首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effects of caffeine were investigated in judo, boxing, taekwondo and Brazilian jiu-jitsu. However, this substance was never investigated regarding traditional jiu-jitsu. Therefore, the aim of this research was to analyze the effects of caffeine in the Special Judo Fitness Test (SJFT) and technical variables during combat in traditional jiu-jitsu elite athletes. Methods: Twenty-two young professionals of traditional jiu-jitsu, 11 men and 11 women (age = 22 ± 4 (18–33) years, body mass = 66.6 ± 10.8 (46.2–86.1) kg, height = 1.70 ± 0.9 (1.55–1.85) m) with 15 ± 7 years of experience in traditional jiu-jitsu, participated in a double-blind, counterbalanced, crossover study. In two different conditions, the traditional jiu-jitsu athletes ingested 3 mg/kg body mass of caffeine or a placebo. After 60 min, they performed the SJFT test to measure throwing performance, and subsequently, combat to analyze offensive and defensive hitting techniques. Results: Caffeine had a main effect on the number of throws during the SJFT test (P < 0.01). In addition, it was effective in sets 2 (13 ± 2 vs. 14 ± 2; p = 0.01) and 3 (12 ± 2 vs. 13 ± 1; p = 0.03). There was also a main effect during the test on heart rate when caffeine was ingested (F = 12.48, p < 0.01). The effects of caffeine were similar compared to the placebo condition regarding performance during combat both in offensive and defensive fighting variables Conclusions: the pre-exercise ingestion of 3 mg/kg body mass of caffeine increased performance in the SJFT test, decreased fatigue perception, and increased power and endurance perception in professionally traditional jiu-jitsu athletes. However, it did not seem to improve offensive and defensive technical actions during combat.  相似文献   

2.
Sport nutrition knowledge has been shown to influence dietary habits of athletes. The purpose of the current study was to examine relationships between sport nutrition knowledge and body composition and examine potential predictors of body weight goals in collegiate athletes. Participants included National Collegiate Athletic Association Division III women (n = 42, height: 169.9 ± 6.9 cm; body mass: 67.1 ± 8.6 kg; fat-free mass: 51.3 ± 6.6 kg; body fat percent: 24.2 ± 5.3%) and men (n = 25, height: 180.8 ± 7.2 cm; body mass: 89.2 ± 20.5 kg; fat-free mass: 75.9 ± 12.2 kg; body fat percent: 13.5 ± 8.9%) athletes. Body composition was assessed via air displacement plethysmography. Athletes completed a validated questionnaire designed to assess sport nutrition knowledge and were asked questions about their perceived dietary energy and macronutrient requirements, as well as their body weight goal (i.e., lose, maintain, gain weight). Athletes answered 47.98 ± 11.29% of questions correctly on the nutrition questionnaire with no differences observed between sexes (men: 49.52 ± 11.76% vs. women: 47.03 ± 11.04%; p = 0.40). An inverse relationship between sport nutrition knowledge scores and body fat percentage (BF%) (r = −0.330; p = 0.008), and fat mass (r = −0.268; p = 0.032) was observed for all athletes. Fat mass (β = 0.224), BF% (β = 0.217), and body mass index (BMI) (β = 0.421) were all significant (p < 0.05) predictors of body weight goal in women. All athletes significantly (p < 0.001) underestimated daily energy (−1360 ± 610.2 kcal/day), carbohydrate (−301.6 ± 149.2 grams/day [g/day]), and fat (−41.4 ± 34.5 g/day) requirements. Division III collegiate athletes have a low level of sport nutrition knowledge, which was associated with a higher BF%. Women athletes with a higher body weight, BF% and BMI were more likely to select weight loss as a body weight goal. Athletes also significantly underestimated their energy and carbohydrate requirements based upon the demands of their sport, independent of sex.  相似文献   

3.
This study investigated low-dose caffeine ingestion, conditioning activity (CA) effects on psycho-physical performances in young taekwondo athletes. In a randomized, double-blind, counterbalanced, crossover design, 20 athletes (10 males; 17.5 ± 0.7 yrs) performed taekwondo-specific agility test (TSAT), 10 s/multiple frequency speed of kick test (FSKT-10s/FSKT-mult) after ingesting 3 mg·kg−1 caffeine (CAF) or placebo (PL) 60 min before performing standard warm-up without (NoCA) or with CA (3 × 10 vertical jumps above 40 cm), resulting in four experimental (PL + NoCA, CAF + NoCA, PL + CA, and CAF + CA) and one control (warm-up session without CAF or CA) conditions. Mood/physical symptoms (MPSS), subjective vitality (SVS), and feeling (FS) scales were analyzed post-to-pre for all conditions. Ratings of perceived-exertion and perceived-recovery status were determined after tests. For TSAT, CAF + CA induced better performance compared with all conditions (p < 0.001). For FSKT-10s and FSKT-mult, CAF + CA induced better performance compared with all conditions (p < 0.001). For MPSS, FS, CAF + NoCA induced higher scores than PL + NoCA and PL + CA (p = 0.002, 0.009 for MPSS; p = 0.014, 0.03 for FS). For SVS, PL + CA elicited lower scores than PL + NoCA and CAF + NoCA (p = 0.01, 0.004). Sex comparisons resulted in better performances for males for TSAT (p = 0.008), FSKT-10s (p < 0.001), FSKT-mult (p < 0.01), MPSS (p = 0.02), SVS (p = 0.028), and FS (p = 0.020) scores. Caffeine and conditioning activity are two efficient performance-enhancing strategies, which could synergistically result in greater psycho-physical performances.  相似文献   

4.
The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks “Bandal Tchagui”) was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P < 0.05). Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05), but combat intensity was decreased following placebo (all P < 0.05). In conclusion, caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats.  相似文献   

5.
By using deceptive experiments in which participants are informed that they received caffeine when, in fact, they received an inert substance (i.e., placebo), several investigations have demonstrated that exercise performance can be enhanced to a similar degree as a known caffeine dose. This ‘placebo effect’ phenomenon may be part of the mechanisms explaining caffeine’s ergogenicity in exercise. However, there is no study that has established whether the placebo effect of caffeine is also present for other benefits obtained with acute caffeine intake, such as enhanced fat oxidation during exercise. Therefore, the aim of this investigation was to investigate the placebo effect of caffeine on fat oxidation during exercise. Twelve young men participated in a deceptive double-blind cross-over experiment. Each participant completed three identical trials consisting of a step incremental exercise test from 30 to 80% of V.O2max. In the two first trials, participants ingested either 3 mg/kg of cellulose (placebo) or 3 mg/kg of caffeine (received caffeine) in a randomized order. In the third trial, participants were informed that they had received 3 mg/kg of caffeine, but a placebo was provided (informed caffeine). Fat oxidation rates were derived from stoichiometric equations. In received caffeine, participants increased their rate of fat oxidation over the values obtained with the placebo at 30%, 40%, 50%, and 60% of V.O2max (all p < 0.050). In informed caffeine, participants increased their rate of fat oxidation at 30%, 40%, 50% 60%, and 70% of V.O2max (all p < 0.050) over the placebo, while there were no differences between received versus informed caffeine. In comparison to placebo (0.32 ± 0.15 g/min), the rate of maximal fat oxidation was higher in received caffeine (0.44 ± 0.22 g/min, p = 0.045) and in informed caffeine (0.41 ± 0.20 g/min, p = 0.026) with no differences between received versus informed caffeine. However, the intensity at which maximal fat oxidation rate was obtained (i.e., Fatmax) was similar in placebo, received caffeine, and informed caffeine trials (42.5 ± 4.5, 44.2 ± 9.0, and 41.7 ± 10.5% of V.O2max, respectively, p = 0.539). In conclusion, the expectancy of having received caffeine produced similar effects on fat oxidation rate during exercise than actually receiving caffeine. Therefore, the placebo effect of caffeine is also present for the benefits of acute caffeine intake on substrate oxidation during exercise and it may be used to enhance fat oxidation during exercise in participants while reducing any risks to health that this substance may have.  相似文献   

6.
Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.  相似文献   

7.
Caffeine increases vertical jump, although its effects on kinetics and kinematics during different phases of bilateral and unilateral jumps remain unclear. The aim of this study was to identify the effects of 3 mg/kg on kinetic, kinematic and temporal variables in the concentric and eccentric phases of bilateral and unilateral countermovement jumps. A total of 16 Spanish national team traditional Jiu-Jitsu athletes took part in two experimental trials (3 mg/kg caffeine or placebo) in a randomized, double-blind crossover study. Sixty minutes after ingestion, bilateral and unilateral jumps were performed on a force platform. Compared to the placebo, caffeine increased bilateral jump height (p = 0.008; Δ% = 4.40), flight time (p = 0.008; Δ% = 2.20), flight time:contraction time (p = 0.029; Δ% = 8.90), concentric impulse (p = 0.018; Δ% = 1.80), peak power (p = 0.049; Δ% = 2.50), RSI-modified (p = 0.011; Δ% = 11.50) and eccentric mean braking force (p = 0.045; Δ% = 4.00). Additionally, caffeine increased unilateral RSI-mod in both legs (Left: p = 0.034; Δ% = 7.65; Right: p = 0.004; Δ% = 11.83), left leg flight time (p = 0.044; Δ% = 1.91), left leg jump height (p = 0.039; Δ% = 3.75) and right leg FT:CT (p = 0.040; Δ% = 9.72). Caffeine in a dose of 3 mg/kg BM in elite Jiu-Jitsu athletes is a recommended ergogenic aid as it increased performance of bilateral and unilateral vertical jumps. These increases were also accompanied by modified jump execution during the different phases of the countermovement prior to take-off.  相似文献   

8.
Caffeine supplementation has shown to be an effective ergogenic aid enhancing athletic performance, although limited research within female populations exists. Therefore, the aim of the investigation was to assess the effect of pre-exercise caffeine supplementation on strength performance and muscular endurance in strength-trained females. In a double-blind, randomised, counterbalanced design, fourteen strength-trained females using hormonal contraception consumed either 3 or 6 mg·kg−1 BM of caffeine or placebo (PLA). Following supplementation, participants performed a one-repetition maximum (1RM) leg press and repetitions to failure (RF) at 60% of their 1RM. During the RF test, rating of perceived exertion (RPE) was recorded every five repetitions and total volume (TV) lifted was calculated. Repeated measures ANOVA revealed that RF (p = 0.010) and TV (p = 0.012) attained significance, with pairwise comparisons indicating a significant difference between 3 mg·kg−1 BM and placebo for RF (p = 0.014), with an effect size of 0.56, and for 6 mg·kg−1 BM (p = 0.036) compared to the placebo, with an effect size of 0.65. No further significance was observed for 1RM or for RPE, and no difference was observed between caffeine trials. Although no impact on lower body muscular strength was observed, doses of 3 and 6 mg·kg−1 BM of caffeine improved lower body muscular endurance in resistance-trained females, which may have a practical application for enhancing resistance training stimuli and improving competitive performance.  相似文献   

9.
Pre-exercise caffeine and guarana-based multi-ingredient supplement (MS) consumption may be more effective for physical performance improvement than caffeine and guarana alone due to the synergistic effect of biologically active ingredients in multi-ingredient supplements. This study aimed to examine the acute effect of MS on the reactive agility and jump performance in recreational handball male players. A randomized, double-blind, crossover study involved twenty-four male handball players (body mass 74.6 ± 8.8 kg; body height 179 ± 7 cm; age 23.8 ± 1.4 years). Participants were tested under three conditions: placebo, caffeine + guarana (CAF + GUA), or MS ingestion 45 min before exercise tests. Participants performed a reactive agility test (Y-shaped test) and countermovement jump (CMJ). None of the supplements improved countermovement jump height (p = 0.06). The time needed to complete the agility test was significantly (p = 0.02) shorter in the MS condition than in the placebo. The differences in agility between PL vs. CAF + GUA and MS vs. CAF + GUA conditions were not statistically significant (p = 0.88 and p = 0.07, respectively). The results of this study indicate that the caffeine-based multi-ingredient performance was effective in improvement in reactive agility but not in jump height in recreational handball male players. A similar effect was not observed with CAF + GUA ingestion alone.  相似文献   

10.
Caffeine is widely consumed among elite athletes for its well-known ergogenic properties, and its ability to increase exercise performance. However, studies to date have predominantly focused on the anhydrous form of caffeine in male participants. The aim of the study was to investigate the effect of caffeinated coffee ingestion on lower-upper body muscular endurance, cognitive performance, and heart rate variability (HRV) in female athletes. A total of 17 participants (mean ± standard deviation (SD): age = 23 ± 2 years, body mass = 64 ± 4 kg, height = 168 ± 3 cm) in a randomized cross-over design completed three testing sessions, following the ingestion of 3 mg/kg/bm of caffeine (3COF), 6 mg/kg/bm of caffeine (6COF) provided from coffee or decaffeinated coffee (PLA) in 600 mL of hot water. The testing results included: (1) repetition number for muscular endurance performance; (2): reaction time and response accuracy for cognitive performance; (3): HRV parameters, such as standard deviation of normal-to-normal (NN) intervals (SDNN), standard deviation of successive differences (SDSD), root mean square of successive differences (RMSSD), total power (TP), the ratio of low- and high-frequency powers (LF/HF), high-frequency power (HF), normalized HF (HFnu), low-frequency power (LF), and normalized LF (LFnu). A one-way repeated measures ANOVA revealed that 3COF (p = 0.024) and 6COF (p = 0.036) improved lower body muscular endurance in the first set as well as cognitive performance (p = 0.025, p = 0.035 in the post-test, respectively) compared to PLA. However, no differences were detected between trials for upper body muscular endurance (p = 0.07). Lastly, all HRV parameters did not change between trials (p > 0.05). In conclusion, ingesting caffeinated coffee improved lower body muscular endurance and cognitive performance, while not adversely affecting cardiac autonomic function.  相似文献   

11.
Long-chain omega-3 fatty acid status during pregnancy may influence newborn anthropometry and duration of gestation. Evidence from high-quality trials from low- and middle-income countries (LMICs) is limited. We conducted a double-blind, randomized, placebo-controlled trial among 957 pregnant women (singleton gestation, 14–20 weeks’ gestation at enrollment) in India to test the effectiveness of 400 mg/day algal docosahexaenoic acid (DHA) compared to placebo provided from enrollment through delivery. Among 3379 women who were screened, 1171 were found eligible; 957 were enrolled and were randomized. The intervention was two microencapsulated algal DHA (200 × 2 = 400 mg/day) or two microencapsulated soy and corn oil placebo tablets to be consumed daily from enrollment (≤20 weeks) through delivery. The primary outcome was newborn anthropometry (birth weight, length, head circumference). Secondary outcomes were gestational age and 1 and 5 min Appearance, Pulse, Grimace, Activity, and Respiration (APGAR) score. The groups (DHA; n = 478 and placebo; n = 479) were well balanced at baseline. There were 902 live births. Compliance with the intervention was similar across groups (DHA: 88.5%; placebo: 87.1%). There were no significant differences between DHA and placebo groups for birth weight (2750.6 ± 421.5 vs. 2768.2 ± 436.6 g, p = 0.54), length (47.3 ± 2.0 vs. 47.5 ± 2.0 cm, p = 0.13), or head circumference (33.7 ± 1.4 vs. 33.8 ± 1.4 cm, p = 0.15). The mean gestational age at delivery was similar between groups (DHA: 38.8 ± 1.7 placebo: 38.8 ± 1.7 wk, p = 0.54) as were APGAR scores at 1 and 5 min. Supplementing mothers through pregnancy with 400 mg/day DHA did not impact the offspring‘s birthweight, length, or head circumference.  相似文献   

12.
The objective of this study was to examine the effect of caffeine on judo performance, perceived exertion, and plasma lactate response when ingested during recovery from a 5-day weight loss period. Six judokas performed two cycles of a 5-day rapid weight loss procedure to reduce their body weight by ~5%. After weigh-in, subjects re-fed and rehydrated over a 4-h recovery period. In the third hour of this “loading period”, subjects ingested a capsule containing either caffeine (6 mg·kg−1) or placebo. One hour later, participants performed three bouts of a judo fitness test with 5-min recovery periods. Perceived exertion and plasma lactate were measured before and immediately after each test bout. Body weight was reduced in both caffeine and placebo conditions after the weight loss period (−3.9% ± 1.6% and −4.0% ± 2.3% from control, respectively, p < 0.05). At three hours after weigh-in, body weight had increased with both treatments but remained below the control (−3.0% ± 1.3% and −2.7% ± 2.2%). There were no significant differences in the number of throws between the control, caffeine or placebo groups. However, plasma lactate was systemically higher and perceived exertion lower in the subjects who ingested caffeine compared to either the control or placebo subjects (p < 0.05). In conclusion, caffeine did not improve performance during the judo fitness test after a 5-day weight loss period, but reduced perceived exertion and increased plasma lactate.  相似文献   

13.
We assessed whether a protein supplementation protocol could attenuate running-induced muscle soreness and other muscle damage markers compared to iso-caloric placebo supplementation. A double-blind randomized controlled trial was performed among 323 recreational runners (age 44 ± 11 years, 56% men) participating in a 15-km road race. Participants received milk protein or carbohydrate supplementation, for three consecutive days post-race. Habitual protein intake was assessed using 24 h recalls. Race characteristics were determined and muscle soreness was assessed with the Brief Pain Inventory at baseline and 1–3 days post-race. In a subgroup (n = 149) muscle soreness was measured with a strain gauge algometer and creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured. At baseline, no group-differences were observed for habitual protein intake (protein group: 79.9 ± 26.5 g/d versus placebo group: 82.0 ± 26.8 g/d, p = 0.49) and muscle soreness (protein: 0.45 ± 1.08 versus placebo: 0.44 ± 1.14, p = 0.96). Subjects completed the race with a running speed of 12 ± 2 km/h. With the Intention-to-Treat analysis no between-group differences were observed in reported muscle soreness. With the per-protocol analysis, however, the protein group reported higher muscle soreness 24 h post-race compared to the placebo group (2.96 ± 2.27 versus 2.46 ± 2.38, p = 0.039) and a lower pressure muscle pain threshold in the protein group compared to the placebo group (71.8 ± 30.0 N versus 83.9 ± 27.9 N, p = 0.019). No differences were found in concentrations of CK and LDH post-race between groups. Post-exercise protein supplementation is not more preferable than carbohydrate supplementation to reduce muscle soreness or other damage markers in recreational athletes with mostly a sufficient baseline protein intake running a 15-km road race.  相似文献   

14.
This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state—MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.  相似文献   

15.
The present study uniquely examined the effect of 3 mg·kg−1 chronic caffeine consumption on training adaptations induced by 7-weeks resistance training and assessed the potential for habituation to caffeine’s ergogenicity. Thirty non-specifically resistance-trained university standard male rugby union players (age (years): 20 ± 2; height (cm): 181 ± 7; body mass (kg): 92 ± 17) completed the study), who were moderate habitual caffeine consumers (118 ± 110 mg), completed the study. Using a within-subject double-blind, placebo-controlled experimental design, the acute effects of caffeine intake on upper and lower limb maximal voluntary concentric and eccentric torque were measured using isokinetic dynamometry (IKD) prior to and immediately following a resistance training intervention. Participants were split into strength-matched groups and completed a resistance-training program for seven weeks, consuming either caffeine or a placebo before each session. Irrespective of group, acute caffeine consumption improved peak eccentric torque of the elbow extensors (p < 0.013), peak concentric torque of the elbow flexors (p < 0.005), total eccentric work of the elbow flexors (p < 0.003), total concentric work of the knee extensors (p < 0.001), and total concentric and eccentric work of the knee flexors (p < 0.046) following repeated maximal voluntary contractions. Many of these acute caffeine effects were still prevalent following chronic exposure to caffeine throughout the intervention. The training intervention resulted in significant improvements in upper and lower body one-repetition maximum strength (p < 0.001). For the most part, the effect of the training intervention was equivalent in both the caffeine and placebo groups, despite a small but significant increase (p < 0.037) in the total work performed in the participants that consumed caffeine across the course of the intervention. These results infer that caffeine may be beneficial to evoke acute improvements in muscular strength, with acute effects prevalent following chronic exposure to the experimental dose. However, individuals that consumed caffeine during the intervention did not elicit superior post-intervention training- induced adaptations in muscular strength.  相似文献   

16.
Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8–10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations.  相似文献   

17.
Aim: This study investigated how performance was affected after soccer players, in a postprandial state, ingested a 7% carbohydrate (CHO) solution compared to a placebo (0% CHO) during a simulated soccer match. Methods: Using a double-blind placebo-controlled design, 22 trained male league soccer players (age: 24 ± 7 years, wt: 73.4 ± 12.0 kg, VO2max: 51.8 ± 4.3 mL O2/kg/min) completed two trials, separated by 7 days, during which they ingested, in random order, 700 mL of either a 7% CHO or placebo drink during a simulated soccer match. Ratings of perceived exertion (RPE), agility, timed and run to fatigue were measured during the trials. Results: Change in agility times was not altered by CHO vs. placebo ingestion (0.57 ± 1.48 vs. 0.66 ± 1.00, p = 0.81). Timed runs to fatigue were 381 ± 267 s vs. 294 ± 159 s for the CHO and placebo drinks, respectively (p = 0.11). Body mass modified the relationship between time to fatigue and drink ingestion (p = 0.02 for drink × body mass), such that lower body mass was associated with increased time to fatigue when the players ingested CHO, but not placebo. RPE values for the final stage of the simulated soccer match were 8.5 ± 1.7 and 8.6 ± 1.5 for the CHO and placebo drinks respectively (p = 0.87). Conclusions: The group data showed that the 7% CHO solution (49 g CHO) did not significantly improve performance during a simulated soccer match in league soccer players who had normal pre-match nutrition. However, when adjusting for body mass, increasing CHO intake was associated with improved time to fatigue during the simulated soccer match.  相似文献   

18.
Background: To investigate the acute effects of a capsaicin analogue supplement on 10 km time-trial performance and physiological responses in amateur athletes. Methods: Twenty-one participants (age = 29.3 ± 5.5 years, weight 74.2 ± 11.3 kg, height 176.0 ± 0.0 cm, fat mass 12.7 ± 3.8%, V˙O2max 62.7 ± 8.4 mL·k−1·min−1), completed two randomized, double-blind trials: capsaicin analogue condition (Capsiate (CAP) = 24 mg) or a placebo (PLA) condition. The participants consumed two doses of 12 mg of CAP or PLA capsule 45 min before and immediately at the start of each trial. The time required to complete 10 km, lactate concentration, maximum heart rate (HRpeak), and rating of perceived exertion (RPE) were recorded. Results: The 10 km time-trial performance (CAP = 45.07 ± 6.41 min vs. PLA = 45.13 ± 6.73, p = 0.828) was not statistically significantly different between conditions. No statistically significant differences between conditions were detected for lactate concentration (p = 0.507), HRpeak (p = 0.897) and RPE (p = 0.517). Conclusion: Two doses of a 12 mg Capsaicin analogue supplement did not improve performance and physiological responses in a 10 km running time-trial in amateur athletes.  相似文献   

19.
Design, participants, setting, and measurements: Predialysis adult participants with chronic kidney disease (CKD) and mean estimated glomerular filtration rate (eGFR) <45 mL/min per 1.73 m2) were recruited in 2019 to a multicentric double-blinded randomized controlled trial of enzobiotic therapy (synbiotics and proteolytic enzymes) conducted over 12 weeks. The primary objective was to evaluate the efficacy and safety of enzobiotics in reducing the generation of p-cresol sulfate (PCS) and indoxyl sulfate (IS), stabilizing renal function, and improving quality of life (QoL), while the secondary objective was to evaluate the feasibility of the diagnostic prediction of IS and PCS from CKD parameters. Results: Of the 85 patients randomized (age 48.76 years, mean eGFR 23.24 mL/min per 1.73 m2 in the placebo group; age 54.03 years, eGFR 28.93 mL/min per 1.73 m2 in the enzobiotic group), 50 completed the study. The absolute mean value of PCS increased by 12% from 19 µg/mL (Day 0) to 21 µg/mL (Day90) for the placebo group, whereas it decreased by 31% from 23 µg/mL (Day 0) to 16 µg/mL (Day 90) for the enzobiotic group. For IS, the enzobiotic group showed a decrease (6.7%) from 11,668 to 10,888 ng/mL, whereas the placebo group showed an increase (8.8%) from 11,462 to 12,466 ng/mL (Day 90). Each patient improvement ratio for Day 90/Day 0 analysis showed that enzobiotics reduced PCS by 23% (0.77, p = 0.01). IS levels remained unchanged. In the placebo group, PCS increased by 27% (1.27, p = 0.14) and IS increased by 20% (1.20, p = 0.14). The proportion of individuals beyond the risk threshold for PCS (>20 µg/mL) was 53% for the placebo group and 32% for the enzobiotic group. The corresponding levels for IS risk (threshold >20,000 ng/mL) were 35% and 24% for the placebo and enzobiotic groups, respectively. In the placebo group, eGFR decreased by 7% (Day 90) but remained stable (1.00) in the enzobiotic group. QoL as assessed by the adversity ratio decreased significantly (p = 0.00), highlighting an improvement in the enzobiotic group compared to the placebo group. The predictive equations were as follows: PCS (Day 0 = −5.97 + 0.0453 PC + 2.987 UA − 1.310 Creat; IS (Day 0) = 756 + 1143 Creat + 436.0 Creat2. Conclusion: Enzobiotics significantly reduced the PCS and IS, as well as improved the QoL.  相似文献   

20.
Nutrition knowledge is a critical component of meeting sport nutrition guidelines. The present study aimed to evaluate the sport nutrition knowledge of National Collegiate Athletic Association (NCAA) Division III (DIII) athletes using a validated questionnaire, and to assess the dietary practices and sources of nutrition information in this population. A total of 331 student-athletes (n = 149 males, n = 181 females, n = 1 no sex indicated) completed the questionnaire. The mean score for total sport nutrition knowledge was 6.49 ± 8.9 (range −49 to 49) with a mean percent (%) correct score of 36.9 ± 19.1%. Athletes who had a previous college-level nutrition course (n = 62) had significantly higher (p < 0.05) total sport nutrition, carbohydrate, and hydration knowledge compared to those who did not (n = 268). Individual sport athletes (n = 90) scored significantly higher (p < 0.05) on hydration and micronutrients knowledge than team sport athletes (n = 237), while females scored higher than males for hydration knowledge (p < 0.05). The majority of athletes reported sensible dietary habits, such as not frequently skipping meals and eating carbohydrate and protein foods peri-workout. Athletes also reported their primary sources of nutrition information, the top three sources being social media, coaches, and athletic trainers, despite most frequently rating registered dietitians/nutritionists as “extremely knowledgeable”. Despite low sport nutrition knowledge, NCAA DIII collegiate athletes practiced seemingly prudent dietary habits but lacked exposure to high-quality sources of nutrition information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号