共查询到18条相似文献,搜索用时 15 毫秒
1.
Ruslan Mendagaliyev Oleg Zotov Rudolf Korsmik Grigoriy Zadykyan Nadezhda Lebedeva Olga Klimova-Korsmik 《Materials》2021,14(23)
The study of the formation of microstructural features of low-alloy bainite-martensitic steel 09CrNi2MoCu are of particular interest in additive technologies. In this paper, we present a study of cold-rolled samples after direct laser deposition (DLD). We investigated deposited samples after cold plastic deformation with different degrees of deformation compression (50, 60 and 70%) of samples from steel 09CrNi2MoCu. The microstructure and mechanical properties of samples in the initial state and after heat treatment (HT) were analyzed and compared with the samples obtained after cold rolling. The effect on static tensile strength and impact toughness at −40 °C in the initial state and after cold rolling was investigated. The mechanical properties and characteristics of fracture in different directions were determined. Optimal modes and the degree of cold rolling deformation compression required to obtain balanced mechanical properties of samples obtained by additive method were determined. The influence of structural components and martensitic-austenitic phase on the microhardness and mechanical properties of the obtained samples was determined. 相似文献
2.
Jiaqiang Li Yuan Yang Gangxian Zhu Chengfeng Sun Yiyang Chen Kejun Wang Shihong Shi 《Materials》2022,15(10)
The hybrid manufacturing method of laser cladding deposition (LCD) additive manufacturing and electrochemical machining (ECM) is a promising approach to advanced manufacturing technology for difficult machined materials. The anisotropic electrochemical performance of LCD-produced Ti6Al4V alloy was studied in 15 wt.% NaCl solution by polarization curve measurements and ECM tests. The horizontal-plane (X0Y plane) exhibits a more stable passive film in both static electrolyte and low current density ECM processes than the vertical-plane (X0Z plane). Additionally, the horizontal-plane exhibits a higher material removal rate and more consistent dissolved surface roughness in comparison with the vertical-plane during the high current density ECM process. The microstructure of the LCD-produced Ti6Al4V alloy on the horizontal-plane consisted of equiaxed-like prior-β grains and slightly finer α-laths but was composed by columnar prior-β grains and coarser α-laths on the vertical-plane. These differences in the microstructural characteristics produce the distinctions observed in the electrochemical dissolution behavior and electrochemical machinability on the horizontal- and vertical-planes. 相似文献
3.
Liang Ma Xiangwei Kong Jingjing Liang Jinguo Li Cong Sun Zhibo Jin Zhidong Jiao 《Materials》2022,15(15)
Direct laser deposition (DLD) is widely used in precision manufacturing, but the process parameters (e.g., laser power, scanning patterns) easily lead to changes in dimensional accuracy and structural properties. Many methods have been proposed to analyze the principle of distortion and residual stress generation, but it is difficult to evaluate the involvement of temperature and stress in the process of rapid melting and solidification. In this paper, a three-dimensional finite element model is established based on thermal–mechanical relationships in multilayer DLD. Differences in temperature and residual stress between continuous laser deposition (CLD) and pulsed laser deposition (PLD) are compared with the numerical model. To validate the relationship, the temperature and residual stress values obtained by numerical simulation are compared with the values obtained by the HIOKI-LR8431 temperature logger and the Pulstec μ-X360s X-ray diffraction (XRD) instrument. The results indicate that the temperature and residual stress of the deposition part can be evaluated by the proposed simulation model. The proposed PLD process, which includes continuous pulsed laser deposition (CPLD) and interval pulsed laser deposition (IPLD), were found more effective to improve the homogeneity of temperature and residual stress than the CLD process. This study is expected to be useful in the distortion control and microstructure consistency of multilayer deposited parts. 相似文献
4.
Fe901/Al2O3 metal matrix composite (MMC) coatings were deposited on the surface of 45 steel via electromagnetic field (EF)-assisted laser cladding technology. The influences of EF on the microstructure, phase composition, microhardness, and wear resistance of the Fe901/Al2O3 MMC coating were investigated. The generated Lorentz force (FL) and Joule heating due to the application of EF had a positive effect on wear resistance. The results showed that FL broke up the columnar dendrites. Joule heating produced more nuclei, resulting in the formation of fine columnar dendrites, equiaxed dendrites, and cells. The EF affected the content of hard phase in the coatings while it did not change the phase composition of the coating, because the coatings with and without EF assistance contained (Fe, Cr), (Fe, Cr)7C3, Fe3Al, and (Al, Fe)4Cr phases. The microhardness under 20 mT increased by 84.5 HV0.2 compared to the coating without EF due to the refinement of grains and the increased content of hard phase. Additionally, the main wear mechanism switched from adhesive wear to abrasive wear. 相似文献
5.
Geometric characteristics provide an important means for characterization of the quality of direct laser deposition. Therefore, improving the accuracy of a prediction model is helpful for improving deposition efficiency and quality. The three main input variables are laser power, scanning speed, and powder-feeding rate, while the width and height of the melt track are used as outputs. By applying a multi-output support vector regression (M-SVR) model based on a radial basis function (RBF), a non-linear model for predicting the geometric features of the melt track is developed. An orthogonal experimental design is used to conduct the experiments, the results of which are chosen randomly as training and testing data sets. On the one hand, compared with single-output support vector regression (S-SVR) modeling, this method reduces the root mean square error of height prediction by 22%, with faster training speed and higher prediction accuracy. On the other hand, compared with a backpropagation (BP) neural network, the average absolute error in width is reduced by 5.5%, with smaller average absolute error and better generalization performance. Therefore, the established model can provide a reference to select direct laser deposition parameters precisely and can improve the deposition efficiency and quality. 相似文献
6.
Yu-Pu Yang Te-Yun Lu Hsiao-Han Lo Wei-Lun Chen Peter J. Wang Walter Lai Yiin-Kuen Fuh Tomi T. Li 《Materials》2021,14(16)
In this study, we submit a complex set of in-situ data collected by optical emission spectroscopy (OES) during the process of aluminum nitride (AlN) thin film. Changing the sputtering power and nitrogen(N2) flow rate, AlN film was deposited on Si substrate using a superior sputtering with a pulsed direct current (DC) method. The correlation between OES data and deposited film residual stress (tensile vs. compressive) associated with crystalline status by X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) measurements were investigated and established throughout the machine learning exercise. An important answer to know is whether the stress of the processing film is compressive or tensile. To answer this question, we can access as many optical spectra data as we need, record the data to generate a library, and exploit principal component analysis (PCA) to reduce complexity from complex data. After preprocessing through PCA, we demonstrated that we could apply standard artificial neural networks (ANNs), and we could obtain a machine learning classification method to distinguish the stress types of the AlN thin films obtained by analyzing XRD results and correlating with TEM microstructures. Combining PCA with ANNs, an accurate method for in-situ stress prediction and classification was created to solve the semiconductor process problems related to film property on deposited films more efficiently. Therefore, methods for machine learning-assisted classification can be further extended and applied to other semiconductors or related research of interest in the future. 相似文献
7.
Diego Manfredi Flaviana Calignano Manickavasagam Krishnan Riccardo Canali Elisa Paola Ambrosio Eleonora Atzeni 《Materials》2013,6(3):856-869
In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. 相似文献
8.
Nickel-based super alloys are popular for applications in the energy and aerospace industries due to their excellent corrosion and high-temperature resistance. Direct metal deposition (DMD) of nickel alloys has reached technology readiness for several applications, especially for the repair of turbomachinery components. However, issues related to part quality and defect formation during the DMD process still persist. Laser remelting can effectively prevent and repair defects during metal additive manufacturing (AM); however, very few studies have focused on numerical modeling and experimental process parameter optimization in this context. Therefore, the aim of this study is to investigate the effect of determining the remelting process parameters via numerical simulation and experimental analyses in order to optimize an industrial process chain for part repair by DMD. A heat conduction model analyzed 360 different process conditions, and the predicted melt geometry was compared with observations from a fluid flow model and experimental single tracks for selected reference conditions. Subsequently, the remelting process was applied to a demonstrator repair case. The results show that the models can well predict the melt pool shape and that the optimized remelting process increases the bonding quality between base and DMD materials. Therefore, DMD part fabrication and repair processes can benefit from the remelting step developed here. 相似文献
9.
Xuan Yang Oleg Heczko Joonas Lehtonen Roy Bjrkstrand Mika Salmi Volker Uhlenwinkel Yanling Ge Simo-Pekka Hannula 《Materials》2022,15(5)
A non-equiatomic AlCoCr0.75Cu0.5FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr0.75Cu0.5FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger Ms. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials. 相似文献
10.
Piera Alvarez M. ngeles Montealegre Francisco Cordovilla ngel García-Beltrn Ignacio Angulo Jos Luis Ocaa 《Materials》2020,13(24)
The effect of process parameters and the orientation of the cladding layer on the mechanical properties of 316L stainless steel components manufactured by laser metal deposition (LMD) was investigated. High aspect-ratio walls were manufactured with layers of a 4.5 mm wide single-cladding track to study the microstructure and mechanical properties along the length and the height of the wall. Samples for the tensile test (according to ASTM E-8M-04) were machined from the wall along both the direction of the layers and the direction perpendicular to them. Cross-sections of the LMD samples were analyzed by optical and scanning electron microscopy (SEM). The orientation of the growing grain was observed. It was associated with the thermal gradient through the building part. A homogeneous microstructure between consecutive layers and some degree of microporosity was observed by SEM. Uniaxial tension tests were performed on samples extracted from the wall in perpendicular and parallel directions. Results for ultimate tensile strength were similar in both cases and with the wrought material. The σ0.2 were similar in both cases but slightly superior to the wrought material. 相似文献
11.
Stefan Irimiciuc Marius Gabriel Zaharia Ramona Cimpoesu Georgiana Bulai Silviu Octavian Gurlui Nicanor Cimpoesu 《Materials》2022,15(13)
Ceramic thin films with variable thicknesses have been used in many applications. In order to protect the petroleum transportation pipes against the harmful H2S action, two ceramic materials as thin layers are proposed. In this article, pulsed laser deposition (PLD) of ceramic layers by in situ time-resolved optical techniques is investigated. Two ceramic materials were used as targets and real-time monitoring of the PLD process was realized via ICCD fast camera imaging and optical emission spectroscopy. The space–time displacement of the ceramic emissions was analyzed in order to determine the plasma structure and respective kinetic energies. Spectral-resolved investigation allowed the determination of plasma species individual velocities (in the first case: 43 km/s for C ionic species, 11 km/s for Si, from 25 to 5 km/s for atomic species; in the second case: 32 km/s for C ionic species, 11 km/s for W species, and 15 and 53 km/s for neutral species). SEM and AFM techniques were implemented to analyze the resulting ceramic layers showing homogeneous surfaces with characteristic material droplets. The ablation crater also reveals selective ablation during the deposition process. EDX results show that Al/Si is retained in the thin films similar to the target composition. 相似文献
12.
In Wire and Arc Additive Manufacturing (WAAM) and fusion welding, various defects such as porosity, cracks, deformation and lack of fusion can occur during the fabrication process. These have a strong impact on the mechanical properties and can also lead to failure of the manufactured parts during service. These defects can be recognized using non-destructive testing (NDT) methods so that the examined workpiece is not harmed. This paper provides a comprehensive overview of various NDT techniques for WAAM and fusion welding, including laser-ultrasonic, acoustic emission with an airborne optical microphone, optical emission spectroscopy, laser-induced breakdown spectroscopy, laser opto-ultrasonic dual detection, thermography and also in-process defect detection via weld current monitoring with an oscilloscope. In addition, the novel research conducted, its operating principle and the equipment required to perform these techniques are presented. The minimum defect size that can be identified via NDT methods has been obtained from previous academic research or from tests carried out by companies. The use of these techniques in WAAM and fusion welding applications makes it possible to detect defects and to take a step towards the production of high-quality final components. 相似文献
13.
In the past few years, laser powder-bed fusion (LPBF) of bulk metallic glasses (BMGs) has gained significant interest because of the high heating and cooling rates inherent to the process, providing the means to bypass the crystallization threshold. In this study, (for the first time) the tensile and Charpy impact toughness properties of a Zr-based BMG fabricated via LPBF were investigated. The presence of defects and lack of fusion (LoF) in the near-surface region of the samples resulted in low properties. Increasing the laser power at the borders mitigated LoF formation in the near-surface region, leading to an almost 27% increase in tensile yield strength and impact toughness. Comparatively, increasing the core laser power did not have a significant influence. It was therefore confirmed that, for BMGs like for crystalline alloys, near-surface LoFs are more detrimental than core LoFs. Although increasing the border and core laser power resulted in a higher crystallized fraction, detrimental to the mechanical properties, reducing the formation of LoF defects (confirmed using micro-computed tomography, Micro-CT) was comparatively more important. 相似文献
14.
Tatjana Puskar Danimir Jevremovic Robert J. Williams Dominic Eggbeer Djordje Vukelic Igor Budak 《Materials》2014,7(9):6486-6501
Dental alloys for direct metal laser sintering (DMLS) are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM) samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS). The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments. 相似文献
15.
Stelite-6/Inconel 718 functionally gradient materials (FGM) is a heat-resisting functional gradient material with excellent strength performance under ultra-high temperatures (650–1100 °C) and, thus, has potential application in aeronautic and aerospace engineering such as engine turbine blade. To investigate the effect of initial temperature on the microstructure and properties of laser metal deposition (LMD) functional gradient material (FGM), this paper uses the LMD technique to form Stelite-6/Inconel 718 FGM at two different initial temperatures: room temperature and preheating (300 °C). Analysis of the internal residual stress distribution, elemental distribution, microstructure, tensile properties, and microhardness of 100% Stelite-6 to 100% Inconel 718 FGM formed at different initial temperatures in a 10% gradient. The experimental results prove that the high initial temperature effectively improves the uneven distribution of internal residual stresses. Preheating slows down the solidification time of the melt pool and facilitates the escape of gases and the homogeneous diffusion of elements in the melt pool. In addition, preheating reduces the bonding area between the gradient layers, enhancing the metallurgical bonding properties between the layers and improving the tensile properties. Compared with Stellite-6/Inconel 718 FGM formed at room temperature, the mean yield strength, mean tensile strength, and mean elongation of Stellite-6/Inconel 718 FGM formed at 300 °C are increased by 65.1 Mpa, 97 MPa, and 5.2%. However, the high initial temperature will affect the hardness of the material. The average hardness of Stellite-6/Inconel 718 FGM formed at 300 °C is 26.9 HV (Vickers hardness) lower than that of Stellite-6/Inconel 718 FGM formed at 20 °C. 相似文献
16.
Thorsten Lubinski Bartosz Plotka Sergius Janik Luca Canini Werner Mntele 《Journal of diabetes science and technology》2021,15(1):6
Background:A prototype of a noninvasive glucometer combining skin excitation by a mid-infrared quantum cascade laser with photothermal detection was evaluated in glucose correlation tests including 100 volunteers (41 people with diabetes and 59 healthy people).Methods:Invasive reference measurements using a clinical glucometer and noninvasive measurements at a finger of the volunteer were simultaneously recorded in five-minute intervals starting from fasting glucose values for healthy subjects (low glucose values for diabetes patients) over a two-hour period. A glucose range from >50 to <350 mg/dL was covered. Machine learning algorithms were used to predict glucose values from the photothermal spectra. Data were analyzed for the average percent disagreement of the noninvasive measurements with the clinical reference measurement and visualized in consensus error grids.Results:98.8% (full data set) and 99.1% (improved algorithm) of glucose results were within Zones A and B of the grid, indicating the highest accuracy level. Less than 1% of the data were in Zone C, and none in Zone D or E. The mean and median percent differences between the invasive as a reference and the noninvasive method were 12.1% and 6.5%, respectively, for the full data set, and 11.3% and 6.4% with the improved algorithm.Conclusions:Our results demonstrate that noninvasive blood glucose analysis combining mid-infrared spectroscopy and photothermal detection is feasible and comparable in accuracy with minimally invasive glucometers and finger pricking devices which use test strips. As a next step, a handheld version of the present device for diabetes patients is being developed. 相似文献
17.
High−temperature wear failure has been a major challenge to die parts. This work provides a comprehensive study on the high−temperature wear performance of a TiC/H13 composite coating prepared by laser metal deposition (LMD). The microstructures of wrought H13 samples, LMD−processed H13 and TiC/H13 samples were systematically investigated. The refined martensite size, the uniform distribution of TiC ceramic particles, as well as their bonding with the matrix endowed the fabricated composite coating with superior hardness. The LMD−prepared TiC/H13 composite coating material demonstrated outstanding wear resistance when compared with other counterparts, mainly due to the high thermal stability and the load-transferring effect triggered by the introduced TiC ceramic particles. The dominated wear mechanism transition from severe ploughing in the wrought H13 material to mild delamination in the TiC/H13 composite coating was confirmed. The present study is expected to shed light on high-temperature wear-resistant coating material design and applications within the highly demanding mould industry. 相似文献
18.
Marina Cabrini Sergio Lorenzi Cristian Testa Diego Manfredi Mariangela Lombardi Alberta Aversa Francesco Andreatta Lorenzo Fedrizzi Yuri Dekhtyar Hermanis Sorokins Tommaso Pastore 《Materials》2021,14(19)
The paper deals with the evolution of the microstructure of AlSi10Mg alloy obtained by laser powder bed fusion (LPBF), as a function of the post-processing heat treatment temperature. This was approached by complementary methods including FE-scanning electron microscopy, scanning Kelvin probe force microscopy and exo-electron emission techniques. The fast cooling rate of the LPBF process as compared to traditional casting produces a very fine microstructure with high mechanical properties and corrosion resistance. However, the LPBF-AlSi10Mg alloy can be susceptible to selective corrosion at the edge of the melt pools generated by the laser scan tracks. Post-process thermal treatments of the Al alloy induce a marked modification of the silicon network at melt pool edges, in particular at high temperature such as 400 °C. It was found that this is associated to a more homogeneous distribution of Volta potential. Analysis of exo-electron emission confirms the silicon diffusion during thermal treatment. The modification of the silicon network structure of the LPBF-AlSi10Mg during thermal treatment reduces the susceptibility to selective corrosion. 相似文献