ethyl acetate. After solvent removal, cells were treated with residues isolated from the organic and aqueous fractions. MTT and Trypan blue assays were carried out to evaluate the metabolic activity and cell death. The organic phase residue promoted a significant decrease in metabolic activity and increased cell death. On the contrary, no cytotoxic effects were observed with the mixture from the aqueous fraction. Spectroscopic and spectrometric methods allowed the identification of the toxic compounds. A mixture of the regioisomers ortho, para, and meta of N-ethyl-toluenesulfonamide was identified as the agent responsible for the toxicity of biomaterial Life® in MDPC-23 cells. These findings contribute to improving biomaterial research and development.  相似文献   

13.
Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials.  相似文献   

14.
The effects of sodium hexametaphosphate (SHMP) addition on the dispersion and hydration of calcium aluminate cement were investigated, and the relevant mechanisms discussed. The content of SHMP and the adsorption capacity of SHMP on the surface of cement particles were estimated using plasma adsorption spectroscopy and the residual concentration method. The rheological behavior of hydrate, ζ-potential value of cement particles, phase transformation and the microstructure of the samples were determined by coaxial cylinder rheometer, zeta probe, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that SHMP readily reacted with Ca2+, forming complexes [Ca2(PO3)6]2− ions which were subsequently adsorbed onto the surfaces of cement particles. When the content of SHMP was 0.05%, the adsorption ratio reached 99%. However, it decreased to 89% upon further increasing the addition of SHMP to 0.4%. The complexes [Ca2(PO3)6]2− adsorbed onto the surfaces of cement particles inhibited the concentration of Ca2+ and changed ζ-potential, resulting in enhanced electrostatic repulsive force between the cement particles and reduced viscosity of cement-water slurry. The experimental results indicate that the complexes [Ca2(PO3)6]2− covering the surfaces of cement particles led to a delayed hydration reaction, i.e., they extended the hydration time of the cement particles, and that the optimal addition of SHMP was found to be about 0.2%.  相似文献   

15.
The early-age carbonation curing technique is an effective way to improve the performance of cement-based materials and reduce their carbon footprint. This work investigates the early mechanical properties and microstructure of calcium sulfoaluminate (CSA) cement specimens under early-age carbonation curing, considering five factors: briquetting pressure, water–binder (w/b) ratio, starting point of carbonation curing, carbonation curing time, and carbonation curing pressure. The carbonization process and performance enhancement mechanism of CSA cement are analyzed by mercury intrusion porosimetry (MIP), thermogravimetry and derivative thermogravimetry (TG-DTG) analysis, X-ray diffraction (XRD), and scanning electron microscope (SEM). The results show that early-age carbonation curing can accelerate the hardening speed of CSA cement paste, reduce the cumulative porosity of the cement paste, refine the pore diameter distribution, and make the pore diameter distribution more uniform, thus greatly improving the early compressive strength of the paste. The most favorable w/b ratio for the carbonization reaction of CSA cement paste is between 0.15 and 0.2; the most suitable carbonation curing starting time point is 4 h after initial hydration; the carbonation curing pressure should be between 3 and 4 bar; and the most appropriate time for carbonation curing is between 6 and 12 h.  相似文献   

16.
Concrete structures are constructed in various geographical environments and climates, and frequently fail to fulfill their original functions over time due to issues such as aging and damage. Research on concrete structure repair materials is being conducted to solve these problems. This study evaluated the durability of a repair material composed of ultra-rapid hardening cement, styrene–butadiene (SB) latex polymer, and wollastonite mineral fiber. The performance targets were as follows: compressive strength of 20 MPa at 1 day of age and 45 MPa at 28 days of age, chloride ion charge passed of less than 1000 Coulombs, carbonation depth of 20 mm or less, and resistance to repeated freezing and thawing (relative dynamic modulus of elasticity) of 80% or more. The ultra-rapid hardening cement:silica sand ratio of 1:1.5 was the experimental variable, and the unit weight of each material in the mix proportion was determined to satisfy the flow requirement of 200 ± 5 mm. This flow ensured sufficient fluidity for spraying, which is the most widely used method for applying repair material. Wollastonite mineral fiber and SB latex polymer were added at 3% and 5% of the unit weight of the binder, respectively. The mechanical property of the repair material was evaluated through compressive strength, and durability was evaluated through chloride ion penetration, alkali resistance, resistance to carbonation, water absorption, and repeated freezing and thawing tests. The compressive strength satisfied both target values, regardless of the addition of SB latex polymer and wollastonite mineral fiber. The chloride ion penetration test, which was used as an indicator of durability, showed that mixtures without SB latex and wollastonite mineral fiber were not satisfied the target charge passed of 1000 Coulombs, while mixtures with latex and mineral fiber reached the target value. Notably, the co-addition of latex and wollastonite fiber showed the highest resistance to chloride ion penetration, alkali ion, carbonation, repeated freezing and thawing, and the least absorption. The results confirmed that the durability of the repair material based on ultra-rapid hardening cement was most effectively improved by the co-addition of SB latex polymer and wollastonite mineral fiber.  相似文献   

17.
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.  相似文献   

18.
Significant research investigations on the characteristics of unexplored clay deposits are being conducted in light of the growing need for clay in the ceramic industry and the variable chemistry of clays. Parallel to this, the generation of waste materials like fly ash, ferrochrome slag, and silica fume is also increasing, responsible for environmental degradation. This paper aims to study the mineralogical properties of pure clays (one specimen from Siberia and five specimens from different locations in Turkey), and the effect of mentioned waste materials on the index properties of clays obtained. This study is divided into two phases, wherein in the first phase, the pure clay specimens are analyzed against mineralogical properties (i.e., chemical composition, thermal analysis, and particle size distribution). While in the second phase, index properties of pure clay specimens and clay specimens modified with 0–50% fly ash, ferrochrome slag, and silica fume are analyzed. The results reveal that the clay specimens from Turkey (USCS classification: CL) are fit for the ceramic industry and bricks production, and incorporation of waste materials can further improve their index properties. It is also observed that incorporation of 10–30% fly ash and ferrochrome slag have higher efficiency in reducing the plasticity index of clays studied as compared to the addition of silica fume.  相似文献   

19.
A calcium silicate cement/methacrylated gelatin (GelMa) scaffold has been applied in tissue engineering; however, the research on its applications in dental tissue regeneration remains lacking. We investigate the effect of this scaffold on human dental pulp stem cells (hDPSCs). hDPSCs were cultured in 3D-printed GelMa and MTA-GelMa scaffolds. Cell adhesion was evaluated using scanning electron microscopy images. Cells were cultured in an osteogenic differentiation medium, which contained a complete medium or α-MEM containing aqueous extracts of the 3D-printd GelMa or MTA-GelMa scaffold with 2% FBS, 10 mM β-glycerophosphate, 50 μg/mL ascorbic acid, and 10 nM dexamethasone; cell viability and differentiation were shown by WST-1 assay, Alizarin Red S staining, and alkaline phosphatase staining. Quantitative real-time PCR was used to measure the mRNA expression of DSPP and DMP-1. One-way analysis of variance followed by Tukey’s post hoc test was used to determine statistically significant differences, identified at p < 0.05. hDPSCs adhered to both the 3D-printed GelMa and MTA-GelMa scaffolds. There was no statistically significant difference between the GelMa and MTA-GelMa groups and the control group in the cell viability test. Compared with the control group, the 3D-printed MTA-GelMa scaffold promoted the odontogenic differentiation of hDPSCs. The 3D-printed MTA-GelMa scaffold is suitable for the growth of hDPSCs, and the scaffold extracts can better promote odontoblastic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号