首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.%) and collagen (30 wt.%) were obtained via UV radiation while two types of collagen were used (fish and bovine) and crosslinking agents differing in the average molecular weight. Next, their chemical structure was characterized using Fourier transform infrared (FT-IR) spectroscopy, roughness of their surfaces was determined using a stylus contact profilometer while their wettability was evaluated by a sessile drop method followed by the measurements of their surface free energy. Subsequently, swelling properties of composites were verified in simulated physiological liquids as well as the behavior of composites in these liquids by pH measurements. It was proved that collagen-modified composites showed higher swelling ability (even 25% more) compared to unmodified ones, surface roughness, biocompatibility towards simulated physiological liquids and hydrophilicity (contact angles lower than 90°). Considering physicochemical properties of developed materials and a possibility of the preparation of their various shapes and sizes, it may be concluded that developed materials showed great application potential for biomedical use, e.g., as materials filling bone defects supporting their treatments and promoting bone tissue regeneration due to the presence of hydroxyapatite with osteoinductive and osteoconductive properties.  相似文献   

2.
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as “injectable hydrogels” and super-adsorbents for applications in the field of environmental science and biomedicine.  相似文献   

3.
Matricaria chamomilla L. extract is well-known for its therapeutic properties; thus, it shows potential to be used to modify materials designed for biomedical purposes. In this paper, acrylic hydrogels modified with this extract were prepared. The other modifier was starch introduced into the hydrogel matrix in two forms: room-temperature solution and elevated-temperature solution. Such hydrogels were synthesized via UV radiation, while two types of photoinitiator were used: 2-hydroxy-2-methylpropiophenone or phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide. The main task of performed research was to verify the impact of particular modifiers and photoinitiator on physicochemical properties of hydrogels. Studies involved determining their swelling ability, elasticity, chemical structure via FTIR spectroscopy and surface morphology via the SEM technique. Incubation of hydrogels in simulated physiological liquids, studies on the release of chamomile extract from their matrix and their biological analysis via MTT assay were also performed. It was demonstrated that all investigated variables affected the physicochemical properties of hydrogels. The modification of hydrogels with chamomile extract reduced their absorbency, decreased their thermal stability and increased the cell viability incubated with this material by 15%. Next, hydrogels obtained by using phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide as a photoinitiator showed lower absorbency, more compact structure, better stability in SBF and a more effective release of chamomile extract compared to the materials prepared by using 2-hydroxy-2-methylpropiophenone. It was proved that, by applying adequate reagents, including both photoinitiator and modifiers, it is possible to obtain hydrogels with variable properties that will positively affect their application potential.  相似文献   

4.
This work focused on obtaining and characterizing hydrogels with their potential application as dressing materials for chronic wounds. The research included synthesizing chitosan-based hydrogels modified with Equisetum arvense L. (horsetail) extract via photopolymerization, and their characteristics determined with regard to the impact of both the modifier and the amount of crosslinker on their properties. The investigations included determining their sorption properties and tensile strength, evaluating their behavior in simulated physiological liquids, and characterizing their wettability and surface morphology. The release profile of horsetail extract from polymer matrices in acidic and alkaline environments was also verified. It was proved that hydrogels showed swelling ability while the modified hydrogels swelled slightly more. Hydrogels showed hydrophilic nature (all contact angles were <77°). Materials containing horsetail extract exhibited bigger elasticity than unmodified polymers (even by 30%). It was proved that the extract release was twice as effective in an acidic medium. Due to the possibility of preparation of hydrogels with specific mechanical properties (depending on both the modifier and the amount of crosslinker used), wound exudate sorption ability, and possibility of the release of active substance, hydrogels show a great application potential as dressing materials.  相似文献   

5.
Due to their biodegradability and biocompatibility, chitosan-based hydrogels have great potential in regenerative medicine, with applications such as bacteriostasis, hemostasis, and wound healing. However, toxicity and high cost are problems that must be solved for chitosan-based hydrogel crosslinking agents such as formaldehyde, glutaraldehyde, and genipin. Therefore, we developed a biocompatible yet cost-effective chitosan-based hydrogel system as a candidate biomaterial to prevent infection during wound healing. The hydrogel was fabricated by crosslinking chitosan with dialdehyde chitosan (CTS–CHO) via dynamic Schiff-base reactions, resulting in a self-healable and injectable system. The rheological properties, degradation profile, and self-healable properties of the chitosan-based hydrogel were evaluated. The excellent antibacterial activity of the hydrogel was validated by a spread plate experiment. The use of Live/Dead assay on HEK 293 cells showed that the hydrogel exhibited excellent biocompatibility. The results demonstrate that the newly designed chitosan-based hydrogel is an excellent antibacterial wound dressing candidate with good biocompatibility.  相似文献   

6.
The novelty of the research involves designing the measurement methodology aimed at determining the structure–property relationships in the chitosan-based hydrogels containing yellow tea extract. Performed investigations allowed us to determine the swelling properties of hydrogels in selected time intervals, evaluate the mutual interactions between the hydrogels and simulated physiological liquids via pH measurements and directly assess the impact of such interactions on the chemical structure of hydrogels using Fourier transform infrared (FT-IR) spectroscopy and their wettability by the measurements of the flatness of the drop on the surface of the tested samples via the static drop method. Next, the surface morphology of hydrogels was characterized by the Scanning Electron Miscorcopy (SEM) and their elasticity under the tension applied was also verified. It was proved that incubation in simulated physiological liquids resulted in a decrease in contact angles of hydrogels, even by 60%. This also caused their certain degradation which was reflected in lower intensities of bands on FT-IR spectra. Further, 23% v/v yellow tea extract in hydrogel matrices caused the decrease of their tensile strength. An increase in the amount of the crosslinker resulted in a decrease in the sorption capacity of hydrogels wherein their modification caused greater swelling ability. In general, the investigations performed provided much information on the tested materials which may be meaningful considering their application, e.g., as dressing materials.  相似文献   

7.

Background

Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can successfully prevent foreign body response at the implantation site. The objective of this study was to investigate the effect of this composite coating on sensor functionality.

Methods

The PLGA microsphere/PVA hydrogel coatings were prepared and applied to glucose biosensors. The swelling properties of the composite coatings and their diffusivity to glucose were evaluated as a function of microsphere loading. Sensor linearity, response time, and sensitivity were also evaluated as a function of coating composition.

Results

The PLGA microsphere/PVA hydrogel composite coating did not compromise sensor linearity (sensors were linear up to 30 mM), which is well beyond the physiological glucose range (2 to 22 mM). The sensor response time did increase in the presence of the coating (from 10 to 19 s); however, this response time was still less than the average reported values. Although the sensitivity of the sensors decreased from 73 to 62 nA/mM glucose when the PLGA microsphere loading in the PVA hydrogel changed from 0 to 100 mg/ml, this reduced sensitivity is acceptable for sensor functionality. The changes in sensor response time and sensitivity were due to changes in glucose permeability as a result of the coatings. The embedded PLGA microspheres reduced the fraction of bulk water present in the hydrogel matrix and consequently reduced glucose diffusion.

Conclusions

This study demonstrates that the PLGA microsphere/PVA hydrogel composite coatings allow sufficient glucose diffusion and sensor functionality and therefore may be utilized as a smart coating for implantable glucose biosensors to enhance their in vivo functionality.  相似文献   

8.
The design of hydrogel networks with tuned properties is essential for new innovative biomedical materials. Herein, poly(vinyl alcohol) and xanthan gum were used to develop hydrogels by the freeze/thaw cycles method in the presence of oxalic acid as a crosslinker. The structure and morphology of the obtained hydrogels were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and swelling behavior. The SEM analysis revealed that the surface morphology was mostly affected by the blending ratio between the two components, namely, poly(vinyl alcohol) and xanthan gum. From the swelling study, it was observed that the presence of oxalic acid influenced the hydrophilicity of blends. The hydrogels based on poly(vinyl alcohol) without xanthan gum led to structures with a smaller pore diameter, a lower swelling degree in pH 7.4 buffer solution, and a higher elastic modulus. The antimicrobial activity of the prepared hydrogels was tested and the results showed that the hydrogels conferred antibacterial activity against Gram positive bacteria (Staphylococcus aureus 25923 ATCC) and Gram negative bacteria (Escherichia coli 25922 ATCC).  相似文献   

9.
In this paper, novel microgels containing nano-SiO2 were prepared by in situ copolymerization using nano-SiO2 particles as a reinforcing agent, nanosilica functional monomer (silane-modified nano-SiO2) as a structure and morphology director, acrylamide (AAm) as a monomer, acrylic acid (AAc) as a comonomer, potassium persulfate (KPS) as a polymerization initiator, and N,N′-methylene bis (acrylamide) (MBA) as a crosslinker. In addition, a conventional copolymeric hydrogel based on poly (acrylamide/acrylic acid) was synthesized by solution polymerization. The microgel samples, hydrogel and nanoparticles were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A FESEM micrograph of copolymeric hydrogel showed the high porosity and 3D interconnected microstructure. Furthermore, FESEM results demonstrated that when nano-SiO2 particles were used in the AAm/AAc copolymerization process, the microstructure and morphology of product changed from porous hydrogel to a nanocomposite microgel with cauliflower-like morphology. According to FESEM images, the copolymerization of AAm and AAc monomers with a nanosilica functional monomer or polymerizable nanosilica particle as a seed led to a microgel with core–shell structure and morphology. These results demonstrated that the polymerizable vinyl group on nano-SiO2 particles have controlled the copolymerization and the product morphology. FTIR analysis showed that the copolymeric chains of polyacrylamide (PAAm) and poly (acrylic acid) (PAAc) were chemically bonded to the surfaces of the nano-SiO2 particles and silane-modified nano-SiO2. The particulate character of microgel samples and the existence of long distance among aggregations of particles led to rapid swelling and increasing of porosity and therefore increasing of degree of swelling.  相似文献   

10.
The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed “proteo-saccharides” to improve the scaffold’s physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.  相似文献   

11.
Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.  相似文献   

12.
We provide evidence that nucleosomes can assemble in vitro at physiological ionic strength (0.1-0.2 M NaCl/10 mM Tris . HCl, pH 8.0) in the absence of "assembly factors" and that poly(glutamic acid) greatly facilitates chromatin assembly under these conditions. We also show that in the presence of either poly(glutamic acid) or poly(aspartic acid), core histones assemble into octamers at physiological ionic strength. We suggest that it is a property of histones to assemble into octamers upon their interaction with macromolecules containing regions of high negative charge density, and we discuss several implications of this property.  相似文献   

13.
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.  相似文献   

14.
Sustaining the vital functions of cells outside the organism requires strictly defined parameters. In order to ensure their optimal growth and development, it is necessary to provide a range of nutrients and regulators. Hydrogels are excellent materials for 3D in vitro cell cultures. Their ability to retain large amounts of liquid, as well as their biocompatibility, soft structures, and mechanical properties similar to these of living tissues, provide appropriate microenvironments that mimic extracellular matrix functions. The wide range of natural and synthetic polymeric materials, as well as the simplicity of their physico-chemical modification, allow the mechanical properties to be adjusted for different requirements. Sodium alginate-based hydrogel is a frequently used material for cell culture. The lack of cell-interactive properties makes this polysaccharide the most often applied in combination with other materials, including gelatin. The combination of both materials increases their biological activity and improves their material properties, making this combination a frequently used material in 3D printing technology. The use of hydrogels as inks in 3D printing allows the accurate manufacturing of scaffolds with complex shapes and geometries. The aim of this paper is to provide an overview of the materials used for 3D cell cultures, which are mainly alginate–gelatin hydrogels, including their properties and potential applications.  相似文献   

15.
The effect of SiO2 nanoparticles on the formation of PAA (poly acrylic acid) gel structure was investigated with seeded emulsion polymerization method used to prepare SiO2/PAA nanoparticles. The morphologies of the nanocomposite nanoparticles were studied by transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy results indicated that the PAA was chemically bonded to the surface of the SiO2 nanoparticles. Additionally, the resulting morphology of the nanocomposite nanoparticles confirmed the co-crosslinking role of the SiO2 nanoparticles in the formation of the 3D structure and hydrogel of PAA. SiO2/PAA nanocomposite hydrogels were synthesized by in situ solution polymerization with and without toluene. The morphology studies by field emission scanning electron microscopy (FESEM) showed that when the toluene was used as a pore forming agent in the polymerization process, a macroporous hydrogel structure was achieved. The pH-sensitive swelling behaviors of the nanocomposite hydrogels showed that the formation of pores in the gels structure was a dominant factor on the water absorption capacity. In the current research the absorption capacity was changed from about 500 to 4000 g water/g dry hydrogel. Finally, the macroporous nanocomposite hydrogel sample was tested as an amoxicillin release system in buffer solutions with pHs of 3, 7.2, and 9 at 37 °C. The results showed that the percentage cumulative release of amoxicillin from the hydrogels was higher in neutral and basic mediums than in the acidic medium and the amoxicillin release rate was decreased with increasing pH. Additionally, the release results were very similar to swelling results and hence amoxicillin release was a swelling controlled-release system.  相似文献   

16.
One of the major objectives of food industry is to develop low-cost biodegradable food packaging films with optimal physicochemical properties, allowing for their large-scale production and providing a variety of applications. To meet the expectations of food industry, we have fabricated a series of solution-cast films based on common biodegradable polysaccharides (starch, chitosan and alginate) to be used in food packaging applications. Selected biopolymers were modified by the addition of glycerol and oxidized sucrose (starch), glycerol (chitosan), and glycerol and calcium chloride (alginate), as well as being used to form blends (starch/chitosan and starch/alginate, respectively). A chestnut extract was used to provide antibacterial properties to the preformed materials. The results of our studies showed that each modification reduced the hydrophilic nature of the polymers, making them more suitable for food packaging applications. In addition, all films exhibited much higher barrier properties to oxygen and carbon dioxide than commercially available films, such as polylactic acid, as well as exhibiting antimicrobial properties against model Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis, respectively), as well as yeast (Candida albicans).  相似文献   

17.
In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.  相似文献   

18.
Packaging materials based on biodegradable polymers are a viable alternative to replace conventional plastic packaging from fossil origin. The type of plasticizer used in these materials affects their functionality and performance. The effect of different plasticizers such as glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in concentrations of 5%, 10%, and 15% (w/w) on the structural features and functional properties of starch/PVOH/chitosan films was evaluated. The incorporation of a plasticizer increased the thickness of the biodegradable composite films. Furthermore, the material plasticized with 30% (w/w) sorbitol had the highest elongation at break, lowest water vapor permeability, and better thermal resistance. The results obtained in this study suggest that maize starch/PVOH/chitosan biodegradable composite films are a promising packaging material, and that sorbitol is the most suitable plasticizer for this formulation.  相似文献   

19.
目的 探讨成膜法自制壳聚糖管状支架的方法及支架的理化学生物特性.方法 利用乙酸溶液制备浓度为8%的壳聚糖乙酸水溶胶,采用成膜方法制管后用NaOH脱下壳聚糖导管,扫描电镜下观察壳聚糖管表面超微结构;并进行溶胀性实验、pH值测定、细胞毒性试验、体外及体内降解实验.结果 壳聚糖管光滑,韧性好,具有三维多孔立体结构,孔径大小不同.壳聚糖管具有膨胀性,中性,无毒,随时间被组织吸收降解,体外降解慢于体内.结论 成膜法自制壳聚糖管状支架可行,其理化生物学特性表明可用作生物可吸收支架.  相似文献   

20.
Casein is a micellar protein rich in glutamic and aspartic acids as well as in phosphoserine. Considering its native affinity for calcium and the connection of sub-micelles through calcium phosphate nanoclusters, this protein holds promise for stimulating biomimetic mineralisation phenomena and direct binding with the mineral phase of hard tissues. In this work we prepared new hybrids based on casein embedded in a poly(2-hydroxyethyl methacrylate)-polyethyleneglycol diacrylate (PHEMA-PEGDA) hydrogel. The resulting materials were investigated structurally by Fourier transform infrared (FT-IR). Casein modified the water affinity and the rheological properties of the hybrids. The microstructure was explored by scanning electron microscopy (SEM) and the distribution of the protein was established by combined SEM micrographs and elemental mapping considering the casein-specific elements (P, N and S) not contained by the synthetic hydrogel matrix. The effect of casein on the mineralisation potential and stability of the mineral phase was investigated by FT-IR and SEM when alternating incubation in Ca/P solutions is performed. Increasing casein content in the hybrids leads to improved mineralisation, with localised formation of nanoapatite phase on the protein areas in the richest sample in protein. This behaviour was proved microstructurally by SEM and through overlapping elemental distribution of Ca and P from the newly formed mineral and P, S and N from the protein. This study indicates that nanoapatite-casein-PHEMA-PEGDA nanocomposites may be developed for potential use in bone repair and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号