首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.  相似文献   

2.
In our study, transparent and conductive films of NiOx were successfully deposited by sol-gel technology. NiOx films were obtained by spin coating on glass and Si substrates. The vibrational, optical, and electrical properties were studied as a function of the annealing temperatures from 200 to 500 °C. X-ray Photoelectron (XPS) spectroscopy revealed that NiO was formed at the annealing temperature of 400 °C and showed the presence of Ni+ states. The optical transparency of the films reached 90% in the visible range for 200 °C treated samples, and it was reduced to 76–78% after high-temperature annealing at 500 °C. The optical band gap of NiOx films was decreased with thermal treatments and the values were in the range of 3.92–3.68 eV. NiOx thin films have good p-type electrical conductivity with a specific resistivity of about 4.8 × 10−3 Ω·cm. This makes these layers suitable for use as wideband semiconductors and as a hole transport layer (HTL) in transparent solar cells.  相似文献   

3.
Solid solutions of (1-x)BiFeO3-xBaTiO3 (BF-BT, 0.05 ≤ x ≤ 0.98) were prepared and characterized. It was found that the dielectric constant εm, remnant polarization Pr and piezoelectric coefficient d33 reach their maximum values near the rhombohedral–pseudocubic phase boundary. In particular, the 0.7BF-0.3BT composition shows large polarization (Pr > 20 μC/cm2) and a temperature-stable piezoelectric property (d33 > 100 pC/N when the annealing temperature is lower than ~400 °C). Near the tetragonal–pseudocubic phase boundary, εm and Pr decrease, and the piezoelectric property vanishes when the BF content reaches 4 mol %.  相似文献   

4.
Transparent conducting oxides (TCOs), with high optical transparency (≥85%) and low electrical resistivity (10−4 Ω·cm) are used in a wide variety of commercial devices. There is growing interest in replacing conventional TCOs such as indium tin oxide with lower cost, earth abundant materials. In the current study, we dope Zr into thin ZnO films grown by atomic layer deposition (ALD) to target properties of an efficient TCO. The effects of doping (0–10 at.% Zr) were investigated for ~100 nm thick films and the effect of thickness on the properties was investigated for 50–250 nm thick films. The addition of Zr4+ ions acting as electron donors showed reduced resistivity (1.44 × 10−3 Ω·cm), increased carrier density (3.81 × 1020 cm−3), and increased optical gap (3.5 eV) with 4.8 at.% doping. The increase of film thickness to 250 nm reduced the electron carrier/photon scattering leading to a further reduction of resistivity to 7.5 × 10−4 Ω·cm and an average optical transparency in the visible/near infrared (IR) range up to 91%. The improved n-type properties of ZnO: Zr films are promising for TCO applications after reaching the targets for high carrier density (>1020 cm−3), low resistivity in the order of 10−4 Ω·cm and high optical transparency (≥85%).  相似文献   

5.
In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were successfully synthesized within a temperature range of 623–923 K in a very short amount of time (6–7 min), which is several hundred degrees lower than the typical solid-state approach. Meanwhile, scanning electron microscopy and density measurements revealed that the cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were densified to more than 90%. X-ray diffraction (XRD) results revealed that the cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.5) bulk ceramics, as well as the sol–gel-hydrothermally synthesized ZrW2−xMoxO7(OH)2·2H2O precursors correspond to their respective pure single phases. The bulk ceramics demonstrated negative thermal expansion characteristics, and the coefficients of negative thermal expansion were shown to be tunable in cubic-ZrW2−xMoxO8 bulk ceramics with respect to x value and sintering temperature. The cubic-ZrW2−xMoxO8 solid solution can thus have potential applications in electronic devices such as heat sinks that require regulation of thermal expansion.  相似文献   

6.
We present a systematic study of the lithium-ion transport upon the mixed manganese-iron oxide phosphate glasses 3Li2O-xMn2O3-(2-x)Fe2O3-3P2O5(LMxF2−xPO; 0 x 2.0) proposed for the use in a cathode for lithium secondary batteries. The glasses have been fabricated using a solid reaction process. The electrical characteristics of the glass samples have been characterized by electrical impedance in the frequency range from 100 Hz to 30 MHz and temperature from 30 °C to 240 °C. Differential thermal analysis and X-ray diffraction were used to determine the thermal and structural properties. It has been observed that the dc conductivity decreases, but the activation energies of dc and ac and the glass-forming ability increase with the increasing Mn2O3 content in LMxF2−xPO glasses. The process of the ionic conduction and the relaxation in LMxF2−xPO glasses are determined by using power–law, Cole–Cole, and modulus methods. The Li+ ions migrate via the conduction pathway of the non-bridging oxygen formed by the depolymerization of the mixed iron–manganese–phosphate network structure. The mixed iron–manganese content in the LMxF2−xPO glasses constructs the sites with different depths of the potential well, leading to low ionic conductivity.  相似文献   

7.
X-ray diffraction (XRD) analysis showed that metal oxide peaks appear at 2θ = 47.7°, 54.5°, and 56.3°, corresponding to Yb2O3 (440), Co2O3 (422), and Co2O3 (511). It was found that oxide formation plays an important role in magnetic, electrical, and surface energy. For magnetic and electrical measurements, the highest alternating current magnetic susceptibility (χac) and the lowest resistivity (×10−2 Ω·cm) were 0.213 and 0.42, respectively, and at 50 nm, it annealed at 300 °C due to weak oxide formation. For mechanical measurement, the highest value of hardness was 15.93 GPa at 200 °C in a 50 nm thick film. When the thickness increased from 10 to 50 nm, the hardness and Young’s modulus of the Co60Fe20Yb20 film also showed a saturation trend. After annealing at 300 °C, Co60Fe20Yb20 films of 40 nm thickness showed the highest surface energy. Higher surface energy indicated stronger adhesion, allowing for the formation of multilayer thin films. The optimal condition was found to be 50 nm with annealing at 300 °C due to high χac, strong adhesion, high nano-mechanical properties, and low resistivity.  相似文献   

8.
Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.  相似文献   

9.
The results of the study of the three-component system of CuO–V2O5–Ta2O5 oxides showed, inter alia, that in the air atmosphere in one of its cross-sections, i.e., in the CuV2O6–CuTa2O6 system, a new substitutional solid solution with the general formula CuTa2−xVxO6 and homogeneity range for x > 0.0 and x ≤ 0.3 is formed. The influence of the degree of incorporation of V5+ ions into the CuTa2O6 crystal lattice in place of Ta5+ ions on the unit cell volume, thermal stability and IR spectra of the obtained solid solution was determined. Moreover, the value of the band gap energy of the CuTa2−xVxO6 solid solution was estimated in the range of 0.0 < x ≤ 0.3, and on this basis, the new solid solution was classified as a semiconductor. On the basis of the research results, the studied system of CuO–V2O5–Ta2O5 oxides was also divided into 12 subsidiary subsystems.  相似文献   

10.
In this study, we fabricated and characterized uniform multi-cation perovskite FAxMA1−xPbI3 films. We used the dynamic spin-coating method to control the cation ratio of the film by gradually increasing the FA+, which replaced the MA+ in the films. When the FA+ concentration was lower than xFA ~0.415 in the films, the stability of the multi-cation perovskite improved. Above this concentration, the film exhibited δ-phase FAPbI3 in the FAxMA1−xPbI3 films. The formation of δ-phase FAPbI3 disturbed the homogeneity of the photoluminescence spatial distribution and suppressed the absorption spectral bandwidth with the increasing bandgap. The precise control of the cation ratio of multi-cation perovskite films is necessary to optimize the energy-harvesting performance.  相似文献   

11.
The current research examines the impact of Ca2+ substitution on the phase and electrical properties of (Ba1−xCax)Ti4O9, (x = 0.0, 0.3, 0.6, and 0.9) sintered pellets synthesized by solid-state reaction method. The as-synthesized samples were analyzed using X-ray diffraction (XRD) and impedance spectroscopy. The emergence of orthorhombic phase fit into space group Pnmm was revealed by XRD, and the addition of Ca resulted in a considerable shift in grain size. Dielectric properties were determined using an impedance spectroscopy in a wide frequency range from 1MHz to 3 GHz. The dielectric properties i.e., dielectric constant (εr) and dielectric loss (tanσ), were measured at 3 GHz frequency. The frequency-dependent parameters such as conductivity, dielectric constant, and dielectric loss indicated that the relaxation process is a Maxwell–Wagner type of interfacial polarization. The improved dielectric properties and low energy loss have made (Ba1−xCax)Ti4O9 a prominent energy storage material. This study provides the possibility to improve its dielectric properties and reduce energy loss, making it an excellent energy storage material.  相似文献   

12.
All-inorganic Sb-perovskite has become a promising material for solar cell applications owing to its air stability and nontoxic lead-free constitution. However, the poor morphology and unexpected (001) orientation of Sb-based perovskite films strongly hinder the improvement of efficiency. In this work, two-dimensional Cs3Sb2ClxI9−x with (201) preferred orientation has been successfully fabricated by introducing thiourea (TU) to the precursor solution. The presence of the C=S functional group in TU regulates the crystallization dynamics of Cs3Sb2I9−xClx films and generates the (201) preferred orientation of Cs3Sb2ClxI9−x films, which could effectively improve the carrier transport and film morphology. As a result, the Cs3Sb2I9−xClx perovskite solar cells (PSCs) delivered a power conversion efficiency (PCE) of 2.22%. Moreover, after being stored in nitrogen at room temperature for 60 days, the devices retained above 87.69% of their original efficiency. This work demonstrates a potential pathway to achieve high-efficiency Sb-based PSCs.  相似文献   

13.
Methylene blue (MB) is widely used as a test material in photodynamic therapy and photocatalysis. These applications require an accurate determination of the MB concentration as well as the factors affecting the temporal evolution of the MB concentration. Optical absorbance is the most common method used to estimate MB concentration. This paper presents a detailed study of the dependence of the optical absorbance of aqueous methylene blue (MB) solutions in a concentration range of 0.5 to 10 mg·L−1. The nonlinear behavior of optical absorbance as a function of MB concentration is described for the first time. A sharp change in optical absorption is observed in the range of MB concentrations from 3.33 to 4.00 mg·L−1. Based on the analysis of the absorption spectra, it is concluded that this is due to the formation of MB dimers and trimers in the specific concentration range. For the first time, a strong, thermally induced discoloration effect of the MB solution under the influence of visible and sunlight was revealed: the simultaneous illumination and heating of MB solutions from 20 to 80 °C leads to a twofold decrease in the MB concentration in the solution. Exposure to sunlight for 120 min at a temperature of 80 °C led to the discoloration of the MB solution by more than 80%. The thermally induced discoloration of MB solutions should be considered in photocatalytic experiments when tested solutions are not thermally stabilized and heated due to irradiation. We discuss whether MB is a suitable test material for photocatalytic experiments and consider this using the example of a new photocatalytic material—boron oxynitride (BNOx) nanoparticles—with 4.2 and 6.5 at.% of oxygen. It is shown that discoloration is a complex process and includes the following mechanisms: thermally induced MB photodegradation, MB absorption on BNOx NPs, self-sensitizing MB photooxidation, and photocatalytic MB degradation. Careful consideration of all these processes makes it possible to determine the photocatalytic contribution to the discoloration process when using MB as a test material. The photocatalytic activity of BNOx NPs containing 4.2 and 6.5 at.% of oxygen, estimated at ~440 μmol·g−1·h−1. The obtained results are discussed based on the results of DFT calculations considering the effect of MB sorption on its self-sensitizing photooxidation activity. A DFT analysis of the MB sorption capacity with BNOx NPs shows that surface oxygen defects prevent the sorption of MB molecules due to their planar orientation over the BNOx surface. To enhance the sorption capacity, surface oxygen defects should be eliminated.  相似文献   

14.
In this work, the stability of Sr2(FeMo)O6−δ-type perovskites was tailored by the substitution of Mo with Ti. Redox stable Sr2Fe1.4TixMo0.6−xO6−δ (x = 0.1, 0.2 and 0.3) perovskites were successfully obtained and evaluated as potential electrode materials for SOFCs. The crystal structure as a function of temperature, microstructure, redox stability, and thermal expansion properties in reducing and oxidizing atmospheres, oxygen content change, and transport properties in air and reducing conditions, as well as chemical stability and compatibility towards typical electrolytes have been systematically studied. All Sr2Fe1.4TixMo0.6−xO6−δ compounds exhibit a regular crystal structure with Pm-3m space group, showing excellent stability in oxidizing and reducing conditions. The increase of Ti-doping content in materials increases the thermal expansion coefficient (TEC), oxygen content change, and electrical conductivity in air, while it decreases the conductivity in reducing condition. All three materials are stable and compatible with studied electrolytes. Interestingly, redox stable Sr2Fe1.4Ti0.1Mo0.5O6−δ, possessing 1 μm grain size, low TEC (15.3 × 10−6 K−1), large oxygen content change of 0.72 mol·mol−1 between 30 and 900 °C, satisfactory conductivity of 4.1–7.3 S·cm−1 in 5% H2 at 600–800 °C, and good transport coefficients D and k, could be considered as a potential anode material for SOFCs, and are thus of great interest for further studies.  相似文献   

15.
The aim of this study is to synthesize Li1+xAlxTixSn2−2x(PO4) sodium super ion conductor (NASICON) -based ceramic solid electrolyte and to study the effect of dual metal substitution on the electrical and structural properties of the electrolyte. The performance of the electrolyte is analyzed based on the sintering temperature (550 to 950 °C) as well as the composition. The trend of XRD results reveals the presence of impurities in the sample, and from Rietveld Refinement, the purest sample is achieved at a sintering temperature of 950 °C and when x = 0.6. The electrolytes obey Vegard′s Law as the addition of Al3+ and Ti4+ provide linear relation with cell volume, which signifies a random distribution. The different composition has a different optimum sintering temperature at which the highest conductivity is achieved when the sample is sintered at 650 °C and x = 0.4. Field emission scanning electron microscope (FESEM) analysis showed that higher sintering temperature promotes the increment of grain boundaries and size. Based on energy dispersive X-ray spectroscopy (EDX) analysis, x = 0.4 produced the closest atomic percentage ratio to the theoretical value. Electrode polarization is found to be at maximum when x = 0.4, which is determined from dielectric analysis. The electrolytes follow non-Debye behavior as it shows a variety of relaxation times.  相似文献   

16.
A typical body-centered cubic (BCC) CoFe(110) peak was discovered at approximately 2θ = 44.7°. At 2θ = 46°, 46.3°, 47.7°, 55.4°, 54.6°, and 56.4°, the Yb2O3 and Co2O3 oxide peaks were visible in all samples. However, with a heat treatment temperature of 300 °C, there was no typical peak of CoFe(110). Electrical characteristics demonstrated that resistivity and sheet resistance reduced dramatically as film thickness and annealing temperatures increased. At various heat treatments, the maximum hardness was 10 nm. The average hardness decreased as the thickness increased, and the hardness trend decreased slightly as the annealing temperature was higher. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered after being annealed at 200 °C with 50 nm, and the optimal resonance frequency (fres) was discovered to be within the low-frequency range, indicating that the Co40Fe40Yb20 film can be used in low-frequency applications. The maximum saturation magnetization (Ms) was annealed at 200 °C for 50 nm. Thermal disturbance caused the Ms to decrease as the temperature reached to 300 °C. The results show that when the oxidation influence of as-deposited and thinner films is stronger than annealing treatments and thicker thickness, the magnetic and electrical properties can be enhanced by the weakening peak of the oxide, which can also reduce interference.  相似文献   

17.
Hf1−xSixO2 nanocomposites with different SiO2 doping ratios were synthesized using an ion-assisted co-evaporation process to achieve dense amorphous Hf1−xSixO2 coatings with low loss and a high laser-induced damage threshold (LIDT). The results showed that the Hf1−xSixO2 nanocomposites (x ≥ 0.20) exhibited excellent comprehensive performance with a wide band gap and a dense amorphous microstructure. High-temperature annealing was carried out to ensure better stoichiometry and lower absorption. Precipitation and regrowth of HfO2 grains were observed from 400 °C to 600 °C during annealing of the Hf0.80Si0.20O2 nanocomposites, resulting in excessive surface roughness. A phenomenological model was proposed to explain the phenomenon. The Hf1−xSixO2 nanocomposites (x = 0.3 and 0.4) maintained a dense amorphous structure with low absorption after annealing. Finally, a 1064-nm Hf0.70Si0.30O2/SiO2 high-performance reflector was prepared and achieved low optical loss (15.1 ppm) and a high LIDT (67 J/cm2).  相似文献   

18.
The thermoelectric cement-based materials can convert heat into electricity; this makes them promising candidates for impressed current cathodic protection of carbon steel. However, attempts to use the thermoelectric cement-based materials for energy conversion usually results in low conversion efficiency, because of the low electrical conductivity and Seebeck coefficient. Herein, we deposited polyaniline on the surface of MnO2 and fabricated a cement-based thermoelectric device with added PANI/MnO2 composite for the protection of carbon steel in alkaline chloride solution. The nanorod structure (70~80 nm in diameter) and evenly dispersed conductive PANI provide the PANI/MnO2 composite with good electrical conductivity (1.9 ± 0.03 S/cm) and Seebeck coefficient (−7.71 × 103 ± 50 μV/K) and, thereby, increase the Seebeck coefficient of cement-based materials to −2.02 × 103 ± 40 μV/K and the electrical conductivity of cement-based materials to 0.015 ± 0.0003 S/cm. Based on this, the corrosion of the carbon steel was delayed after cathodic protection, which was demonstrated by the electrochemical experiment results, such as the increased resistance of the carbon steel surface from 5.16 × 102 Ω·cm2 to 5.14 × 104 Ω·cm2, increased charge transfer resistance from 11.4 kΩ·cm2 to 1.98 × 106 kΩ·cm2, and the decreased corrosion current density from 1.67 μA/cm2 to 0.32 μA/cm2, underlining the role of anti-corrosion of the PANI/MnO2 composite in the cathodic protection system.  相似文献   

19.
La1xSrxTiO3+δ (LST) has been studied in many fields, especially in the field of microelectronics due to its excellent electrical performance. Our previous theoretical simulated work has suggested that LST has good dielectric properties, but there are rare reports about this, especially experimental reports. In this paper, LST was prepared using a solid-state reaction method. The X-rays diffraction (XRD), scanning electron microscope (SEM), broadband dielectric spectroscopy, impedance spectroscopy and photoconductive measurement were used to characterize the sample. The results show that the values of dielectric parameters (the relative dielectric constant εr and dielectric loss tanδ), dependent on temperature, are stable under 350 °C and the value of the relative dielectric constant and dielectric loss are about 52–88 and 6.5 × 10−3, respectively. Its value of conductivity increases with rise in temperature, which suggests its negative temperature coefficient of the resistance. In addition, the band gap of LST is about 3.39 eV, so it belongs to a kind of wide-band-gap semiconductor materials. All these indicate that LST has anti-interference ability and good dielectric properties. It could have potential applications as an electronic material.  相似文献   

20.
In this work, a hydrogen-terminated (H-terminated) diamond field effect transistor (FET) with HfAlOx/Al2O3 bilayer dielectrics is fabricated and characterized. The HfAlOx/Al2O3 bilayer dielectrics are deposited by the atomic layer deposition (ALD) technique, which can protect the H-terminated diamond two-dimensional hole gas (2DHG) channel. The device demonstrates normally-on characteristics, whose threshold voltage (VTH) is 8.3 V. The maximum drain source current density (IDSmax), transconductance (Gm), capacitance (COX) and carrier density (ρ) are −6.3 mA/mm, 0.73 mS/mm, 0.22 μF/cm2 and 1.53 × 1013 cm−2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号